TEST 2, MATH 3406, APRIL 2, 2020

Print Name:

This test is to be taken without calculators and notes of any sort. The allowed time is 75 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write 1.414.... State your work clearly, otherwise credit cannot be given. Likewise, write legibly!

I abide by the Georgia Tech honor code. Signature:

Problem 1 (15): Compute the eigenvalues and eigenvectors of the matrix

$$\left[\begin{array}{cc} -1 & 4 \\ -1 & 3 \end{array}\right]$$

Is it diagonalizable? Write the possible eigenvectors as row vectors. No partial credit will be given because you can check the answer.

Solution: Characteristic polynomial: $\lambda^2 - 2\lambda + 1 = (\lambda - 1)^2$ Alg. mult. is 2. Eigenvector is $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ geom. mult. is 1

Problem 2 (10): For which values of a is the matrix

$$\left[\begin{array}{cc} a & 1-a \\ a-1 & 2-a \end{array}\right]$$

diagonalizable? Circle the correct option: 2, none, 1 and -1, 1 only, all

Solution: Characteristic polynomial is $\lambda^2 - 2\lambda + a(2-a) - (a-1)(1-a) = \lambda^2 - 2\lambda + 1 = (\lambda - 1)^2$ alg mult is 2 Eigenvector equation is ax + (1-a)y = x so that x = y if $a \neq 1$. So, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is the only eigenvector in this case and hence the geom. multiplicity is 1. If a = 1 the the matrix is the identity matrix and the geom. mult is 2 and hence diagonal.

Problem 3 (10): The vectors $\vec{e}_1, \vec{e}_2, \vec{e}_3$ span the unit cube which has volume 1. The linear map $T : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T\vec{x} = A\vec{x}$ where

$$A = \left[\begin{array}{rrr} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 2 \end{array} \right]$$

maps the unit cube to a parallelepiped. Which one of the following numbers is the volume of the parallelepiped: 4, -3, 3, 2?

Solution: The parallelepiped is given by the three column vectors of A. Hence the volume is $|\det A| = 3$

Problem 4 (20): Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that maps the vector $\vec{e_1}$ to the vector $\vec{e_1} + 2\vec{e_2}$ and the vector $\vec{e_2}$ to $2\vec{e_1} - \vec{e_2}$.

- a) Write the matrix associated with this transformation.
- b) Let $S: \mathbb{R}^2 \to \mathbb{R}^2$ be the reflection about the x=y axis.

Write the matrix for the map $T \circ S$ as well as the matrix associated with the map $S \circ T$.

Solution: Matrix for T:

$$\left[\begin{array}{cc} 1 & 2 \\ 2 & -1 \end{array}\right]$$

Matrix for $S \circ T$ is

$$\left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right] \left[\begin{array}{cc} 1 & 2 \\ 2 & -1 \end{array}\right] = \left[\begin{array}{cc} 2 & -1 \\ 1 & 2 \end{array}\right]$$

Matrix for $T \circ S$ is

$$\left[\begin{array}{cc} 1 & 2 \\ 2 & -1 \end{array}\right] \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right] = \left[\begin{array}{cc} 2 & 1 \\ -1 & 2 \end{array}\right]$$

Problem 5 (12): Find the eigenvalues of the matrix

$$\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 5 \\
0 & 0 & 2 & 3 \\
0 & 0 & 0 & 5
\end{array}\right]$$

You do not have to compute the eigenvectors. There is no partial credit, because you can check your answer.

Solution: -1, 3, 2, 5

Problem 6 (15): Construct a matrix A with eigenvalues 1 and 2, such that the eigenvalue 1 has algebraic multiplicity 3, geometric multiplicity 1, and 2 has algebraic multiplicity 2, geometric 1.

Solution:

$$\begin{bmatrix}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 2
\end{bmatrix}$$

Problem 7 (18): Suppose S is a k-dimensional subspace of \mathbb{R}^5 , $k \leq 5$. Let P be the matrix of the orthogonal projection to S.

- a) (5) What are the eigenvalues and eigenvectors of P?
- b) (5) What are the algebraic and geometric multiplicities of the eigenvalues of P?
- c)(5) Is P diagonalisable?

Solution: All the vectors in S are eigenvectors with eigenvalue 1 and those perpedicular to S are the eigenvectors with eigenvalue 0. The algebraic multiplicity of 1 = geoemetric multiplicity of 1 equals k. The alg mult of 0 is the geom. mult. of 0 equals 5 - k. It is diagonalizable.

Problem EC* (10): Consider the non-zero rank one matrix $\vec{v}\vec{u}^T$, \vec{v} , $\vec{u} \in \mathbb{R}^3$ and assume that $\vec{u} \cdot \vec{v} \neq 0$. What are the eigenvectors and eigenvalues? Is it diagonalizable? Suppose that $\vec{u} \cdot \vec{v} = 0$ is it again diagonalizable?

Solution: Assume that $\vec{u} \cdot \vec{v} \neq 0$: \vec{v} is an eigenvector, since $\vec{v}\vec{u}^T\vec{v} = (\vec{u} \cdot \vec{v})\vec{v}$. Hence the eigenvalue is $\vec{u} \cdot \vec{v}$. Any vector perpendicular to \vec{u} gets mapped to the zero vector. Hence the matrix is diagonalizable.

Suppose now that $\vec{u} \cdot \vec{v} = 0$: Any vector perpendicular to \vec{u} is an eigenvector with eigenvalue 0. Any vector that is not perpendicular to \vec{u} cannot be an eigenvector since the matrix maps this vector on to \vec{v} which is perpendicular. Hence this matrix is not diagonalizable.