
BASIS IN A FINITE DIMENSIONAL VECTOR SPACE

Hopefully you have come to appreciate the notion of a basis. In this note we prove the
existence of a basis. We restrict ourselves to vector spaces V who are spanned by finitely
many vectors

S = {u1, u2, . . . , uk} .
Recall that this means that every vector in V is a linear combination of the vectors u1, u2, . . . , uk.
Also recall that a set of vectors is a basis for a vector space V if this set of vectors is linearly
independent and spans the space V .

Theorem 0.1. The vector space V has a basis of the form

B = {ui1 , ui2 , . . . , ui`} .
In particular B is a subset of S.

Proof. The reasoning here is inductive, not very difficult but important. We may assume that
the set S does not contain the zero vector. If it does, just discard it. Next, we think of the
vectors in S as an ordered list, there is a first vector, a second vector and so on until the kth
vector. Now we pick u1 as the first vector in our basis to be constructed. Consider the second
vector u2. If it is proportional to u1 discard it from the list and go to the next one. If this
vector is again proportional to u1 discard it from the list and consider the next one. It may
happen that you discard all the vectors following u1 but then u1 is a basis for the space V ,
since u1 6= 0 and every vector in V is proportional to u1. If this does not happen then you
end up with a vector in the list that is not proportional to u1. We call it ui2 . Now form the
span T2 of u1 and ui2 , i.e., the set of all linear combinations of u1 and ui2 and pick the next
vector in the list. If this vector is in T2 remove it from the list and check with the next vector
as before. The first vector you find that is not in T2 you call ui3 . Now form the span T3 of
the vectors u1, ui2 and ui3 and by discarding if necessary all the following vectors that are in
T3 pick the vector ui4 that is not in T3. The span of u1, ui2 , ui3 , ui4 is T4. One can go on with
this process but it will stop once we have used up all the vectors. This provides you with a
list of vectors B = {u1, ui2 , . . . , ui`}. If we denote the space spanned by the vector u1 by T1

then we have a sequence of nested subspaces

T1 ⊂ T2 ⊂ T3 ⊂ · · · ⊂ T`

and it never happens that Ti = Ti+1. Now we show that the set B consists of linearly
independent vectors. Suppose that ∑̀

j=1

cjuij = 0 ,

that is
c1u1 + c2ui2 + · · ·+ c`ui` = 0 .

If c` 6= 0 then ui` is a linear combination of the other vectors and hence in T`−1 contrary to
our construction. Hence c` = 0. For the same reason the next number c`−1 must also be zero
because otherwise u`−1 would be in T`−2. Continuing in this way we see that all coefficients
have to vanish. Thus the vectors in B form a linearly independent set. By construction every
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vector in S is a linear combination of vectors in B and since the vectors in S form a spanning
set, B is also a spanning set. Thus B is a basis. �

Theorem 0.2. Assume that ~u1, . . . , ~un span a vector space V . Then any set of n + 1 vectors
in V is linearly dependent.

Proof. We proceed by induction on n. For n = 1 every vector in V is proportional to ~u1 and

hence any two vectors ~f1, ~f2 are of the form f1 = c1~u1 and ~f2 = c2~u1 for numbers c1, c2. We

find that c2 ~f1 − c1 ~f2 = ~0. Thus, we assume as our induction hypotheses that the statement

holds for any k ≤ n− 1 and we have to prove it for k = n. Let ~f1, . . . , ~fn+1 vectors in V . We
may write

~fj =
n∑

i=1

cij~ui , j = 1, . . . , n + 1 ,

since ~u1, . . . , ~un span V . There exists at least one number among ci(n+1), i = 1, . . . , n which

is not zero, because otherwise ~fn+1 is the zero vector which implies that the set is linearly

dependent and there is nothing to prove. Hence, we may assume that ~fn+1 6= ~0 and we may
assume after relabeling the vectors ~uj, j = 1, . . . , n that cn(n+1) 6= 0. We may solve for ~un and
write

~un =
1

cn(n+1)

[
~fn+1 −

n−1∑
i=1

ci(n+1)~ui

]
and hence

~fj =
n−1∑
i=1

cij~ui +
cnj

cn(n+1)

[
~fn+1 −

n−1∑
i=1

ci(n+1)~ui

]
, j = 1, . . . , n ,

or

~fj −
cnj

cn(n+1)

~fn+1 =
n−1∑
i=1

[
cij −

cnjci(n+1)

cn(n+1)

]
~ui , j = 1, . . . , n ,

Thus, the n vectors ~fj − cnj

cn(n+1)

~fn+1, j = 1, . . . , n are in the span of the vectors ~u1, . . . , ~un−1

and hence by induction assumption they must be linearly dependent. This implies that the

vectors ~f1, . . . , ~fn+1 are also linearly dependent. �

Corollary 0.3. Let ~u1, . . . , ~uk be a basis for the vector space V and ~w1, . . . , ~w` be another
basis for V . Then k = ` and we call this number the dimension of V , dimV .

Proof. If ` > k, then the vectors ~w1, . . . , ~w` are linearly dependent and hence is not from a
basis contradicting the assumption. If k > ` the reasoning is similar. �

The following statement is often used.

Corollary 0.4. If V,W are two vector spaces with V ⊂ W and if dimV = dimW , then
V = W .

Proof. Otherwise we could find another vector in W which is not in V which can be added to
the basis of V with the result that dimV < dimW . �


