Additional Exercises for "Analysis"

Additional Exercise for Chapter 2:

Lemma 2.8 (Projection on convex sets) is not stated for p=1 for good reason. Here is an example of an L^1 space, a set K, and a function f such that the conclusion of Lemma 2.8 fails. Show that K is convex and norm closed and that there is no $g \in K$ that minimizes the distance to f. The space is $L^1(\mathbb{R}; (1+x^2)dx)$, $K = \{g : \int gdx = 1\}$ and f = 0.

Additional Exercise for Chapter 4:

One can rewrite the HLS inequality 4.3(1) as

$$\int_{\mathbb{R}^n} |x|^{-\lambda} (f * h)(x) dx \le C(n, \lambda, p) ||f||_p ||h||_r$$

with $1/p + 1/r = 2 - \lambda/n$. The function $|x|^{-\lambda}$ is in weak L^q with $q = n/\lambda$, so 1/p + 1/r = 1 + 1/q'. We know from Young's inequality that f * h is in $L^{q'}$ and we might be tempted to conclude from 4.3(1) that we can replace f * h in the integral above by $any L^{q'}$ function (with a possible readjustment of the constant C). This is not so; the $L^{q'}$ functions obtained by convolution of an L^p and an L^r function are special and one of the ways in which they are special is that the integral above is finite.

Find a function $g \in L^{q'}(\mathbb{R}^n)$ so that the integral above is infinite when f * h is replaced by g.