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Discrete Beta Ensembles based on Gauss Type
Quadratures

D. S. Lubinsky

ABSTRACT. Let u be a measure with support on the real line and n > 1,
B > 0. In the theory of random matrices, one considers a probability
distribution on the eigenvalues t1,%2,...,t, of random matrices, of the
form

P (wita, ta, . tn) = OV (tr,ta, .. ta) P dp(t1) . dpa (),
where C' is a normalization constant, and
Vitite,..otn) = [[ 5 —t).
1<i<j<n

This is the so-called 3 ensemble with temperature 1/8. We explicitly
evaluate the m—point correlation functions when p is a Gauss quad-
rature type measure, and use this to investigate universality limits for
sequences of such measures.

1. Introduction

Let o be a finite positive Borel measure on the real line with infinitely
many points in the support, and all finite moments. Let § > 0 and n >
2. The (-ensemble, with temperature 1/, associated with the measure p
places a probability distribution on the eigenvalues t1,to,...,t, of an n by
n Hermitian matrix, of the form

P (st ta, . tn)

1
(1.1) =7 V (t1,ta, - t)|P dp (81) - - dpa (8)

1991 Mathematics Subject Classification. Primary 41A10, 41A17, 42C99; Secondary
33C45.

Key words and phrases. Random Matrices.

Research supported by NSF grant DMS1001182 and US-Israel BSF grant 2008399.

©0000 (copyright holder)
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where

(1'2) V(t17t2,~-~7tn) - H (tj—ti) = det [tg_l} i<
1<i<j<n s

and

(1.3) zn=/---/\V(tl,m,...,tnﬂﬁdu(tl)'-'duun).

These ensembles arise in scattering theory in mathematical physics. Their
analysis has generated interest amongst mathematicians and physicists for
decades [2], [3], [4].

One of the important statistics is the m-point correlation function

an76 (:u;yluy27 .. Jym)

n! n
:m/”‘/Pé)(M;y17y27---7?Jm7tm+1a~--7tn)dﬂ(tm+1)'”dﬂ(tn)
_ n! ff|V(y17y27aymytm—l—l)atn)|ﬁdlu(tm+1)dlu(tn)

(n —m)! S LIV (st -t dpa (t1) - dpa (t,)

(1.4)

It can be used to study local spacing properties of eigenvalues, and local
density of eigenvalues. For example, if m = 2, and B C R is measurable,
then

/ / Ry (st o) dp (1) dp (t2)
BJB

is the expected number of pairs (t1,¢2) of eigenvalues, with both ¢1,ts € B.

The best understood case is § = 2 [2], where there are close connections
to the the theory of orthogonal polynomials associated with the measure
i. The cases § =1 and § = 4 are also well understood [3], [4], although
the analysis is far more complicated. For Jacobi weights, one can use the
Selberg integral to partly analyze general 5. For the case where § is the
square of an integer, some analysis has been undertaken by Chris Sinclair
[17]. A recent breakthrough by Borgade, Erdés, and Yau [1] gives a new
approach to handling S-ensembles for varying weights of the form e with
V convex and real analytic.

In this paper, we show that when we take p to be a Gauss type quadra-
ture measure, then we can explicitly evaluate the correlation function, and
hence analyze universality limits for sequences of such measures, at least for
the case 0 > 1.

Define orthonormal polynomials

Pn () =mz" +--, >0,

n=0,1,2,---, satisfying the orthonormality conditions

/ Pipkdp = Ojp.
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Throughout we use i/ to denote the Radon-Nikodym derivative of p. The
nth reproducing kernel for p is

n—1
K (p,2,9) = > pk () pi (1) -
k=0

Its normalized cousin is

Ko (p,2,y) = i (@) 1 )"? Ko (1, 2,y).
The nth Christoffel function is

n—1
j=0

When it is clear that the measure is p, we'll omit the p, just writing A, ()
and K, (z,y). Recall that given any real { with

(1.5) pn-1(§) # 0,

there is a Gauss quadrature including £ as one of the nodes:

(1.6) /P di ="y Ao (1, @jn) P ()

Jj=1

for P of degree < 2n — 2. We shall usually order {z;n};_; = {zjn ()},
in increasing order; in Section 3, we shall adopt a different notation, setting
zon = &. The {xj,} are zeros of

VYn (t,8) = P (§) Pn—1 (t) — Pn—1(§) Pn (1) -

In the special case that p, (§) = 0, these are the zeros of p,,, and the precision
of the quadrature is actually 2n — 1. Note that when p,_1 (§) = 0, there is
still a quadrature like (1.6), but involving n — 1 points, namely the zeros of
Pn—1, and exact for polynomials of degree < 2n — 3.

We define the discrete measure p,, by

j=1
Equivalently,
n
(1.8) fin =D Ao (th Zjn) O
j=1

where 0, ;,, denotes a Dirac delta at x;,. Note that u, depends on &, but we
shall not explicitly display this dependence.

Our basic identity is:
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THEOREM 1.1. Let v be a measure on the real line with infinitely many
points in its support, and all finite power moments. Let B > 0, n > 1; let
¢ € R satisfy (1.5), and u,, be the discrete measure defined by (1.8). For any

real Y1,Y2, - - -, Ym,

R:anﬁ (,LLn, Yi,Yy2,. .. 7ym)

m

2.5

’ 1<51,925--Jm<n

-1
An (%%‘w))
1

g
KTL (/Laxjﬂnyl) Kn (/Laxjﬂwym)

(1.9) x |det : . :
KTL (/‘a Ljpms yl) s Kn (/‘a Ljpans ym)

REMARK. (a) Suppose that y, = zj,,, 1 < k < m, for some distinct
1< 71,52, ,Jm <mn. Then the above reduces to

m
~1
an’ﬁ (1n Ljins Ljoms -« - 7xjmn) = H An (1, xjkn) .
k=1
(b) If m = 1, we see that

n
RyP (my) =) A (1, 30) " Ko (11, 2, 20|
j=1

= An (,20) " [ ()17
j=1

where {{;,} are the fundamental polynomials of Lagrange interpolation for
{jn}-
(c) When 3 = 2, this reduces to a familiar identity in random matrix theory:

COROLLARY 1.2.

Ry2 (Y1592, -5 Ym) = Ry (1591, 925+ 5 Ym)
(1.10) = det [Ky, (11, i, yj)]lgi,jgm’
The representation in Theorem 1.1 lends itself to asymptotics: let

sin 7t

1.11 S(t) =
(111) (="
denote the sinc kernel. Recall that a compactly supported measure y is said
to be regular in the sense of Stahl, Totik, and Ullman, or just regular, if the
leading coefficients {7, } of its orthonormal polynomials satisfy

1
lim ynl/" =
n—00 cap (supp [1])
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Here cap(supp [u]) is the logarithmic capacity of the support of . We recall
only a very simple criterion for regularity, namely a version of the Erdés-
Turan criterion: if the support of u consists of finitely many intervals, and
i > 0 a.e. with respect to Lebesgue measure in that support, then p is
regular [18, p. 102]. There are many deeper criteria in [18].

We also need the density w; of the equilibrium measure for a compact
set J. Thus wy (x) dx is the unique probability measure that minimizes the

energy integral
1
//log - 75|dz/ (s)dv(t)

amongst all probability measures v with support in J [13], [14]. In the

special case J = [—1,1], wy (z) = m/ll_7-

THEOREM 1.3. Let p be a reqular measure with compact support J. Let
I be a compact subinterval of J such that p is absolutely continuous in an
open interval I containing I. Assume that ' is positive and continuous in
Iy, and moreover, that either

(1.12) sup [|pnll . 1,y < 00,
n>1
or
(1.13) sglin [Anll o gy < 00
Fiz £ € I, and for n > 1, assume (1.5) holds. Let p, include the point & as
one of the quadrature points. Then for 3 > 2 and real ai,az,...,an,,
/ m
lim W (z) RmA un;§+L7---7§+a7m
n—co \ nwy () nwy (z) nw; ()
1 - , g
(19 == 3 [detlS (@ — licipen| -

" J1.g2em=—00
For 1 < 3 < 2, the same result holds if we assume (1.12) and the additonal
restriction

(1.15) Z An (1, 210) " = O (n1*2/2> .
k=1
REMARKS. (a) We can also write the limit as

1 a a
nl_I’I;O Kn (,U,g,f) a §+ Kn (N7§7§) §+ K" (u,ﬁ,ﬁ)

1 > . A
(1.16) = — Z ‘det 1S (a; — ]k)]lgi,kﬁm )

J1,J2° " Jm=—0Q

because, uniformly in compact subsets of I,

1 -
lim — K, (z,x) = w‘/] ($)
n—oo n ' (z)
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(b) If the support of p is the interval [—1,1] and u satisfies the Szego con-

dition )
log it/ (
1 V1— 22
while in some open subinterval I of (—1,1), p is absolutely continuous,
i/ is bounded above and below by positive constants, and ' satisfies the

condition
=

uniformly in I7, then (1.12) holds (cf. [5, p. 223, Thm. V.4.4]). In particular,
this holds for Jacobi and generahzed Jacobi weights. The bound (1.12) is
also known for exponential weights that violate Szegd’s condition [7].

(c) The global condition (1.13) is satisfied if for example the support is
[—1,1] and g/ (z) < C/v1 — 22 for a.e. x € (—1,1). In fact, as we show in
Section 3, one can replace (1.12) and (1.13) by the more implicit condition
(which they both imply)

(1.17) sup A\ (6) | Ky (z,8)| < C, n> 1.
teJxely

2
dt < 0o

Here I5 is a compact subinterval of I; that contains [ in its interior.

(d) (1.15) places severe restrictions on the measure pu, especially near the
endpoints of the support. But some such restriction may well be necessary.
It seems that universality is most universal for the “natural” case § = 2.
(e) When 3 = 2, the last right-hand side reduces to a familiar universality
limit:

COROLLARY 1.4.

. f() \" o ! G
N Corre) M G R )
=det [S(ai — a;)] <y j<pm -

Of course, this last limit has been established under much more general
conditions elsewhere, using special techniques available for § = 2 [9], [10],
[16], [21]. For § = 4, the form of the universality limit differs from the
standard one for § = 4 as the determinant of a 2 by 2 matrix involving S
and its derivatives and integrals [3, p. 142]. It remains to be seen if (1.14)
coincides with that form.

We prove Theorem 1.1 and Corollary 1.2 in Section 2, and Theorem 1.3
and Corollary 1.4 in Section 3. Throughout C,Cy,Cs,... denote positive
constants independent of n, x,t, that are different in different occurrences.

2. Proof of Theorem 1.1 and Corollary 1.2

We shall often use

(21) K, (M7$jn7xkn) =0, j#k.
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We also use the notation

r, = (r1,re,...,m,) and s, = (s1,82,...,5n)
and
D ((ri,r9, ... y7mn), (81,82, -+, 8n))
= D (r,s,) = det [Ky, (14, Sj)]lgi,jgn
Ky (r1,81) Ky (r1,82) K, (r1,5n)
K, T2, 51 K, r2, 52 K, T2,5n
22) et (. ) (' ) ( )
K, (Tmsl) K, (rm32) K, (Tmsn)
LEMMA 2.1.
/---/\V(tl,tz,...,mrﬁdﬂn (t1) -+ dpn (t)
n 1-3/2
(2.3) = (Y0 m-1)"n! (H An (M,:Ekn)) :
k=1

PROOF. We see by taking linear combinations of columns that

Yov1 V-1V (tl’ ce »tn) = det [pk—l (tj)]1§j7k§n .

Then as the determinant of a matrix equals that of its transpose,

(’YO’Yl tet ’Yn—l)z V (tla ce 7tn)2 = det [pk—l (tj)]lgj,kgn det [pk—l (té)]lgk,ggn

= det [Zn: Pr—1(tj) Pr—1 (té)]
k=1

(2.4) = det [Kp, (1, té)]lgj,zgn :

Let (j1,...,7n) be a permutation of (1,2,...,n). Then

1<jl<n

2
oy =1V @jins - - @jon)]” = det [Kn (250, Tjon)] < o<
n

= =1 K, (xjnaxjn) )

by (2.1). Note that this is independent of the permutation (ji, ..., j,). Then
by definition of p,, and as V (t1,...,t,) vanishes unless all its entries are
distinct,

ol [ [V st )P din (12) - 82)

— Z Z . Z <H An (:EJML)) [(7071 .. "7n—1)2 (V (ﬂfjm, . ,:L‘jnn))2]

j1=1j2=1 jn=1 \k=1
J1,J25---,Jn distinct

B/2
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Z Z <H )\n $kn ) [ ::1 Ky, (xknyxkn) o

] ,]2, .,Jjn distinct

n 1-5/2
=n! (H An (:E;m)) )
k=1

O

Recall that we use the abbreviations A, (x) for A, (u,z), and K, (z,y)
for K, (u, z,y). We shall do this fairly consistently in the proof of Lemma
2.2 and Theorem 1.1.

LEMMA 2.2. Letm > 2 and y1,y2, ..., Ym € R. Let jm+1, Jm+2,---,Jn be

distinct indices in {1,2,...,n}. Let {j1,72,- - Jm} = {1,2, .. ,;n} \ {dm+1s---sJn}-
Then

D ((yl o Yms Lhpiny Ljmgons - - - 7‘Tjnn) ) (yl U Yms Lggans Limgans - - - 7xjn"))
m n
= <H An (xjkn)> ( H Ky (xjkn’xjkn)>
k=1 k=m+1
2
K, (lenayl) e Ky ($j1”7ym)
x | det S :
K, (ﬂjjmn, ) ... Ky, ($jmna Ym)
(2.5)

PROOF. We use the reproducing kernel and Gauss quadrature in the
form

(26) yk‘? Z )\ ':U.Yz yk’ ':U.Yz ) Kn (':U,?ﬂ’“ 'LL) .

Substituting (2.6) with u € {y1,¥2,. .-, Ym,Tj,i1n:---+Tj,n ) in the first m
rows of

D =D ((yl U Ymy Ljmpins Ljmgans - - ?x]n’ﬂ) ’ (yl T Yms Lpans Limgomns - - - ’:L‘-ynn))

and then extracting each of the m sums, gives

25D 9D 9D 98 0| E R EACANS)

i1=112=1 im=1
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K, (xjilna:'h)

x det Ky (xjimm yl)
K

n (xjm+1n7 yl)

K, (xjn'ﬂ7 yl)

We see that this determinant vanishes unless {i1, i2,
(for if not, two rows of the determinant are identical). When {31, io,

Ky <$ji1”7 ym) Ky <$ji1”7 $j7n+1n>

Kn (‘Tjimnyym) Kn (xjimnyxjm+1n)
K,

n($j7n+1mym) Ky (% i1ns Timyin

K, (xjnn,ym) Ky (l‘jnn,l‘jm+1n)

{1,2,...,m}, the determinant in the last equation becomes

Ky (xjilmyl)

n (:Ejim”7 yl)

det K
KTL (xjm+1n7y1)
L K, (xjn'ﬂ7y1)
K, ZEjilnayl)
= det :
Kn (xjimnyyl)
Kn (lenayl)
= gy det :

K, (xjmTlJ yl)

where &, denotes the sign of the permutation o = {1, i,

K, <$ji1na ym) 0
K, (fﬂjimm ym; 0
K, (':Ujerln’ ym) Ky (':Ujerln’ xjm“n)

Ko (T Ym) 0
K, (mjiln,ym) n
I B (@ zgn)

Ko (51, s ) k=m-+1
Kn (10, Ym) n

K, (':Ujmn7 ym) k=m+1

that is i; = o (j) for each j, 1 < j < m. Then

D= (H An (x]kn)> ( H K, (xjk”7$jk”)>
k=1

k=m+1
Ky (i, 1) - Kn(Tjin, Ym)
det S :
Ky (%,my1) - K (Tjns Ym)

g

m
X ZEO' H Kn (yk7$jo(k)n>
k=1

= <H An (xjkn)> ( H Ky (xjknﬂxjkN)>
k=1

k=m+1

it ={1,2,...

H K, ($jkna $jkn) )

Cimbof {1,2,. ..

9

Kn (xji1n7 $jnn>

Kn (xjim no xj"ln)
K

n (T pims Tjn)

K (Tj,ns Tjon) ]

7m}
i) =

K (Tj,ns Tjon) ]
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Kn(len,yl) Kn(ajjlnaym)
x | det Do :

Ky, (xjmm v1) oo Ko (TjnsYm)
O

PrOOF OF THEOREM 1.1. We first deal with the numerator in RZL’ﬁ
defined by (1.4). Using the definition (1.8) of u,, the identity (2.4), and
then Lemma 2.2,

I:(’70'71""Vn—l)ﬁ/"'/“/(ylyy%---)ymatm+17---atn)|ﬁdﬂn (tm—l—l)"'d,un (tn)

. Z( 1 m:cm))

jm+1:1 jn:l k=m+1
X D((yh s Yms L pans Ljppgony - - - ’:Ejn”) ’
B/2
(y17 <oy Ymy xjm+1n7 xjm+2n7 cee 7xjnn)>

n n n
= 22 2 | 1 e
jm+1:1 jn:l k:m—l—l

Jm+1-Jn distinct

X {(H An (xjkn)) ( 1T En(@jon 2jn)
k=1

k=m-+1

2
Kn (:Ejlnv yl) cee Kn (xjﬁw ym) B/2
) X | det Lo : }

Kn (‘Tj'ran? yl) e Kn (x]mﬂn ym)
(2.7)

Here {j1,j2,---,Jm} = {1,2,...,n}\ {Jm+1,---,Jn}- Because of the sym-
metry in this last expression, it is the same as it would be if j; < jo < --- <
Jm. Moreover, once we have chosen ji,...,Jn, there are (n —m)! choices
for {jm+1,..-,Jn} (not necessarily in increasing size). Also

H Kn(l‘jkmxjkn): H /\r_Ll (':U,?k”)

k=m+1 k=m+1

) <H A <~W)> [T A (in).
k=1 k=1

So

n 1-8/2 m B-1
I =(n—m)! {H)‘" (x;m)} Z <H An (x]kn)>
k=1

k=1 1<j1<ge <+ jm<n



DISCRETE BETA ENSEMBLES BASED ON GAUSS TYPE QUADRATURES 11

Kn (:Ejlnvyl) Kn (xjﬁwym) g

(n—m)! | 1-5/2 m p-1

k=1 1<j1,j2- Jm<n \k=

Ky (lem ) .. Ky (xjmy Ym) 7
x |det
Kn (‘Tj'ran? yl) e Kn (x]mﬂn ym)

Then (1.4), Lemma 2.1, and our definition (2.7) of I give

R 8 (Mnaylvy% s aym)

n! f"'f|V(y17y27---aymatm+17---atn)|ﬁdﬂn (tm—l-l)"'d,un (tn)

(n—m)] [ [V (b1t b)) dppn (81) - - dpan (£0)
n! !

(n=m)! (yg 1) [ [V (bt )| dpan (1) -+ dpan (£0)

1 e o
X ([

1<j1,927jm<n

Kn (lemyl) Kn (x]1n7ym) s
x |det o :
Kn (xjmny yl) e Kn (xjmny ym)
O
PROOF OF COROLLARY 1.2. For 8 =2, |V (Y1, 42+ - - -, Yms b1 - - - 1 1) >
is a polynomial of degree < 2n — 2 in t41,tm+2,...,tn. Similarly for

[V (tq,... ,tn)|2. Then the Gauss quadrature formula gives the first equality
in (1.10). Next for § = 2, the right-hand side of (1.9) becomes

1 m
ml Z H An (Nafﬂjkn)

T 1<g1,d2 im<n k=1
2
Kn (,ualenayl) Kn (,ualenaym)

x |det Do :
M"T]'rnn?yl) Kn (M?x]mnaym)

— m'/ /det n (st yi)) dp (81) dp (t2) -+ dp (t) -

By the equality part of Theorem 1.1 in [11], this last expression equals
det [/, (yi, yj)hgi,jgm’ O
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3. Proof of Theorem 1.3 and Corollary 1.4
We begin with

LEMMA 3.1. Assume that p satisfies the hypotheses of Theorem 1.3. Let
I be a compact subinterval of Iy. Then
(a) Uniformly for & € Is, and uniformly for a,b in compact subsets of the
real line,

a b

) li Kn(£,€
(b) Uniformly for x € I,
(3.2) lim n\, (u,z) = 7' (2) Jwy (7).

n—oo

Moreover, there exist C1,Cy > 0 such that forn > 1 and all x € I,
(3.3) Cr < nh, (p,z) < Co.

(¢) There exists Cs,Cy > 0 such that for all n,j with Tjn,x;—1, € Io,
(3.4) Cy/n > xjy — xj_1,, > Cs/n.

(d) Fiz § € Iy and {xj,} = {zn (§)}. Order them in the following way:
(3.5) KTy < Zop =& < X1p < Top < -

Then for each integer j,

(3.6) lim (2, — &) Ky (£,6) = j.

n—oo

PROOF. (a) This follows from results of Totik [21, Theorem 2.2].
(b) The first part (3.2) also follows from the result of Totik [21, Theorem 2.2].
The second part follows from the extremal property of Christoffel functions,
and comparison with, e.g. the Christoffel function for the Legendre weight -
see [12, p. 116].
(c) We need the fundamental polynomial ¢y, of Lagrange interpolation that
satisfies

Uin (Tjn) = Ojk-

One well known representation of #g,, which follows from the Christoffel-
Darboux formula, is

Let I3 be a compact subinterval of I; that contains I5 in its interior. Then
1= gjn (a;]n) — gjn (xj—l,n)

= L, (§) (Tjn — Tj-1.0)

(3.8) < Cnsup [l ()| (xjn — Tj—1.n) ,
tels
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by Bernstein’s inequality. Here for ¢ € I3, our bounds on the Christoffel
function, and Cauchy-Schwarz give

[jn ()] = An (ks Tkn) [ K (2, 2j0)|
< M (24 (o () (B (5, 230) 2 < S =,

by (3.3). Then the right-hand inequality in (3.4) follows from (3.8). The
left-hand inequality follows easily from the Markov-Stieltjes inequalities [5,
p. 33

Tjn — Tj—1,n < )\n (xj—l,n) + )\n (-Z']n) .
(d) The method is due to Eli Levin [8], in a far more general situation than
that considered here. We do this first for j = 1. By (c), and (3.3),

Tin =€+ =2,
K (€:€)
where a,, > 0 and a,, = O (1). We shall show that
(3.9 nhi& ap = 1.

Let us choose a subsequence {a,}, g with

lim a, =a.
n—oo,neS

Because of the uniform convergence in (a),

. Kn (‘Tln7§)
0= Ilm ——=~
n—oo,neS Ky (f,f)
=  lim Kn (g i Rna(27§y£> _ S( ) _ sin7a
_n—>oo,n68 K, (f,f) N = Ta

It follows that a is a positive integer. If a > 2, then as S (¢) changes sign at
1, the intermediate value theorem shows that there will be a point
bn,
Yn =8+ =———,
K, (€,6)
with y,, € (§,21,), with b, — 1, and K, (y,,&) = 0. This contradicts that
1, is the first zero to the right of & Thus necessarily a = 1. As this
is independent of the subsequence, we have (3.9), and hence the result for
j = 1. The general case of positive can be completed by induction on j.
Negative j is similar. O

We now analyze the main part of the sum in (1.9): in the sequel, the
sets I, Io, I3 are as above.

LEMMA 3.2. Assume that for 1 < k < m,
Qn, k

(3.10) Yk =Yk (n) =&+ m,
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where for 1 <k <m,
lim a, i = ag,
n—oo

and a1, a9, ..., a, are fived. Then for each fized positive integer L,
m -1
Z <kH1 An (x]kn)>
lim —
n—00 K, (€, "
‘]1|7|]2|77|]m|§L (é 5)
B
Ky (zjn,v1) - Ky (Tjin, Ym)
X |det Lo :
Kn (‘Tj'ran? yl) M Kn (‘Tj'nﬂh ym)
(3.11) = Y |det (S —an))l”.

|j1\,\j2\,...,\jm\§L

PRrROOF. Note that for each fixed j, Lemma 3.1(b), (d), and the conti-
nuity of y’ give

K, (l‘jm xjn)

(3.12) R (6T =1+0(1).
Moreover,
j+o(1) an &
K (wjn, ) B <5 i f]%i(s,@’é i Rn(§,§)> _ oy
(3.13) o (Jg’g) = %, (6.6 =S(j—ar) +o(1),

because of the uniform convergence in Lemma 3.1(a). Hence, for each
m—tuple of integers j1, jo,. .., jm,

1 K, (x]dn’ yl) e Ky (:Ej1n7 ym)
—————det Do :
Ky (&)™ C '
Ky (xjmn, 1) ... K, (':Ujmn7 Ym)
(3.14) — det [S (i — an)lycppenm +0 (1)
Then using (3.12),
m 6_1 5
< H An (l']kn)> Ky (‘lena yl) o Ky (‘lem ym)
> k=1 _ det Dol :
o Ky, (€,€) ' '
‘.71‘7‘.72‘7"'7‘]m|§L Kn (.Z']mn,yl) Kn (I’jmn,ym)
B
K, (517j1na y1) ... Ky (xjm, Ym)
=(1+o0(1) Y Kn(£& 7 |det Lo :
L1l lg2l,-- ldm| <L Kn (':Ujmnayl) Kn (':Ujmnyym)

and the lemma follows from (3.14). O

Now we estimate the tail. We assume (3.10) throughout. First we deal
with the (known) case =2
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LEMMA 3.3. As L — oo,

[T Ao (@jin) 9
k=1

(3.15) Tpo= > RO det [Kn ()i Y6)| < pcm| — O-

(jl 7j27-:'7jm)3
max;|j;|>L

PRrROOF. Recall that from Theorem 1.1 and Corollary 1.2,

1 oo kﬁl)‘n(xjkn)
P K, (&)™

J1Jm=—00

KTL i Yj
:det[ (i y5)

2

Ky (€:€) :|1§i,j§m’
and that from Corollary 1.4 below,

1 o ?
—~ Z ‘det [S (a; — ajk)]lgi,kgm
’ jl"'jm:_oo

=det [S (a; — aj)];; j<pm -
(Formally, we have not yet proven this, but of course it is independent of the
hypotheses here.) Now we split up the sum in the first of these identities,
take limits as n — oo, and use Lemma 3.2 for § = 2, as well as the limit
(3.1), which ensures that

: K, (yiayj)}
lim det | ——= = det [S (a; — a;)],-; - -
|: Kn (575) 1<i,5<m [ ( ])]1§ J<

n—oo
(]

LEMMA 3.4. Assume the hypotheses of Theorem 1.3, except for (1.12)
and (1.13). Then forn > 1, and t € J,

(3.16) pa(t) <C(ph_o(t)+pa i ().
ProoOF. We shall show below that
(3.17) inf 71 > ¢,
n ’y,n

Once we have this, we can apply the three term recurrence relation in the

form
Yn—2

Tn—1
n = _bn n— -
"L, (2) = (2 = ) pacs (2) = 222

and the fact that {|b,|} and {V:;l} are bounded above, (for J = supp [u]
is compact) to deduce (3.16). We turn to the proof of (3.17). From the

confluent form of the Christoffel-Darboux formula, we have
Tn—1

Ky (24,,%5,) = P (jn) Py (x4n) -
n

Pn—2 ($) )
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Let Iy be a non-empty compact subinterval of I3. By the spacing estimate
(3.4), there are at least Cyn zeros xj, € Iy, so

Can < 7 M (@) Ko (27,0 25,) = 223" Ay (@) [pact () By (250)]

n

-'Ejnel4 -Tjnel4
1/2 1/2
Tn—1
< : D A (@) proy (@) > An(@in) Py (@5m)”
n .
7 xjne-lzl

(3.18)

The first quadrature sum is 1. By a theorem of P. Nevai [12, p. 167,
Thm. 23], followed by Bernstein’s inequality, the second sum may be es-

timated as
1/2

1/2
) F ()2 / 2
D (@) P (w)n) <C </ﬂlpn (t) dt)

xjnele
1/2
< Cn (/ P2 (1) dt) < Cn,
1

recall that ' is bounded above and below in Is. We also use I} and I} to
denote nested intervals containing I, but inside I3. Substituting in (3.18)
gives (3.17). O

Next we handle the case 8 > 2:
LEMMA 3.5. Assume all the hypotheses of Theorem 1.3, except (1.12)
and (1.13). Instead of those, assume

(3.19) sup A, (t) | Ky (z,0)] < C, n>1,
teJxels

where Iy is a compact subinterval of Iy containing I in its interior. Let
6 >2. Then as L — oo,

(3.20)
m
-1
kl_ll An (xjkn)ﬁ 5
Top= 3 = _ (det K (25 90y cs e | — 0.

. . Ky (&, <4,k<
(]17.727~~~7.7m)-
maxl\jl\>L

In particular, (3.19) holds when (1.12) or (1.13) holds.

PRrROOF. We see that

(3.21)
B—2

m

Trs<Tpz{ max M (@50) | [det [ (@jons )y cicm| 0
(J1:d25-00m)t | =1 -
max;|j;|>L
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where by Lemma 3.3, T, 2 — 0 as L — oo. Next, if o denotes a permutation
of {1,2,...,m}, we see that

[H )\ :Ejkn ] ‘det lenayk)]1<z k<m‘

S Z H )\n (x]kn) ‘Kn (leﬂh yU(k))‘

o k=1
m
< m/! sup A\, (t) | Ky, (¢, 9)] <C,
tedyels

by our hypothesis (3.19). Combined with (3.21), this gives the result. We
turn to proving (3.19) under (1.12) or (1.13). Recall that I C Iy C I3 C Ij.
If firstly ¢t € I3 and x € I,

An (8) | K (2, 8)] < An (8) K (z,2)? K, (8,02 < C,
by (3.3). In the sequel, we let
An (t) = py, (8) + P51 (1) -
From the Christoffel-Darboux formula,
o1 An ()72 A, (2)'2

3.22 K, (z,t)] <
(3.22) o ()] < T S

Here {%j/;l} is bounded as p has compact support. If next, ¢ € I3 and
x € I, we have |z —t| > C, so
A () | K (2,1)] < CX () A (1) A ().
Here by Lemma 3.4, A, (t) A, (t) < CA\, (t) A1 (t) < C, s0
Ao (8) [ K (2,1)] < C (O ()An< N2

If (1.12) holds, then A, (z) < C, while A, (t) < [dpu, so (3.19) follows. If
instead (1.13) holds, then

A (01K (2, 8)] < € (714, (@)
<C(n ' Knpa (%33))1/2 <C.
This in all cases, we have (3.19). O
The case 8 < 2 is more difficult:

LEMMA 3.6. Assume all the hypotheses of Theorem 1.3, including (1.12)
and (1.15). Let f < 2. Then as L — oo, (3.20) holds.

Proor. Each term in 77, g has the form

H )\ (x]kn) -1 6
(f’ 5) det [KTL (':Ujin7 yk)]lghkgm
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(3.23) < O T (e )™ 1K e o) )

o k=1
Here the sum is over all permutations o. If first x;,, € I3, then by the
estimate (3.3) for A\, and by (3.22),

1 -1 g

E)\n (xjkn)ﬁ ‘Kn (‘Tjk"’yg(k)ﬂ

2 9
<£A£/ (@jun) AN/ (Yor))

|jn = Yoiy|”
c

(0|7 — o)

<

by our bound (1.12) on p,. Here, recalling (3.10),

Qn,o(k)

K, (£,€)

max; | 73 |

> ClM - Cy————,
n n

|Zjn = Yot = |Tjin — &

by (3.4) and (3.3). It follows that there exists B > 0 depending only on
max; |a;| such that for |jx| > B,

|xjkn - ya(k)| > Cg%.

In particular, B is independent of L. Then for |j;| > B, and z;,, € I3,

C

1
3.24 A @) K (20 o) [P < ———

Now if |ji| < B, we can just use our bounds (3.3) on \,, and Cauchy-Schwarz
to deduce that

1

A (50 o (2, 000) | < O <

T+ k)

Thus again (3.24) holds, so we have (3.24) for all j, with x;,,, € I3. Next if
Zjn ¢ I3, then |xjkn — ya(k)‘ > (), so

1 _
E)\n (x]kn)ﬁ ! ‘Kn (x]kna ya(k)) ‘16

C _
< —Xn (iﬂjkn)ﬁ ! Agp (:EJML) Ag/z (yU(k))

<=M (xjkN)ﬁ_l Agﬂ (‘T]kn) )

3|QS
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by (1.12). Note that there is no dependence on ¢ in the bound in this last
inequality nor in (3.24). Then

na<e ¥ (I awlid ™) TT (S 42 @,0).
(J15J250-dm): \Zjpn€l3 xj 13
max;|j;|>L
We can bound this above by a sum of m terms, such that in the kth term,
the index j, exceeds L in absolute value, while all remaining indices may
assume any integer value. As each such term is identical, we may assume
that j; is the index with [j;| > L, and deduce that

Trp<C| > (A+lal)” Z n (@5n)" AL (2,0)
‘jl'ZL lenél?)
o m—1
< Y a+n"+ Z —)\ () AP? (2,)
j:—OO x]nél?)

-1
Here by Holder’s inequality with parameters p = % and ¢ = (1 — g) ,

1 _
Z E)\” (%’m)ﬁ ' Ag/z (@jin)

Tjnéls
< %Z (An (@j1n) An (25,0))%% A (24,0)7 271
/ B/2 -2
< % Z M (Tjin) An (Tjin) Z/\” (wj0) "
7 it

Here by Lemma 3.4,

Z/\ Ziin) An (T51n) < C Y An (@4n) A1 (25,0) < 2C,

Ji

while

Z An (%’m)_l =0 (n)
J1
by our hypothesis (1.15). Thus

Tps < C (L7 +0(1)),

and the lemma follows. O
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Proor or THEOREM 1.3. This follows directly from Lemmas 3.2, 3.5
and 3.6: we can choose L so large that the tail in Lemma 3.5 or 3.6 is as
small as we please. Note that in (3.10),

A,k an k
de= €t kg
K, (€,6) nw; (§)
where @, — aj as n — oo, in view of (3.2). This allows us to prove the
universality limit in both the forms (1.14) and (1.16). O

PROOF OF COROLLARY 1.4. We have to prove that

[e.e]

Z det [S (a; — jk)]%gi,kgm = m!det [S (a; — ak)]lgi,kgm‘

J1,J2jm=—00

We use the identity [19, p. 91]

i S(a—k)S(b—k) =S(a—b).

k=—o00
The left-hand side is
Z det [S (a5 — ji)]i<ikm
j17j2“‘jm:_00

=Y oty TS (aow —in) S (anu —ir)
a,n

J1,J2° jm=—00 k=1

= Zsaan H Z S (acr(k) - jk) S (an(k) - j’f)
o,n k=1 jp=—00

= ety | [ 9 (a0w) — anw)
o,n k=1

= 260.6,7 S ((IJ - (17700—71(3')) ’
a,n J=1

where o~ denotes the inverse permutation of o. Now [6, p. 189, p. 190]
EcEn = Enog—1,

and we may replace the sum over all permutations w = n o o~! by a sum
over all permutations w, so we continue this as

=)D f[ls (@ — aw(y)

w

=mldet [S (ai — aj)];; j<p -
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