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Abstract
We obtain the rate of growth of the largest eigenvalues and Euclid-

ean condition numbers of the Hankel matrices ( f; t/*W? (2) dt);f' _—

for a general class of even exponential weights W? = exp (—2Q)) on an
interval I. As particular examples, we discuss @ (z) = |z|* on I =R,
and Q(z) = (d® —2?) " on I = [-4d,d].

Remark 1 Running Title: Condition Numbers of Hankel Matrices

1 The Result

Let I = (—d,d) where 0 < d < co. Let @ : I — [0,00) be continuous and
W? = exp (—2Q) be such that all the moments '

ft-’"W2 (£)dt,j =0,1,2,...,
. |
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exist. Form the positive definite Hankel matrix

H, = ( f W2 (1) dt) .

and denote its smallest eigenvalue by A, and iis largest eigenvalue by A,,.
The focus of this paper is the rate of growth of the Euclidean condition
number &, (H,) of H,, defined by

o (Ha) = 32 W

The condition number of F,, provides a measure of the sensitivity of
solutions of equations H,z =b to perturbations of b. This may be derived
from the Rayleigh-Ritz formulation of « (Hy,) :

el Fu ]
A Y e FY I ®

where both sup and inf are taken over all non-zero vectors z€ R™¥ 1. A special
Hankel matrix is the Hilbert matrix

1 7
( f t3+kdt) ,
o k=0

whose condition number has been investigated by several authors [1j, [10],
[11], [13]. More genera]ly, Beckermann examined how rapidly the condition

number of "
([ o)
0 k=0

‘can grow when the measure y is supported in a given interval. If we define
2 ([-1 1]) to be the smallest possible condition number of such matrices
when 4 is supported in [—1,1], Beckermann [1, p. 568] proved that

@™
Sean ST [111)<(n+1)(1+f) 3)

Similar geometric growth is established there for more general intervals, and
for Krylov and Vandermonde matrices.



Our focus here is to provide matching upper and lower bounds for « (H,)
when W2 = 2@ is an exponential weight. In an earlier paper, the author
and Y. Chen [4] obtained upper and lower bounds for A,,. Our main task here
is then to obtain matching upper and lower bounds for A,. Many authors
have investigated the asymptotic behaviour of A, as 7 — oo : [12], [8], [2],
[3]. As far as the author is aware, there is less work on Ar, though it is easier
to analyze than A,.

Before we define our class of weights, which is the even case of the weights
~in [5], we need the notion of a quasi-increasing function. A function g :
(0,d) — (0, 00) is said to be quasi-increasing if there exists C' > 0 such that

g9(z) <Cgly),0 <z <y<d
Note that any increasing function is quasi-increasing,

Definition 1.1 General Exponential Weights

Let I = (—d,d), where 0 < d < oo and let W = ™2 where Q : I — [0,00)
is even and satisfics the following properties:

(a) Q' is continuous in I and Q(0) = 0;

(b) Q" exists and is positive in I\{0};

(¢)
Jim Q(t) = oo; (4)
(d) The function "
_ )
T(t) := 0 ,E#£0

is quasi-increasing in (0,d), with
@) > A> Lt e (0,d); (5)
(e) There exists Cy > 0 such that

@ _ QW
< )

Q=) =~ Q=)
Then we write W € F (C?). If in addition, there exist c € (0,d) and C3 >0

such that Q"( ) Q'( )
T xr
@) = Q)

ae. z € (0,d). (6)

, a.e. T € (c,d), (1)
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then we write W € F (C*+).

"The simplest case of the above definition is when I = R and T is bounded,
the so called Freud case. A typical example is

Q(z) = |a*,7 € R,

where a > 1. A more general example satisfying the reguirements of Defini-
tion 1.11s

Q(z) = expy(|z|”) — expy(0), (8)
where a > 1 and £ > 0. Here we set exp, (z) =z and for £ > 1,
expy (z) = exp(exp(exp ... exp (z))))

~—
£ times

is the fth iterated exponential.
An example on the finite interval I = (—1,1) is

Qz) = expa((1 — %)) — expy(1), z € (~1,1),

~where @ > 0 and £ > 0. Further examples are discussed in [5].

In analysis of exponential weights, an important role is played by the
" Mhaskar-Rakhmanov-Saff number a,, € (0,d),u > 0, which is the unique
root of the equation

2 ! 0,5Q (ays)
Tl V1— g2
One of the features that motivates their importance is the Mhaskar-Saff iden-
ity [6]

H =

ds. 9)

“ PW lle(I)=|| PW "Loo[—an,anh

valid for all polynomials P of degree < n. An older quantity is Freud’s
mumber gq,,, the root of the equation '

= quQ (g),u > 0.

A little calculus shows that g, is the place where 279 attains its maxi-
mum in {0, 00). It is easily seen that

Qu < Q.

4




Indeed, if Q' (z) is strictly increasing, then (9) gives
%@’ (qu) = v < auQ' (au) -

Unfortunately there is no exact asymptotic relation between ¢, and a, for
general exponential weights. Both ¢, and o, approach d as u — oo. For the
special case Q (z) = |z|” on I = R, we have [6]

1/
Qu = (g) ! < Cpu® = ay,u > 0, (10)
where
| 22-2F (a/2)?\
Ca = (MW) . (11)

Throughout, C, C1, Cz, ... denote positive constants independent of n, z,t
and polynomials P of degree at most n. We write C = C()),C # C(}) to
indicate dependence on, or independence of, a parameter A. The same symbol
does not necessarily denote the same constant in different occurrences. Given
sequences of real numbers (c,) and (d,) we write

Cpn ™~ dn
if there exist positive constants C; and Cy such that
Cr < epfd, < Cy

for the relevant range of n. Similar notation is used for functions and se-
quences of functions.We shall prove:

Theorem 1.2
Let W be even and W € F (C?+).
(a) If d <1, then for n 2> 1, _
A, ~1. (12)
If d> 1, then for n > 1,

A~ q?:H']Q (q )1/2 ~2Q(gn) ' (13)
(6) If d <1, then for n > 1,

ﬁ(Hn)w\/-exp( 10g[1+ 1+% ds). _(14)
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If d > 1, then for n > 1,and

i (Hyp) ~ exp (2/nlog [al—l_ ! fl-l—%\ ds)
0 3 s
xn =32 Q (ga) " exp (~2Q (gn) - (15)

It may seem strange that we need both ¢, and @, in describing the as-
ymptotic, but g2* may have a very different rate of growth from that of a2"
for some @ - see for example, Lemmas 3.1 and 3.3 below.

Example 1
Let & > 1 and
Q(z)=lzl",z €R.
Here we have the identities (10) and (11) for g, and a,. Theorem 1.2 gives
' 2n

A, ~ Tt (i) *.

ae

(A sharper asymptotic for A, will be given after Theorem 1.3). If & is not
an odd integer, it was shown in [4] that

- 7]
An ~ 3 (- a)exp —2n E (—1)F

k=0

(2k)! a=2k—1

n

9% (k1)? (2k +1) 1 — 24

Here [z] denotes the greatest integer < z. Hence

2n log + nl-n-i- 20,;1 )

2k1

E(Hn) = An/An ~ €Xp
+2’I’b EJ[: ( 1) k(k;k(;k_i.l) 1—- _:j-_ + ( 1 + Za) logn

The leading order term clearly comes from the largest eigenvalue An:
2 1 —1
Kk (H,) = exp (_'n,_ log S nl_Tizqg‘—f + lower order terms) . (16)
a we 1—=
In particular, for the Hermite weight a = 2, this gives
-1 n
k(Hp) ~n"1exp (nlog—zz +4\/ﬁ) .
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A sharper estimate than this for the Hermite weight was already known to
Szego [8, p. 668]. When a is an odd integer, there is an extra term in the
asymptotic for A,

a-s E 2EN S 2k--1
D) (1) g

—2(logn) (~1)"F D¢

ga—1 (52:1!) a ©

but this is a lower order term, and (16) persists.

Example 2
Let o > 0 and
Qz)=(1-2*)"",ze (-1,1).
Let ,
_NoaraTletd) |3
b [t

Since here d = 1, we have
A, ~ 1.
In Section 3, we shall show that
2n o _1
ki (Hy) ~ N1~ (1 + w/i—l) n~ Y2 exp (\@Da (f 8 “_""—Jf_ds) (1+ o(l))) .
1
"This should be compared to Beckermann’s result (3). In particular, if
(a)a<i

& (Hy) ~ (1 + ﬁ)m n~Y?,

®) e =3 )
k (Hy) ~ (1 + \/5) n(“‘%ﬂ,@) (1+o(1));
() a> %
m N
w01) = (14v) e (VEDuG LR 10 (1))
Example 3

Now let & > 0,d > 1, and
Q(x)= (d®— %) ",z € (~d,d).
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Also let

r (a + %)
vl (o)

e\
m= () o

In Section 3, we show that

] ; (17

Dy = [(2.«1)*“*%

A, ~ &0 306H) exp (—Alnﬁ_“ — A + 0 n%;—f)) ,  (19)
where

A = 2(1+a)d ®E.% (20)
Ay = ad ™E}I° (21)

(Of course, if a > 2, the order term in the exponent in (19) will swamp the
power of n outside). There we also show that

n
AL~ —1—+1/1—I—i exp (1+o(1))BI/ s =*ids),
| d @ 1

where 9
By = ———=—=—D, 22
ey d? 22)
Then

' 2n o
k(Ha) = An/An~ (1 +Va+ 1) n- 3R
_ B : n 3 .
X exp (—Aﬂbm — Agna_“r} +(1+0(1)) BI/ s *tids 4 O (n.’;rf)) ]
1
Again the dominant term is the geometric factor arising from geometric fac-
tors in A, and X1

If I = R and we assume more smoothness of @, we can obtain finer as-
" ymptotics for the largest eigenvalue:



Theorem 1.3
Let W be even and W € F (C*+). Assume in addition that d = oo, and
that for some c € (0,00), Q" exists in (c,00) and satisfies there

Qm (:I)) Q: (a;) 2
T <C (T) - )
Let i | |
T (2) =14 229 4 e (0,00). (24)

Q' (x)

Then as n — oo,

A = g2t —29en) /nTl"”(qn) (1+0(1)). (25)

Note that we do not have an asymptotic of matching precision for A,.

Example 4
ILet > 1 and

Q(x)=|z|", xR
Here

T1(z) = ¢ in (0, 00)
so we obtain

= it (2 <
An=1f=07En7d (ae) (1+0(1)).

I am not sure if this is known. In this special case T' = T, identically.
However, they are different in general, although our hypotheses ensure that
T (z) ~ Ty (z) for large z. Other Q to which Theorem 1.3 may be applied
include that in (8).

This paper is organised as follows: in Section 2, we prove Theorems 1.2
and 1.3. In Section 3, we present the calculations for Examples 2 and 3.

2 Proof of Theorems 1.2 and 1.3

We begin with some simple estimates. Related estimates appear in [9} and
[13, Section 3.5]. Throughout we assume that W € F (C?) and we use the
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notation

= / t'W2 (t)dt,j > 0.
I

Lemma 2.1
(@ |
oo5on 2 <An < 2”23' (26)
=0
(b) For n>1,
Ap ~ 14 o, (27)
(¢) If d= o0,
im Ao/, =1 )
Proof
(a) We begin with the Rayleigh-Ritz formula
zTH,z
A, = s1;£ prad (29)

where the sup is taken over all z # 0 in R*"!. Taking z to have a 1 in the
(4 + 1)th position, and O’s elsewhere, gives

for 0 < j < n. Then the left inequality in (26) follows. Next, if

L= [3‘0 I Iy ---mn]Ta

we see that
z'Hyz = f (Z zjtﬂ‘) W2 (t) dt
[ ) (-20 xf) (2 t“’-‘f) W2 (1) di

10
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and then the right-hand inequality in (26) follows.
(b) We consider two cases:

(A)d>1

Let 1 < @ < 5 <d. Then

iuzj = 2(/:+£) (jz:;tﬁ) W2 (%) dt

§=0
< 2.(n+1)a2“faW2(t)dt+2/dt2“ it—%‘ W2 (t) dt
._ ’ 0 F=0

o\ fyW2(@tydt ¢,
@) do WA [ pnyyr gy g
< 2(n+1) (ﬁ) f;Wz(t)dtfﬂ ¢ (t) at
d
+1“20£_2 j 2w (1) dt.

Since o/ < 1, we see that

k¢
. 1
limsup (E :#23') /Han < 1—a-2

n—rod 3=G

Here this is valid for any 1 < & < d, so we obtain from (a),

. 1
lim sup An/pig, < =43 (30)

(If d = oo, we interpret 2 = 0.) Moreover, from (a),

liminf A, /19, > 1. (31)
Since f1,,, grows to co as n — o¢ in this case, we then obtain the result.
(B)d<1
Here we use the inequality

n

. 1
< ,te 0,1
; S_@telD

to obtamn

2n d 1
—2Q(8
;pﬁ < 2f0 e e,

11



If d < 1, the integral is trivially finite. If d = 1, the integral on the right
converges, since for some p > 0,C > 0,

QE)=C(—1t)",te(C,1).
See Lemma 3.2(f) in [5, p. 65]. Thus in this case
A, LGy > 1
In the other direction, we have
An 2 py >0,

Ap~ 114 g
(c) This follows directly from (30) and (31). B
Next, we present some technical estimates.

Lemma 2.2

(a) -
Tig) = 7= , i — 00,
(@) = g7y =0 (n)n— o0 @)
(b) Fiz 8 € (0,1). For j=0,1 and n > 1,
QY (gn) ~ QY (¢pn) - (33)
Moreover,
T(g) ~Tlam) (34)
and '
dn ™~ Gfn- : (35)
(¢) There exists ng such that uniformly for n. > ng, and v € (1,2],
Gyn — G ~ (log7) T?Zn)' (36)

(d) Fiz n > 1 and let
F(6) = 2nlogt— 2Q(2) £ € (0,d).
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Then f has a mazimum af t = g, and [’ is positive and decreasing in (0, 4n)
and negative and decreasing in (g, d).
Proof
(a) Now
Q' (gn) n
T(q,) = = .
@) =" Q) ~ @l

Here zQ'(x) is continuous in [0,d), and hence finite valued there. It also
approaches oo as £ — d—. So necessarily ¢, — d— as n — co. Then (c) of
Definition 1.1 shows that Q (g,) — 00 as n — 00. So we obtain (32).

(b) Firstly as T is quasi-increasing, and ggn < ¢y,

Qamm) < Qan) = 777 < Oy

So (33) is true for j = 0. Then (32) gives (34) for T (g,). Next, as Q' is
increasing, as is gy,

= CQ (g8r) -

Q (am) <@ (g) =~ < ”/ B

n

= BQ’ (gpr) -

So (33) is true for j = 1. Finally,

_ T (Qﬁn) Q (Qﬁn) ~ r (Qn) Q () _
=" Q (gpm) Q)

so we have (35).
(c) Let Ty be defined by (24). For some ¢ € (0,d), (6) and (7) show that

.Tl () ~T(z),z €{c,d).

Differentiating the relation
3.Q'(qu) = u
leads to, for large enough u,
g 1 1
@ vhiiq) »7T(q) .

Then .
G _ [ _dt log

% Ju thila)  T(q)

13
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recall (34). This holds uniformly in y € (1,2] and u large enough. Then

Gyu Gu
T Qu = Yy - ~ (lo .
Gyu — GQu = ¢ [q ] ( g'Y)T(qu)

w

(d) We see that
7)) =2 ln - Q)
and 9
1) =2 - 2" ().
These two relations imply the resuit. ll

Proof of Theorem 1.2(a)
If d < 1, this follows immediately from Lemma 2.1(b). So we assume that
d > 1. We shall use a crude form of Laplace’s method in estimating u,,,. Let

£ () = 2nlogt —2Q (1), € [0,),

| n/2 Gon d
Hon = / + f + / ef®dt
0 Qn/2 Q2on

= h+L+1s.

so that

Estimation of I,
The maximum of f occurs at £ = g,, and the main contribution comes from
L. For t € [gas2, an), We expand

FE) =1 (@) +0+ 37" ©) ¢ —a),

where £ is between ¢ and g,. Here using our hypotheses (6), (7) on Q", we
have (at least for n large enough),

Q'(§)?
QE©)’
and since both ) and )’ are increasing, and for j = 0,1,

Q9 (gus2) ~ QY (g2a),

Q" (&) ~

14



we. obtain (uniformly in n,t € [q,,, /2, @on] » € between ¢ and gy,),

" Q@) _»
Q" (§) ~ Q@) 3T(Q),
so (uniformly in n,%,£),
@)= -“52" —2Q"(¢) ~ "—T (4) -

(Recall that T > A > 1 and ¢, ~ ¢a,). We use these estimates in

Tan 1 rur 2
I, = @) / AT OC-a) gy
4,

n/2

Making the substitution v = C /% T (ga) (£ ~ g) (with different C for lower
and upper bounds) gives

C/ 5 T(gn)(g2n—an)
Iz~(f(‘1")/ —T( ))f 2 Tlanlazn—a 6_% 2au
C\[E TG (/2 40)

Here by Lemma 2.2(c), (d) as n — oo,

E—T (Qn) (‘In/2 T (Qn \/T — —00.

i

Similarly the upper lirmt of integration approaches co. Thus

L ~ (ef("“)/‘/%T (gn) ) ] e ™ du (37)

~ @re?0) (T (g,)) 2.

Here | .
T (qm) = RICA

I ~ 07 Q ()2 €729, (38)

Estimation of I;
Since f’ is decreasing and positive in [0, g,/2), we obtain for ¢ there,

f (t) - f (Qn/2) < f’(qn/2)(t - Qn/2)
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S0

I, < ef (qn/z) / 2 e (@ni2)Eans2) gt
0

< ) /7 (gupe)
Here for any 3 > 0,
f'(gpn)
= gi —2Q' (gpn)
2n 2Bn n
= 2 Fmosa-p (39)

Combining the above inequalities gives

L< O o 1(3.2)
n

Il/I2 S C*‘, yef(qh)?)_f(q’m)_

f (qn/2) - f (Q‘R)

so from (37),

§ (@ur2) — 1 (dsaga)

I (@3nsa)(Gusz — Gansa)
n gn

g T (qn) ’

IA A

(A

by (39), (36). Thus

L/, < C Tsf“)e"P(‘C‘ngn))

= CQ{g.) " exp(~CiQ (gn))
— O,n—>oo. (40)

- Estimation of I3
This is similar to that of ;, but we provide the details. Since f' 1s decreasing
and negative in [gan, d), we obtain for ¢ there,

f ) - Flam) < f'(gen)(t — gon)
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d
L < eft@n f of (@an)-am) gy
2n

< f(qzu)/ |f (q )| — ‘h"e.f(qzn)

by (39). Then
LI < Cy /_T%Elef(wn)—f(qn)_
Here
f(‘:'bn) - f(qn) < f('_:hn) —f (1231;/2)
< f(@ans2)(@en — Gans2)
c oM s
- T (gn)’

by (39), (36). Thus

Bl < C\/@ » (- CIT(.A))

= CQ(gn) " exp(—C1Q(gn)) — 0, — 0.

Completion of the proof
The above estimates and the positivity of the imtegrand give

pan = o (L +0(1)) ~ 0 @2H1Q (gn) /% &729@),

Then Lemma 2.1(b) gives (13). B

Proof of Theorem 1.2(b)
It was shown in Theorem 1.2 of [4] that

m 1 1)
An ~ exp( log(;;+ 1+E§- ds).
If d < 1, we then obtain '

E(Hn) = Aﬂn/-)\n ~ A;l:

17
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and (14) follows. If d > 1, we use instead (13) for A, to obtam (15). Note
here that a, ~ ¢,,n> 1. A

Proof of Theorem 1.3
Let us assume the notation for I;,j = 1,2,3 above. We already know from
the proof of Theorem 1.2 and Lemma 2.1(c) that

An = pig, 1+ 0(1)) =L(1+0(1)). (42)
Now we choose small ¢ € ( ) and split

1—== {1t mr— n
I2 _ (fq“( m) +]q ( +T(4ﬂ)) +/QQ ) ef(t)dt
/2 w(l-rgy)  Ja(trris)
= Iy +In+In. (43)

Using Lemma 2.2(c), and also (33), (34), we see that for some 8 < 1, and n

large enough,
IS
n 1"" S ;1
: ( T(qn)) o

In (1+T( n)) 2 Gg1n

Then almost exactly as in the proof of Theorem 1.2, for /; and /I3,

I21/I2—>0,n—>ooandfg3/12—>0asn—>oo. (44)

The main contribution comes from I5,. Let

7= (o (1= 7)o (733 )

Yor t € Z,,, we expand

fﬂ (qn) f”! (6)

F@)=fga) +0+—= (t— @)’

where £ is between t and ¢,. We shall show that fort € Z,,, the term mmvolving
f" is small. A calculation (recall (24)) shows that

f”( n) - _?Tl (Q'n)

n

(t—q) +—>2

18



Also, by our hypothesis (23),
@@ < @ (Fd) -cwe (TQ)

< Q) (T2 (q")) ~ G @)

by Lemma 2.2 (b). Then

)= |2 g (§)| <OLT (@),

recall that T' is bounded below. Then for ¢t € Z,,,

T(g)" &tn
<C <C
q'nTl (Q'n) T (Qn) =~

since (6) and (7) show that T (g,) ~ T1(gs) for large enough n. Here it is
crucial that C is independent of ¢,7,{. Thus uniformly in n and t € 7,,,

FO=r@)+ T ¢ gy a+a),
where A = A (n,t) and satisfies

|A] < Cae. (45)

Then the substitution v = jﬂ;—“n (t — g,) gives

ThpEss)
Iy = o) f () e qpaimg,

o (=)

f"(Qn
= ol [ 2 f o e (A gy,
" 1
P (@] S figedl e

/")l 60 _ [ (Tilg)
2 T(@w) V@V Tlw® ’ ’

19
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by (32). We obtain in view of (44), (45),

2 e 2
limsup fo/ | ef@) < ] —0?(1-C2€) gy
ekl T T | B SR

2 i 2
HEminf I,/ | /(@) > / e v () gy,
iRl L TzonT] I
As £ > 0 is arbitrary and both Iy and C; are independent of €, we obtain
2
I,/ |efte) =T (1+0(1)),
2/[ |f”(q-n,)l ( | ( )) |
whence
q2n+1
I = — 2™ 2R@n) /1 (1 4 0(1)).
vl (":il’n)
|

3 Calculations for Examples 2 and 3

Throughout this section, we let
Q(z) = (d* —2°) ",z € (~d,d).

Moreover, we let D, and E, be given by (17) and (18). Note that when
d = 1, this agrees with the choice of D, in Example 2. First we describe the
asymptotic behaviour of g, as n —» oco.

Lemma 3.1

Let 2
a=1-(7) -
Then B
En = Hyn Ta (1 -3 _:an_ﬁ'& + O (n_l_f?)) . (46)
Proof
We have

n = ¢uQ (g} = 20g3(d* ~ &)
20d % (1 — &,) e, . (47)

I
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Then from (18),
6y : =nTaE, =g, (1-— an)—“r;“

e (1 . _il_a&‘n—l- 0 (g,ﬁ)) . (48)

Write for some ¢, € R, .
‘ En = 0n (1 + Cnln). (49)

Substituting in (48) gives.

_ 1 2
6n = én(1+cady) (1 + gt 0 (5,,))

1

1
Cp = —“1—_{;— + 0 (d,) -

Then (46) follows. W
Of course, we could revert (47) to obtain a complete asymptotic expansion

for g, in terms of powers of n~ . Now we may establish the asymptotics

for A,ifd>1:

Lemma 3.2
Let d>1. Then

et " ol a2
A, ~ n” HaAD @2 exp (—A1n1+a — Agnati + 0 (nwl)) )

where A; and Ay are given by (20), (21).
Proof
Recall that Theorem 1.2 gives

Ay ~ 071 Q (gn)"? exp (—2Q (n)) -
From Lemma 3.1,

Q(gn) = d™* (1 - (%1) 2) -

= d“hE;anif; (]_ + TEQ” THe + 0 (n 1.,_0‘)) .
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Also, with the notation for &, from Lemma 3.1,
q?ln — d2n (1 ___En)n

= d“’"exp( nen—u—-é--+0( “e )

= d™exp(—E,nt= + lﬁ“ netl 4+ O (ng:"%) — %nz_;i)

Combining these estimates gives
— [2d"2EZ® + E,| nit= )

A,~n" a1y 20 exp g2 g2 et a2
~ 2Bl e - F + B 2R 4+ 0 (nH)

Some elementary manipulations, and the definition (17) of E, show that the
o c—1

coeflicient of nT= in the exponent is A; and that of n=1 is A,. W

Next, we obtain an asymptotic for the Mhaskar-Rakhmanov-Saff number a,, :

Lemma 3.3
Let d> 1 and D, be as in (17). Then as u — oo,

ay =d ~ Dyu e (1+o0(1). (50)

Proof
The defining relation (9) for a, gives

1 2 —o—1
' 404 / = (2us) ) ds

V1—s?

]

—a—1

We make the substitution (1 - %f';) v=1—sin 1, giving

1=(1- %‘)ﬁa_% ]0 T () do,

where in [0, (1 — %)” Y,

PR L () il R i o (o DY (0
Vo2 - (1= )0
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and f,{v) = 0 elsewhere. Since a, — d as u — o0, we have for each |
v € (0,00),
[1 4o > 2ot

Vov2

Moreover, for large enough u, and all v € (0, c0),

(1430 "
e

By Lebesgue’s Dominated Convergence Theorem,

I = (lw%)_a“[] [1+v1/f\/1_2“*‘ dv (1 +0(1))

—a—3 /7T (a
(1-%) "t ltd

Sm fu (@) =

0< fulv) <

27> % (14 0(1)).

Substituting in (51), gives (50), after some elementary manipulations. l
Now we can give the asymptotic for X, :

Lemma 3.4

2
_ no_ 1
At ond (% +4/1+ %) exp ((1 +0(1)) Blf s =2 ds) , (52)
N1
where By is given by (22).

Proof
From the previous lemma,

1 1 D, -+
Z = i Mpers YRR
a, d (1 d " (1 0(1))) ’

and hence

1 i D S
= (1) 1y e (11 0(1 .
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Then
™ 1 1
/0 log (a—s +4/1+ ?‘E ds

1 1 D
= mlog(g+ /14 35) + —r—
_ d21/1+35

Here the O (1) term comes from fol log (é +4/1+ Elg ) ds, which is conver-
* gent (cf. (2.34) in [5, p. 46]). Since [4, Theorem 1.2] gives

T
A v 2 exp (2[ log (—-1--|—1/1+-}§ ' ds) ,
0 a’S a’s

we obtain (52). B

To obtain the estimate in Example 3 for  (H,,), combine Lemma 3.2 and
3.4. In the case d = 1, I,emma 3.4 alone gives the estimate in Example 2.
The cases a <,=,> 1 follow easily.

/ "5 T ds(14+0(1) +0(1).
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