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Abstract

We investigate large sieve inequalities such as
1+ o c [ .
2o (ol (@) < 5 [ s e (7))

where 1 is convex and increasing, P is a polynomial or an exponential
of a potential, and the constant ' depends on the degree of £, and
the distribution of the points 0 < 71 < T < --+ < Ty, < 2w, The
method allows greater generality and is in some ways simpler than
earlier ones. We apply our results to estimate the Mahler measure of
Fekete polynomials.

1 !Results

The large sieve of number theory [14, p. 559} asserts that if

P(z)= Z apz”

k=—n

is a trigonometric polyonomial of degree < n, and

0<i <M< < Ty < 27,
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and

5=_Injn{7'2_7—1:7—3_TQ:“':Tm_Tm—l’Qﬁ_(Tm_q-l)},
then
Lk iy (2 ' -1 n A7y 12
J:

There are numerous extensions of this to L, norms, or involving ¥ (|P (¢7)[*),
where 1 is a convex function, and p > 0 (8], [12]. There are versions of this

that estimate Riemann sums, for example,

m iy |2 1 2w : 2
jz_; IP (BWJ) | (Tj _Tj—l) < O%'/O IP (e“’)| d’l’, (2)
with C independent of n, P, {71, 72,.-.,Tm}. These are often called forward

Ma:rcinkieWicz-Zygmund inequalities. Converse Marcinkiewicz-Zygmund In-
equalities provide estimates for the integrals above in terms of the sums on
the left-hand side [11], [13], [16].

A particularly interesting case is that of the Ly norm. A result of the
first author asserts that if {z1, 22,...,2,} are the nth roots of unity, and P

is a polynomial of degree < n,

TP )™ < 20 (P, (3)

j=1
where
1 [ :
My (P) = exp (gfo log |P l(e“)] dt)
is the Mahler measure of P.
The focus of this paper is to show that methods of subharmonic function
theory provide a simple and direct way to generalize previous results. We -

also extend (3) to points other than the roots of unity. Given ¢ > 0, x €

[0, ), and a positive measure v of compact support and total mass at most




% > 0 on the plane, we define the associated exponential of its potential by

P(z) =cexp (floglz —t| dv (t)) .

We say that this is an exponential of a potential of mass < k, and that its
degree is < k. The set of all such functions is denoted by P.. Note that if

P is a polynomial of degree <mn, then

|P| € P,.

More generally, the generalized polynomials studied by several authors [3],

[7] also lie in P, for an appropriate k. We prove:

Theorem 1.1 Let 1) : R — [0, 0c) be nondecreasing and conver. Let m > 1,
£>0, a>0, and

D<n << - <1y < 2m.

Let w; >0, 1 <7 <m with

i

Let pyy, denote the corresponding Riemann-Stielljes measure, defined for ¢ €

LV 4
MO IR

[0, 27} by
i (0,6) = > wj. .
jir<f
Let
A= sup{‘pm([O,Q])—%‘:Qe [O,Qﬂ']} | (4)
denote the discrepancy of p,. Then for P € Py, _

g’l wip (log P (7)) < (1 + %ﬁA) %fo% (1og [exP ()] ) 0. )



Example 1 Let us choose all equal weights,

’M)jIE, 1§j§m

Then ., is counting measure,

1 :
pon ([0,0) = —# 5+ 73 €[0,0]}
If we take 1 (t) = max{0,t}, and @ = 1, and use the notation log™t =
max {0, logt}, we obtain

i log™ P (") < (1+ 8rA) % jo. - log™* [eP (ew)] dag.  (6)

1
m e

This result is new. Previous inequalities have been limited to sums involving

P (P (7)), some p > 0. If we let p > 0, ¥ () = &, and a = 1, (5)

becomes
1 f: P () < (1 + 8prA) = f T p ()" ab. (7
m i=1 - 2 0 :

This choice of « is not optimal. The optimal choice is

/ 1
a = 4rA [—l-i- 1+M]

but one needs further information on the size of prA to exploit this.  For
example, if pxA < 1, the optimal choice is of order %, and choosing this

« in (5), we obtain
1 & i\ P 1 [ i\ P
E;P (e")" < (1 + C\/pch) %fo P (e ) do, (8)

where C is independent of p, k, A, P.
For well distributed {71, 7s,...,7m}, A is of order L. In particular, when
these points are equally -spaced and include 2w, but not 0, so that. '
33_"1

’Tj=m, 1Sj5m,
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we have

and (7) becomes

1 & . 16mpr\ e [%" o\ P
EZP(e”ﬂ)pg(l—l- -~ )é-;fo P (e*)" . G

j=1

Example 2 Another important choice of the weights w; is

T~ Tj-1 .
’[sz—“‘-'é‘;'r_‘—, 1 <3 <m,

where now we assume 75 = 0 and 7, = 2. For this case (5) becomes an
estimate for Riemann sums,

LS (= ry-0) 6 (08 P (7))

j=1

< (1 + %m) % fo 7 (10g [exP (<)]) ab. (10)

The discrepancy A in this case is

Ti —Ti—1
j 2

Remarks

(a} In many ways, the approach of this paper is simpler than that in [12]
where Dirichlet kernels were used, or that of [8], where Carleson measures
were used. The main idea is to use the Poisson integral inequality for sub-
harmonic functions.

(b} We can reformulate (5) as
2m .
[ o |P (€ din ()

< (1 + %nx_\) % /O %w (log [e"‘P (ew)]) do.




In fact this estimate holds for any probability measure p,y, on {0, 27|, not .
just the pure jump measures above.
(¢) The one severe restriction above is that 1 is nonnegative. In particular,

this excludes ¥ (z) = z. For this case, we prove 2 different results:

Theorem 1.2 Assume thatm, &, {11, 7e,...,Tm} and {wi,ws, ..., Wn} are

as in Theorem 1.1. Let
m - .
Q=) =]z -~ (11)
j=1
Then for P € P,
m . 1 2 "
Z'wj log P (") < 2—f log P (e“ ) df + klog |Qll zoo(zj=1y)-  (12)
i=1 T Jo
Remarks
If we choose all w; = L, this yields

2

T o (v 1/m 1 : |
H P (e“”a)l/ < NQHF oo (121=1) €XP (ﬁ ; log P (ew) d@) . (13)
J=1

If we take {€'™, e, ... e } to be the mth roots of unity, then
Q) =™ — 1™

and (13) becomes
ﬁ P (/) m o gnfm exp L f i log P (e'w) df (14)
=1 - o 0 ’

In the case & == m = n, this gives the first author’s inequality (3). In general
however, it is not easy to bound ||Q|| 7. (jzj=1)- Using an alternative method,
we can avold the term involving @, when the spacing between successive 7;

is O (n_l):




Theorem 1.3 Assume that m, k and {T1, 72, ..., Tm} ore as in Theorem 1.1.

Let 1g := 7 — 27 and Ty =71 + 21 Let
§ :=max {m — T, T2 HTI,...,j'm — =1t -
Let A > 0. There exists B > 0 such that whenever k > 1 and
§ < Ar7Y,
then for all P € P,

mo_ ) 2 . |
3 T Tk g p (%) < / " log P (Yao+B. (15
i=1 ’

One application of Theorem 1.2 is to estimation of Mahier measure. Re-

call that for a bounded measurable function @ on [0, 27], its Mahler measure

My (@) = exp (% /:ﬂ log iQ (ew) ‘ dﬂ) .

It is well known that

is

Mo (Q) = lim My (@),

where for p > 0,

@ =1el = (% [Te () w)”

It is a simple consequence of Jensen’s formula that if
Tt
Q@ =c[]z—a)
k=1
is a polynomial, then

Mo (@) = le] [ [ mex {1, |zl} -

k=1

o
uE

-
=

e
2
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The construction of polynomials with suitably restricted coefficients and
maximal Mahler measure has interested many authors. The Littlewood

polynomials,

Ly = {10 p(2) = apz*, o € {-1, 1}},
| k=0

which have coefficients £1, and the unimodular polynomials,
n
Ky = {P ip(2) =) o, Jog| = 1}
' k=0
are two of the most important classes considered. Beller and Newman [1]
constructed unimodular polynomisals of degree n whose Mahler measure is
at least \/n — ¢/logn. Here we show that for Littlewood polynomials, we
can achieve almost %\/7_1, by considering the Fekete polynomials.
For a prime mumber p, the pth Fekete polynomial is )
p—1
=3 (5)#,

k=1

where

1, if2? = k(mod p) has a non-zero solution z
(—) =40, ifpdivides &
—1, otherwise.

Since f, has constant coefficient 0 it is not a Littlewood polynornial, but

9 (2) = f(2) /2

is a Littlewood polynomial, and has the same Mahler measure as f,. Fekete

polynomials are examined in detail in [2, pp. 37-42].

Theorem 1.4 Let £ > 0. For large enough prime p, we have

Mo () = Mo (o) 2 (5 =) V. (19




Remarks

From Jensen'’s inequality,

Mo (fp) < lfpll2 = /P —1.

1

However 5 — ¢ in Theorem 1.4 cannot be replaced by 1 —&. Indeed if p is

prime, and we write p =dm+ 1, then gy is self-reciprocal, that is,
_ 1
27g, (;) =g (2),

(p—3)/2

% ( 2:'.t) _ el(P—'z)t Z ay COS ((2]{:—]— 1) t) 473 e'{—2,2}.
k=0

A result of Littlewood [10, Theorem 2] implies that

2m ) -
o ()] dr < (1 —20) v -1,

for some absolute constant o > 0. It is an interesting question whether

and hence

Mo (fp) My (gp) < 5

there is a sequence of Littlewood polynomials  f,) such that for an arbitrary

g > 0, and n large enough,

Mo (fn) 2 (1—&)v/n.

The results are proved in the next section.

2 Proofs

We assume the notation of Theorem 1.1. We let
o'
=14+ 17
r=1+-=, (17)

and define the Poisson kernel for the ball |z| < r (cf. [15, p. §]),

P2 g2
72 — 2rscos (t — @) + 52’

P, (se re”)




where 0 <s<7r and_t,f? cR.

Proof of Theorem 1.1
Step 1 The Basic Inequality
Let P € Pg\ {0}, so that for some ¢ > 0 and some measure v with total

mass < k and compact support,

- log P(2) =10gc+/1og|z—t|dv(t).

As log P is subharmonic, and as v is convex and increasing, ¥ (log P) is
subharmonic [15, Theorem 2.6.3, p. 43]. Then we have for |z| < r, the
inequality [15, Theorem 2.4.1, p. 35]

P (log P(2)) < 51;‘,-1_- j{; i ¥ (log P (re)) Py (z, 7€) dt.

Choosing z = €, multiplying by w;, and adding over j gives

S o P (7)) o [ (o8 P re))

=1
< L [ oloer (e 9

where

m
ML) : = ij’PT (e, re't) —1
=1

-2

Here we have used the elementary property of the Poisson kernel, that it
integrates to 1 over any circle center 0 inside its ball of definition.

Step 2 Estimating H

We integrate this relation by parts, and note that both 1, [0,0] = 0 and

10

&
i
-
=
B

P



tim [0, 2] = 1. This gives

H(E) = — fo % ("a%P’" (¢, rei*)) (tom (07)) — 5= ) dr

and hence .

27
H (D) gA/ 2 p, (&, ret) | dr
]

(19)

Now ' ( ) ) :
8 . : r—1)2rsin(t —1)
P 'r/r’ it

or " (7, re¥) = (r2 — 2rcos (t — 1) +1)°

80 a substitution s =¢ — 7 and 27— per10d1c1ty give
2 7
j(; dr = f ( )
=-2 ] ds
8r

=—2[P, (¢, ) — ’P(lr)] IR (20)

ds

Pr (€7, re™)

or

Combining (18)—(20), gives

iwﬂp (log P (™)) < ( — 1) 21 /qurw (iogP (re'®)) dt. (21)

i=1
Step 3 Return to the unit circle
Next, we estimate the integral on the right-hand side in terms of an integral

over the unit circle. Let us assume that v has total mass A(< k). Let
—LrP(T
$(2) =P (Z)
so that '
log §(z) =loge+ flog |r —tz| dv (),
a function subharmonic in €. Then the same is true of ¥ (logS), so its

integrals over circles centre 0 increase with the radius [15, Theorem 2.6.8,

p. 46]. In particular

o fo " (1og5 (&) ) do < = /0 "y (1og 5 (<)) do

11
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and a substitution # — —& gives

%/Ogﬂw (1og P (re'?) ) db < -J—fo%qp (Aogr +1og P (7)) df

< — P (af +log P (ew)) ae,

2 0
recall our choice (17) of r. Then (21) becomes

iij (log P ("))

] (1+/_\ Tl)zif (10g [e (iﬂ)])da
(s [ slbsler ()

(|
Proof of Theorem 1.2
Write
log P(z) =loge-+ flog |z ~t| dv (t)
SO
m . m .
ij log P (¢"7) = Iogc+f Z‘?ﬂj log | — 1| | dv (¢)
i=1 =1 .
—loge+ / log Q (1) dv (1), (22)

recall (11). Now as all zeros of ) are on the unit circle,

g (u) :=1log @ (u) —10g | Q| Leo(jz1=1) — 108 |u]

is harmonic in the exterior {u : |u] > 1} of the unit ball, with limit 0 at oo,
and with g (u) <0 for |u| = 1. By the maximum principle for subharmonic
functions,

g(u) <0, lu| > 1.

12




We deduce that for ju| > 1,

log Q (1) <10g || QL. (zj=1) +log™ |u] .

Moreover, inside the unit ball, we can regard ¢ as the absolute value of a
function analytic there (with any choice of branches). So the last inequality

holds for all 4 € C. Then assuming (as above) that v has total mass A < &,

108 @) dv 8) < o8 QU ey + [ Tog™ el (1)

1 27
= Alog 1@l o 21=1) +f (%fo log

1 2 .

< r10g @l + 5 [ ( [lo8]e® v @) oo
T Jo

(23)

In the second last line we used a well known identity [15, Exercise 2.2, p. 29],

et t’ d@) dv (t)

and in the last line we used the fact that the sup norm of ) on the unit

circle is larger than 1. This is true because
1 2% i0 m 1 27
— = E Wy — 1
%/0 IogQ(e )dt? 2 W, 27?/0 og

while log @ < 0 in a neighborhood of each 7, so that log @ (e'w) >0ona

e — et@

dd =0,

set of 0 of positive measure. Substituting (23) into (22) gives

S wlog P (¢7) < 1 1 T eelp (690, O
Z’”’J og P (e )—5081|Q||Lm(|z;=1)+21r A og e )
j=1

Proof of Theorem 1.3
Note first that our choice of 79, 741 give

m

T T o

j=1
It suffices to prove that for every o € C,
™o . 21 .
Z Mlog e —a| < f log " — a|dt + Br™!
=1 2 v

=2nlog™ |a| + Bx~. (24)

13
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For, we can integrate this against the measure dv (a) that appears in the

representation of P € P,. Since
log | —a| =log [¢" —a | +log|al

for 7 € R and |a] < 1, we can assume that |a| > 1. Moreover it is sufficient
to prove (24) in the case |a| > 1 + x~!. Indeed the case |q c [1,1+ k71
follows easily from the case |a| = 1 4+ £~ ¢, and the fact that the left-hand
and right-hand sides in (24) increase as we increase |a|, while keeping arg (a)
fixed. We may also assume that a € {1 + x7!, c0), simply rotate the unit
circle. To prove (24), we use the integral form of the error for the trapezoidal

rule [6, p. 288, (4.3.16)]: if f” exists and is integrable in [a, ],

B _ 8
[roe-520@+s@ =5 [ roe-96-na
From this we deduce that if " does not change sign on [a, g],

ﬁa)

[roa-232 0@+ io)| < E5T1r @ -r@l )

Moreover, if f” changes sign at most twice, then

A -«
[r0a-L22 @+ s @) 36— mas 0l 0)

e8]
Now let
f (&) = log|e® —al.
Then
, asint " —20° + (1 +0®) acost
t) = and f*(f) = .
F) 14 a? —2acost U0 (1 -+ a2 — 2acost)®

Elementary calculus shows that |f/| achieves its maximum on [0, 2z] when

cost = 725, Then Jsint| = T—_Fi Hence, s a > 1 + k71, and x > 1,

+a
| O] < (a— a,_l)_l <kforallteR. (27)

14
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Also, since f” has at most two zeros in the period, the total variation V™ f/
on [0, 2r| satisfies

Vi < 6 | < 6k. 28
Of—[rgf%|f|—’i (28)

Now we apply (25) to (28) to the interval [, 8] = [15..1, 73] and add over j.
We also use our conventions on 7y,41 and 7,,. Then

Ozw flode— i Titl ;Tj—‘l £ (73)
P

- Z( 70 dt—%[f(fj_l)w(ﬁ)])

=1 Ti-1

< %52%%” +66%k < 9A%x~L.

So we have (24) with B = 942 . O
Proof of Theorem 1.4
We begin by recalling two facts about zeros of Littlewood and unimodular
polynomials:
(I} 3 ¢ > 0 such that every unimodular polynomial of degree < n has at
most ¢/ real zeros [4].
(II) 3 ¢ > 0 such that every Littlewood polynomial of degree < n has at
most clog?n/ log logn zeros at 1 [5).
- Now suppose that 1 is a zero of f, with multiplicity m = m(p). By (I) or
(ID), m = O (p'/?). Let

b (2) = (2 — 1)

and ‘
Fp(2) = fp(2) [hum (2) -
Note that all coefficients of F, are integers (as 1/hy, (2) has Maclaurin series

with integer coefficients), so Fj, (1) is a non-zero integer. Also hp, is monic

15
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and has all zeros on the unit circle, so its Mahler measure is 1. Then as

Mahler measure is multiplicative,
Mo (fp) = Mo (Fp) Mo (hm) = My (Ip) -

Let z, = exp (%) The special case (3) of Theorem 1.2 gives

, o1 1/p
My (fp) = 5 (IFP (1)] H ’Fp (z;f) l)
k=1

Z%(I_Pﬁ £ () )1/;;'

k=1 (z;éc - l)m

It is known [2, Section 5] that for 1 <k <p—1,

Then _ Y
1 -INP (1
Mo (fo) 2 5 (ﬂ ) = ZvBp~ (T,
Since m = O (p'/?), the bound (16) follows for large p. O
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