EXPLICIT ORTHOGONAL POLYNOMIALS FOR RECIPROCAL
POLYNOMIAL WEIGHTS ON (—o0,00)

D. S. LUBINSKY

ABSTRACT. Let S be a polynomial of degree 2n 4 2, that is positive on the
real axis, and let w = 1/S on (—o0,00). We present an explicit formula for the
nth orthogonal polynomial and related quantities for the weight w. This is an
analogue for the real line of the classical Bernstein-Szegé formula for (—1,1).

Orthogonal Polynomials, Bernstein-Szeg6 formulas. 42C05

1. Tue REsuLt!

The Bernstein-Szeg6 formula provides an explicit formula for orthogonal polyno-
mials for a weight of the form v1 — 22/S (z), x € (—1,1), where S is a polynomial
positive in (—1,1), possibly with at most simple zeros at +1. It plays a key role in
asymptotic analysis of orthogonal polynomials.

In this paper, we present an explicit formula for the nth degree orthogonal poly-
nomial for weights w on the whole real line of the form

(1.1) w=1/5,

where S is a polynomial of degree 2n + 2, positive on R. In addition, we give repre-
sentations for the (n+ 1)st reproducing kernel and Christoffel function. We present
elementary proofs, although they follow partly from the theory of de Branges spaces
[1]. The formulae do not seem to be recorded in de Branges’ book, nor in the or-
thogonal polynomial literature [2], [3], [7], [8], [9]. We believe they will be useful in

analyzing orthogonal polynomials for weights on R.
n

Recall that we may define orthonormal polynomials {py,},,_,, where
(1.2) Dm () = Y™ + ooty Vo, > 0,
satisfying .
/ PiPkW = 0.
—o0

Because the denominator S in w has degree 2n + 2, orthogonal polynomials of
degree higher than n are not defined. The (n + 1) st reproducing kernel for w is

(1.3) Kng1 (x,y) =Y p; (@) p; () -

§=0
Inasmuch as S is a positive polynomial, we can write

(1.4) S(z)=E(2) E(2),
Date: August 19, 2008.

IResearch supported by NSF grant DMS0400446 and US-Israel BSF grant 2004353
1



2 D. S. LUBINSKY

where E is a polynomial of degree n + 1, with all zeros in the lower-half plane
{#z :Imz < 0}. We ensure E is unique by normalizing E so that

(1.5) E (i) is real and positive.
Write
n+1 2n+2
(1.6) E(z)= Z ejzl, S(z) = Z ;27
§=0 §=0
and
(L.7) E* (z) = E(2).
Denote the first difference of a function f by
t —
(18) it = T2

We shall need various Cauchy principal value integrals: for real z, and suitable

functions h,
< h(t h(t
PVQC/ ( )dt = lim / ( )dt;
t—x e—0+ |t—z|>e t—x

o R
PVs / ht) dt = lim [ h(t) dt
—00 R—o0 —R
Pvz,oo/ LIV lim / ni0) g,
oo t—=x e—04+,R—o0 [t|<R,|t—z|>e t—x

With the above assumptions on w, we prove:

Theorem 1 (a) For Imz > 0,
1 <1 1
(1.9) E (2) = exp (_/ + tz logw (t)dt> ’

21t J_ o t—2z 1412
and
(1.10) eni1 = syl2, (=)' eXp( _PV. / blgftg tdt)
(b) For z # v,
(1.11) Ko (z0) = o= PO OB EL),
(1.12) Ko (2,2) = i (B (2) B* (2) — E(2) E" ().
(c)

1/2

(113) VYn = {ilm (en—H€7z)}
and
(1.14) P (2) = —— - (@i TE (2) — ens1 B (2)).

Yy 2T
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Theorem 2 For z € R,

(¢)

1/2 sé/%ﬂ nt 1 °° log w (¢)

1.1 = =nre — 4+ —P —_— .
(1.15) P (z) w () — cos( 5 + 5 Vi, 00 /_OO — dt)
(b)

1 [ t
7K1 (z, ) w (x) = fﬂ/ [logw,t, x| 1_‘_71€2dt

1 [>* 0 1+tx
1.16 —— — |1 t, x| ——dt.
(1.16) 2r J_ o 8z[0gw7 /] 1+¢2

(c) If san1 =0,

1 Son+2 o S (t) 1/2
1.17 =—q— 1 ——— | dt .
( ) Tn T { 2 [m og |:82n+2t2n+2

Remarks (a) The function E is a Szeg6/ outer function associated with w for the
upper-half plane. It has been used in the relative asymptotics of G. Lopez [6] and
in the orthogonal rational functions of Bultheel et al [2].

(b) It is easily seen that for Im z > 0,

N B z—a
(1.18) E*(2)=CE(2) ] —,
a:E(a)=0
where ) | 0
€n+1 n+1 * logw (t
C=—"=(-1 —— PV, ———tdt|.
€n+1 ( ) P < i - ~/700 1+ t2 >

(c) Of course if S is even, then so,41 is 0. The latter condition ensures that the
integral in (1.17) converges.

(d) Explicit formulae for the Christoffel function K, (z,2) " for Bernstein-Szeg6
weights appear in [3], [5], [7], [8], [9], [10]. We will present one application of
(1.11-12) in Section 3.

2. PROOFS
As we noted above, our original proofs arose from de Branges spaces, but we

present elementary proofs. Let us choose F satisfying (1.4) and (1.5).

Proof of (1.9) of Theorem 1(a) Let H denote the right side of (1.9), so that
1 ® 1+4+tzl t
H (z) = exp (—/ + Zng()dt>.

20 J oo t—2 141t2

Then for z = x + iy,
1 [ 14+tzlogw (t)
log |H = —Re|=— ———=dt
og |H (2) e[27rz’/oot—z 1+¢2
y /°° log |E (t)]
™) (t—2)* + 92
(2.1) = log|E (2)|,
by a Theorem in [4, p. 47]. This may be applied as E (z) is analytic and non-zero
in the closed upper-half plane, and log |E (z)| is O (log |z|) as |z| — oco. Since H/E
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is analytic there, we deduce that for some C with |[C| = 1, E = CH. Now by
hypothesis, E (i) is real and positive, while

H (i) = exp (—1/00 logw(t)dt) >0

2 J_o 1+¢?
so C'=1.
Proof of (1.10) of Theorem 1(a) We first show that
1 [ log(1+t%) 14tz
2.2 1—idz= — dt |, I .
(2.2) iz exp<2m,/ R , Imz>0

Indeed, 1 — iz serves as the Szegd function for the weight 1/ (14 ¢*), so (1.9) of
Theorem 1 applied to the weight 1/ (1 + tQ) gives this identity. Then for Im z > 0,

(2.3) E(2)/(1—iz2)"T =exp (I + I2),
where
2 n+1
1 o log |:w<t)32n+2 (1+t ) } 14tz
278 J_ oo 1+1¢2 t— 2z
log son12 /°° 1 1+tz
I, = dt
2 27i Sl t—z

The integrand in I has simple poles in the upper-half plane at i and z, and is
O (t72) as [t| — o0, so the residue calculus gives

log S2n4-2
72 .

Next, log [w (t) sant2 (14 t2)n+1} = O (1) as [t| — oo. Thus the integrand in I

is bounded in absolute value for z = iy,y > 1 and all ¢t by
o 1 1+ [ty < C .
(L+e2)(1+1t) |t|+y — 1+¢2
Here C' is independent of ¢ and z. We may then apply Lebesgue’s Dominated
Convergence Theorem to I, with z = iy, y — oo, to deduce that

1 oo log [w (t) san+2 (1 + tZ)n—H}

(2.4) I =

I — tdt
L 1+ 2
1 * Jogw (t
(2.5) - fPVm/ logw(®),
2mi oo 142
as

Pv/ dt =0 = PV, /OOIOg1+t2tdt
1+2 B 1+t2 ’

the integrands being odd. Substituting (2.5) and (2.4) into (2.3) and letting also
z =1y, y — 00, in the left-hand side there, gives (1.10). B

Proof of Theorem 1(b) We need prove only (1.11), for (1.12) then follows by
I’Hospital’s rule. Set

i E(u)E*(v)— E* (u)E(U)

2T uU—v
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Observe that for fixed v, G (u,v) is a polynomial of degree at most n in u. Assume
that P is a polynomial of degree < n and that Imu > 0. Now for real t, w(t) =
1/(E)E 0

/ P(t)G (u,t)w(t)dt

26 = ( /E t—u /E t—u)dt)'

Recall that FE has all its zeros in the lower-half plane, so F* has all its zeros in
the upper-half plane. Then the integrand W)u) in the first integral is analytic

in the closed lower-half plane, and is O (\t| ) as |t| — oco. By Cauchy’s integral

theorem, the first integral is 0. Next, the integrand in the second integral

P(t)
E(t)(t—u)
is analytic in the closed upper-half plane, except for a simple pole at u (unless

P(u)=0) and is O <|t\_2> as [t| — oo. The residue theorem shows that

o P(t) P (u)
W gp=2 .
| T
Substituting this into (2.6) gives

/OO P ()G (u,t)w () dt = P (u)

— 00

for Imu > 0. As both sides are polynomials in u, analytic continuation gives it for
all w. Finally, (1.11) follows from uniqueness of reproducing kernels:

e}
Kt (u,0) = / K1 (6,0) G (u,t) w (t) dt = G (u,v).
Proof of Theorem 1(c) We note that since p,41 is not defined, we cannot use

the Christoffel-Darboux formula for K, ;. However, we can use it for K, :

Kn+1 (U, U) = '7;—1 Pn (U) P (’Uiizﬂ (U)pn_l (U) + Dn (U) Dn (U) .

Multiplying by u — v leads to

Pr (1) Pr—1 (v) = pn (v) pr—1 () + (u = ) pn () pr (v)

Yn—1 (

= () Kna (1,0) = 5 (B () B* (0) — * () B 0)

by (1.11). Now we compare coefficients of 4" ! on both sides above:
i x —

(2.7) TnPn (V) = o (eni1 B (v) = €ns1B (v)),
giving (1.14). For (1.13), we compare the coefficients of v™ on both sides above:
1
2m
(Note that the coefficient of ¥"*! on the right-hand side in (2.7) is zero). B

’Y% - (6n+1§ - en—i—len) .

Proof of Theorem 2(a) From (1.14), for real z,
TYpPn (€) = Im (€7 E (2)) .
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We take non-tangential boundary values z — x from the upper-half plane in (1.9).
The Sokhotsky-Plemelj formulae give

* logw (t) 1+ tx 1
(2.8) E()—exp<— V/ 1+t2 g dt—210gw(x)>,
and this and (1.10) give
i (2) w (2)'/?
Y 1 1 > logw (t) * logw(t) 1+ tx
= Sy, oIm[i eXp(_Qm'PVOO/OO s tdt—— Ve ST t—mdt ]
12 " 1 > logw (t)
= 32n+2 Im[z + exp (_QMPV'L’OO /;OO ﬁdt ]

Proof of Theorem 2(b) For real z, and E as above, we define a phase function
o (cf. [L, p. 54]) by

(2.9) E(z) = |E (z)| e @),

Here, as in [1, p. 54], ¢ is an increasing differentiable function. We have, as there
1 1 _

(2.10) Koir (2:0) = B @) (1) = —w (@) ¢/ (2).

Indeed, for real x,
E* () = |E ()] "™,
so for real t # x, (1.11) gives
E(x)||E(t)|sin z)—@(t
K ) = E@E Ol s (00) — o)

L’Hospital’s rule gives the first equality in (2.10). Next, from (2.8) and the definition
of ¢, we have for some constant C' independent of z,

* logw () 1+ tx
2.11 __Lpy [ loewll)
(2.11) o) =—g-PVe [ B

dt + C.

The residue theorem shows that for Im z > 0,

1 [ 1 1+t 1
(2.12) — RGP
2wt J_ o L+ t2 t—2 2

so also for real x, the Sokhotsky-Plemelj formulae give

1 > 1 1+t 1 1
L [T 1L
7

2m R e R 2
thus
1 1 1+t
2.13 — PV, ————dt =0.
(2.13) 27i ”/,001+t2t—a:
Hence we may write
1 [ logw(t) —logw (z) 1+ tz
= —— dt+C
v () 27‘(’/ t—ux 1+ ¢t2
I 1+ix
= —— 1 t,x] ——dt+C
on | Mogwitia] I dt +C
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where the integral is now a Lebesgue integral. Then
1 [ t 1 [ 0 1+tx
"(z) = —— 1 t 7dt——/ — [l t,x] ——dt.

The interchange of derivative and integral is justified by uniform in z (and absolute)
convergence of the differentiated integrals. Finally, apply (2.10). B

Proof of Theorem 2(c) We compute +,, by comparing both sides of (2.10) as
x — oo. First observe that if ¢ > 0, and

wa (z) = (w2 + a2)—(n+1) :
then the Szeg6/ outer function E, for the weight w, is given by
By (2) = (a—iz)"™" and Ef (2) = (a +i2)" .
If K41 (wa,+,-) denotes the kernel for w,, (1.11) leads to

(224 (a+ y)2)"+1 —(@®+ (a— y)z)"“'

Kni1 (we,z+ iy, —iy) =

ATy
Letting y — 0+, and using ’'Hospital’s rule gives
1 n
K1 (W, z,x) = ia (m2 + a2)
T
and
n+1)a
(214) Kn+l (wa,m,a:) Wy (.T) = m

Next, if we write
Eq (z) = | Eq ()] e (),
then, as at (2.11),

1 * logw, (t) 1 + tx
2.1 =—-——PV, _— dt -
(2.15) pule) = —pPVe [ BRI Ry o

—0o0

Let

Soniyo (t2 + a2)n+1‘|

ga (t) = log [w (t) s2n12/wa ()] = log [ S

In view of (2.11), (2.13) and (2.15), we may then write

1 *© g.(t) 1+ tx
2.1 — =—-——P dt —
216)  p@-p.@ =3PV [ 20w,
and then (2.14), followed by (2.10) and (2.16) give
(n+1)a

7Kpi1 (2, 2)w (z) — PR
= 7Kup1 (z,2)w(x) — nKpt1 (Wa, T, ) w, ()
= ¢ (@) - (@
o0
(2.17) - % [—;TPVZ /_Oo 191(?2 atfdt
Since so,141 = 0, it is easily seen that for each j > 0,

(2.18) g9 ) = O(Jt| /7% as |t| — oc.
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As
1 1+tz 1 t

1482 t—2 t—a 1+t
the decay of g, at co enables us to deduce that

(n+1)a
K1 (2, @) w(z) — m

(2.19) = dm{ o V/ }

It is well known that the derivative of a Cauchy prlnc1pal value is a Hadamard finite
part integral, but we sketch what we need here. Fix x, let R > |z|, and split

PVI[ ga ( dt PV, (/ A\{RR]>t_;dt  Fr (2) + Gr (x).

Here, because the differentiated integrand has uniformly convergent integral,

/ _ YJa (t)
G (z) = /R o

Note too that G () — 0 as R — oo. Next, adding and subtracting a principal
value integral gives

R
9a (t) — ga () R—=z
F == - dt a 1 9
w@) = [ 2B g, )| 5
S0, again, as the differentiated integrand has uniformly convergent integral,
R !
a(t) = 9ga (z) — g, () (t — ) R—-z 1
F/ — g ( a dt / 1 o _
@ = [ T Fa @) | g (@) (s
R
ga (1) = ga (7) ( 1 1 )
= PV, ——5—"dt + ga _ .
/—R (t —x)? o (%) r—R =+R

As x — oo, the decay of g, at co ensures that
o a t) — a
Fly (z) — PVw/ Mdt.
—oo (t—x)
We deduce that

Thus, from (2.19),

n+1)ax? (t) z
et (. 0) ) - G ‘*PV/ (t o) Bt
1
220 — ha t, dt,
(2.20) 5] (t,z)
where
w t¢ [z, 32
— t—x ’ )
he (t,x) = 2°[ga (t)—ga () — g/, (2) (t—2)] . [2 Q]
(t—x)? ’ 272

Observe that for each fixed ¢,
lim h, (t,2) = g4 (t).

Tr—00

1
r+ R

)
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(We use (2.18) for this). We next obtain an integrable bound on h, (¢,z) that is
independent of large z. If t € (foo, %) ,

¢

1+t2

Similarly if ¢ € (375”, oo), this bound holds. If ¢t € [%, 37“7], then for some & in this
interval, (2.18) shows that

|ha (t,2)] < C'lga (t)] +

he (t,2) = & 197 )] < —C
a b BN =9 Wa W= T

In all occurrences, C' is independent of x and ¢. It follows that we may apply
Lebesgue’s Dominated Convergence Theorem to the integral in the right-hand side
of (2.20) and let * — oo on both sides to deduce that
2 1 o]
n _n+1)a=—— | ga(t)dt.
S2n+2 27 —00

Now we let a — 0+, and use the definition of g, (and an easier Dominated Con-
vergence) to deduce that

2 1 [e’e} n t2n+2
Tn fi/ log {82”] dt. W
S2n+2 27 —00 S(t)

3. AN APPLICATION TO RECIPROCAL ENTIRE WEIGHTS

Suppose zj; = x; + iy;, j > 1, with all y; < 0 and

(3.1) S () <

=\l
Let
e’} p n+1 p
E(z)= 1-—— = - = > 1.
(2) H( z) and E, (z) H(l Z{),n_l
j=1 7 j=1 7
Assume that E is entire, and let
1 1
:jandwnzig,nzl.
|E| | Byl

For real z, it is easily seen that
w i z; \?
- > 1— (=L =:p,.
w@= 1 ( <|)> fn
j=n-+2

Let K11 (W, -, ) and K, 11 (wy, -, ) denote the nth reproducing kernels for W and
w, respectively. This last inequality and extremal properties of K,,1 yield

Knin (W, 2,2) > p ' Kyt (wy, 2, 2) for all 2z € C.

In view of (3.1), p,, — 1 asm — oco. Then the explicit formula (1.11) for K, 11 (wy, 2, Z)
and the fact that E,, — E as n — oo give, for non-real z,

(3.2) liminf K, 11 (W, 2,2) > LE(Z) E*(z) —E" () E (5)

n—oo T z—Zz




10 D. S. LUBINSKY

For real z, we instead use (1.12). Now let H (E) be the de Branges space corre-
sponding to E. This consists [1, p. 50 ff.] of all entire functions g for which both
g/FE and g*/E belong to the Hardy 2 space of the upper-half plane H? (C*), with

o0 g )2
—| < oo
N5
The reproducing kernel for this space is [1, p. 51]

i E(2) E* (v) - E* (2) E(v)
2m zZ—v

K (z,v) = , 2 F 0,

with a confluent form when z = v. Moreover, for such g, we have [1, p. 53]
2 g2
sl <k@a [ |4 zec

Since H (E) contains all polynomials, we may apply this last inequality to g (t) =
K1 (W,t, 2) for fixed z, and deduce that
o
Ko (W,2,2)? < K (z,Z)/ Koy (Wi, )2 W (8) dt = K (2,5) K (W, 2, 5),
—o0
o
Koy (W,2,2) < K(z,%2).
Together with (3.2), this yields, for non-real z,

lim K, (W,z,3) = K (2,7) = i E(2) E” (z)_{;* (2) E(2)

n— oo 2 zZ—Zz

Similarly, for = real,

lim K, (W,z,z) = K (z,z) = 2i
n—oo T

(E' () E* (z) — E (z) E (2)).

In particular, as this is finite, the moment problem corresponding to W is indeter-
minate (cf. [3]).
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