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Abstract
Let A>0,a > 1 and W (z) = exp (= |2|%), z € R. Let 9 € Loo (R)
be positive on a set of positive measure. For n > 1, one may form
Sobolev orthonormal polynomials (g,), associated with the Sobolev
inner product

(f,9) = /ng W) + A /R f'gdW2.

We establish strong asymptotics for the (g,,) in terms of the ordinary
orthonormal polynomials (p,) for the weight W2, on and off the real
line. More generally, we establish a close asymptotic relationship be-
tween (p,) and (g,) for exponential weights W = exp (—Q) on a real
interval I, under mild conditions on . The method is new and will
apply to many situations beyond that treated in this paper.

1 Introduction |

Let
I=(cd)




be a real interval, finite or infinite, and let @ : I — [0, 00) be convex. We
also assume that @ (z) — oo as £ — ¢+ or £ — d—. The weight

W = exp (-Q)

is then called an exponential weight. Provided all power moments exist, we
may define orthonormal polynomials

Pn (-'E) =DPn (W2;$) ,n2>0,

satisfying
/pnme2 = Gmn.
I

The leading coefficient of py, is denoted ,, = 7,, (W?) and assumed positive:
Dn (W2;:v) = T (Wz) "+ .V, (WZ) > 0.

Analysis of orthonormal polynomials for exponential weights has been a
major theme in orthogonal polynomials for at least the last thirty years
[4], 5], (9], [12], [14], [15], [18], [24], [28], [33]. Asymptotics for p, (z) as the
degree n — oo have been established for large classes of exponential weights,
including

Wa (z) =exp(—|z|%) on I =R,

for any a@ > 0. The case a = 2 is the classical Hermite weight. See for
example [14], [15], [32]. ’

Another theme in orthogonal polynomials that is attracting much inter-
est, is that of Sobolev orthogonal polynomials (g,,) associated with a Sobolev
inner product. Let W be a weight as above, and 9 : I — [0, 00) be measur-
able, and positive on a set of positive measure. Let A > 0, and define the
Sobolev inner product

e /1 FqPW? 4+ A /I Fdw?, 1)

for all functions f, g for which the inner product is meaningful. Provided all
monomials are integrable with respect to W2 and ¥»2W?, this inner product
generates orthonormal polynomials (gn,) satisfying

(qm qm) = Omn- (2)
We shall denote the leading coefficient of g, by &y, so that

@n (&) = KnZ™ + .oy iy, > 0.
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" The leading coefficient x, admits a key extremal property
k7% = inf {(P, P) : P monic of degree n}. (3)

Sobolev orthogonal polynomials have found application in a number of
contexts. See for instance the survey papers [19], [23], as well as [16]. In
particular in [13], a study of Fourier series of Sobolev orthogonal polyno-
mials was initiated for smooth functions. Legendre and Sobolev-Legendre
Fourier series were compared numerically. The measures involved in the in-
ner product satisfied a simple algebraic relation, and were close to classical
(Jacobi and Legendre) measures. Consequently, the analytical properties
of the Sobolev orthogonal polynomials could be determined from those of
classical orthogonal polynomials. This investigation was continued in [23]
for the bounded (Jacobi) case and in [20] for the unbounded Laguerre case.

For more general measures with bounded support, a key contribution
was given by Martinez-Finkelshtein [22]. There the support of the measures
is a C?t Jordan curve, and the main requirement is that the measure in
the derivative term satisfies a Szegd condition, while the other measure is
arbitrary. Only the derivative part of the inner product has a significant
impact on the asymptotic behaviour of the Sobolev orthogonal polynomials.
Indeed ¢], behaves very much like a multiple of p,_; in the exterior domain
of the curve. If the first measure also belongs to the Szegt class, then there
are relative asymptotics for g, in terms of p, in the exterior domain of the
curve. ' / ‘

In the unbounded case, the first example different from the Laguerre
case, was considered in [1], with

W (z) = exp (—%:1:2) and ¥ (z) = 1/22 +¢% on R.

Ratio asymptotics were given for g, in terms of the Hermite polynomials.
An interesting feature is that the asymptotics depend on the parameter A,
a notable difference from the bounded case. For

W (x) = exp <—%w4> and ¥ (z) =1on R,

a similar approach was taken in (3], using known asymptotics for Freud
orthogonal polynomials. '

In this paper, we shall see that ¢/, behaves like \/prn_.l for fairly general
weights on an unbounded interval, but some growth restriction on 1 is nec-
essary. If ¢ grows too fast at oo, then the first term in the inner product




will swamp the derivative term. Our first result involves Freud weights, and
for these, we need to define the Mhaskar-Rakhmanov-Saff number [25], [26],
[31]: for @ even and convex on R, and for n > 1, we let a, denote the
positive root of the equation

1 dt
n=— WtQ (apt) ——.
2 e et =5

For example, if Q (z) = |z|*, then
an=Cnt* n>1,
where the constant C' may be expressed in terms of gamma functions. We
note that in all the cases that we consider,
lim 22 = 0.

n—oo 1N

We also need the conformal map
#(z)=z++V22-1,z€ C\[-1,1],

of the exterior of [—1,1] onto the exterior of the unit disk, and the Szegt
function [34] of a measurable function f : [—m, 7] — [0, co) satisfying Szegt’s
condition ’

/ log f (6) d6 > —oo. (4)
It is defined by
Die)=ow (g [ logf () Gza) <1, @)

and has boundary values on the unit circle that satisfy

'D (f; eio)|2 = f(0) ae. 0€[-m,m7].

We shall also need the argument of D ( £ ew) oon the unit circle. We write
(whenever meaningful),

D (f;€) = 1 (6)"/* exp (iT (£:6)) .

An explicit representation for T'(f;6) is

1

" 6—t
47rPV - log f (t) cot <——§——) dt,

I'(f;0) =
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where PV denotes Cauchy principal value integral.

Theorem 1.1
Let Q : R — R be even and continuous in R. Assume that Q" is contin-
uous in (0,00), and Q' > 0 in (0,00). Assume furthermore that for some

a6 >0,

zQ" (z)

a ———=+<8,z€(0,00). 6

e (0,09) ©)
Let W-= e~9, and let (p,) denote the orthonormal polynomials for W2.
Let A > 0 and ¥ € Loo(R) be positive on a set of positive measure. Let
(¢n) denote the orthonormal polynomials associated with the Sobolev inner
product (1). Then as n — o0,

)
I (46 = ot ) W lzsq= 0 (52) =00 "
and
1a+1QD (-5 [(po) Whow=0(y/2). @
()
I (= 5ot ) W =0 (/) ©)
" | (1+]Q1) (qn - % /Ompn—1> W || Loo@)= O < %) . (20) |
(ITI) Let |
W (0) = W (ancosb),0 € [-m, 7). (11)

Uniformly in closed subsets of C\ [~1,1],

*[5
S

—0 ( ) . (12)
3/2
=0 (971;2—) . (13)

‘ (¢4 = Fxpnt) (an2)
¢ (z)" ' D2 (Wn; ﬁ)

Uniformly in closed subsets of C\[-1,1],

(qn (an2) — % o Pn—l)
6 ()" D2 (Wi 75




Remarks
(a) The condition (6) allows

Q(z) = |=|*

ifa>1. .

(b) What is surprising is the degree of closeness of g, to \_}_Xp"“‘l' The Lo
asymptotics are sufficiently strong to imply the uniform bound in (II) with
the aid of a simple Nikolskii inequality.

(c) The result holds assuming less smoothness of ¢}, namely for Freud weights
in the class F (Dini), defined in [15]. Likewise the corollary below holds for
Freud weights in the class F (lip3), defined in [15]. One may also allow
non-Freud @, the chief requirement being that for each ¢ > 0,

zQ (x)
Q (z)

as = approaches the endpoints of the interval of orthogonality. However, the
formulations become more technical, so we omit them.

(d) We note that one can replace [y pn—1 by Pavn_1 (W?2) / (ny, (W?)) in
(8), but with a worse error term. This may be achieved with the aid of
Lemma 2.3 below.

(e) We shall prove Theorem 1.1 in Section 5. Because of known asymptotics
for (pn) [15] on and off the real line, we can deduce:

=0(Q(=)°)

Corollary 1.2
(a) As n — oo,

nn=%%x ("'7")_”% exp( f?[(fﬂ >(1+0(1))’. (14)

(b) We have as n — oo,

[ 1V 00) W)
\/g

1 :
A= cos [(n — 5) arccos z + 2I'(Wh,; arccos x) — Z— |?dz=o0(1).

(15)




(c) Uniformly for z in closed subsets of C\[—1,1], we have as n — oo,

Aanqn<anz)/{¢(z>n D2 s 51— 00 ) 1/2} J=o(V),
(16)

(d) There exists n > 0 such that as n — oo, we have uniformly for |z| <
1—-n"" 2 = cosb,

Aangl (anT)W (a,z)(1 — x2)1/4

= @cos ((n ~ —)9 + 20 (Wy; 6) — Z) +0(n™") (17)

We note that for exp (—|z|*),a > 1, more precise asymptotics follow
from results of Kriecherbauer and McLaughlin [14]. For example, one can
give asymptotics for ¢/, even around the endpoints +a, of the Mhaskar-
Rakhmanov-Saff interval.

For a fairly general class of weights, for which asymptotics for the poly-
nomials (p,) have not been established, we can at least prove that g, be-
haves like —lxpn-l- To state part of the asymptotics, we need the Mhaskar-
Rakhmanov-Saff numbers for a non-symmetric interval or non-even (), gen-
eralizing that above [15, p. 13], [33, Theorem 1.11, p. 201]. For @ convex
on a (not necessarily symmetric) interval I, there are umque numbers a4y,
the so-called Mhaskar-Rakhmanov-Saff numbers a..,,, satisfying

c<a_,<0<a,<d

and

an ’ /
-2 o (o) dz; (18)
a—n V(@ = a—s) (an — 2)
Qn /
0=+ 9 @ dz.
T Ja_n /(2 = 6-n) (an — )
We also let 1
Op = 3 (an + la—n|), (19)
and let L,, denote the linear map of [a—p, a,] onto [—1,1] so that
Ln(2)=—-1+2 _5“‘". (20)




Its inverse linear map is denoted LL_I]. Amongst the properties of a4, is
the Mhaskar-Saff identity [24], [25], [26], [33]

IPW|Loo(r) = IPW | Loslan,an]s

valid for polynomials P of degree < n.

Theorem 1.3 ’
Let I = (c,d) be a finite or infinite interval containing 0. Let Q : I —
[0,00) and let @' be an increasing absolutely continuous function in I, with
@ (0) =0=Q(0) and Q positive in I\ {0}. Assume also that for j = 0,1,
; @ =00 = li @)
Jm, |09 @) = o0 = iy [ @]

Let W = e~9, and let (p,) denote the orthonormal polynomials for W2. Let
A >0, 9 € Lo(R) be positive on a set of positive measure, and (g,) denote
the orthonormal polynomials associated with the Sobolev inner product (1).
Then

) 1
lim | (q,z - ﬁpnq) W o= 0. (21)

n—oo

If we assume in addition that

" ‘ .
lim sup o (x)2 <1, o (22)
T—c+ or z—d— Q' (CU)

then

. 1 [
1 1 010D (0= 00 - 7[5 Wlw=0. @9

(II) Let
W, (6) =W (LL;” (cos 9)) 0 [-m. (24)

Uniformly in closed subsets of C\[-1,1],

lim ¥ (0= Jyps) (2) = 0. (25)
| ¢ (@) D2 (Was )
e W (6) = (1‘+ Q (LL‘” (coso))‘) W, (6),0 € [-m,7].  (26)
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If we also assume (22), then uniformly in closed subsets of C\[-1,1],

/ (2
lim 7 (00 0 ()~ 0 0) = 5 Ji ) =0.  (27)

e ¢ ()" D= (Wi )

Remarks
(a) Note that since @' grows to infinity as we approach the endpoints of I,
(23) actually gives a rate of convergence for the limit.
(b) The restriction (22) is a regularity condition, rather than a growth one.
If we do not assume it, we can still prove a version of (23) in which |@’| is
replaced by a function that grows more slowly as we approach the endpoints
of I. ‘

One of our main tools is an estimate relating the leading coefficient &,
of gy to the leading coefficient «,_; (W?) of pn—1 (W?;z). Its formulation
involves the weighted Lo error of approximation

B [f; W] =inf {| (f = PW iy deg (P) <n} (28)

and the linear operator

| I[R)(z) =W (z)"2 / ’ R(t) W2 (t) 4% (t) dt,z € (c,d), (29)

[+
/

defined on suitably restricted classes of functions R. We prove:

Theorem 1.4

Let I be a finite or infinite interval, and W : I — R be a measurable function
such that W? has all finite power moments and corresponding orthonormal
polynomials (p,). Let ¢ : I — R be a measurable function such that (1/)W)2
has all finite power moments, and assume that v is positive on a set of
positive measure. Let A > 0, and (gn) denote the orthonormal polynomials
associated with the inner product (1), with leading coefficients (k). Then

2\ 2 2 2
0§<M) - 7"——1(W__)_ +% <supE2_,[I|R; W],
Tfin . (WW)?)
(30)
where the sup is taken over all polynomials R of degree < n — 1 satisfying
both '

| BWY |L,p=1 S (31)
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and

/I R(Wy)? = 0. (32)

To estimate the error in approximation, one needs a Jackson type esti-
mate. This reduces the right-hand side in (30) to a bound on the weighted
derivative I [R]', and standard methods enable one to prove weighted bound-
edness of I [R]’ at least for exponential weights.

Theorem 1.5 : .‘

Let I = (c,d) be a finite or infinite interval containing 0. Let Q : I —
[0,00) and let @' be an increasing absolutely continuous function in I, with
@ (0) = 0 = Q(0) and Q positive in I\{0}. Let X > 0 and ¥ € Lo(R)
be positive on a set of positive measure. Assume also that there exists a se-
quence of positive numbers (n,) such that W admits the Jackson estimate

En[fs W] <o | F'W Ny , (33)

for all n > 1 and absolutely continuous functions f : I — R. Then

(a0 s

2
V1 (W?
< (Hi/JHLw(I) Wl((VVT))) + 12, (34)

The constant Cy is independent of n, )\ but depends on W, .

Under the conditions on @ in Theorem 1.3, we shall establish the Jackson
~ estimate (33) in Section 3. We now show that some restriction on the growth
of 1 is necessary near the endpoints of I :

Example 1.6 v

In Theorems 1.1 and 1.3, we assumed that 9 is bounded. We now show by
example, that if ¢ grows faster than /@ near the endpoints of I, then the
limit (21) can fail. Observe that

1 [ Nkn 1

Un = —Pn-1= | oy — =
L, il PR (/) BV

where S has degree < n — 2, and hence

10
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Let W be the Hermite weight
1 o
W (z) = exp —5% )@ €R,
let A>1, and
¥ (z) = 2|,z €R.
We shall show that

NKqp,

n-—»olol,rrileven Yre1 (WZ) =0

so (35) gives

1 2 1
lim inf  — —=Pn— w2><>0,
e I (q \/-Xp 1(:1:)) A

n—00,n even
so (21) fails. By the left inequality in (30),
NKn NYn ((¢W)2)
7 S 2y
Yn-1 (W?) Tn—1 (W?) '

We can use explicit formulae for the leading coefficients in this last right-
hand side to show that it decays to 0. Firstly [34, pp.105-106],

(36)

Tu (W2) =A@

Next,
@W)? (z) = |o|** exp (—2?)

is the symmetrized form of the Laguerre weight t~1/2+4 exp (—t), under the
transformation ¢ = z? in the integral defining orthonormality. Representa-
tions for Laguerre polynomials [34, pp. 100-101] give for n = 2m,

1/2
1 1 1
Tn ((’/’W)2) - {r G+a) (ma-3 } ml

Substituting these representations into (36) and applying Stirling’s formula,
gives for even n, ’

Nk _A\L/2
—2 < C (' : £
Tn-1 (W2) - (n ) =

This decays to 0 if A > 1.

11



At least for Freud weights, it seems likely that (21) will persist if we en-
sure that

Jim ¥ (@) /@' () =

However the growth of ¢ affects the error term in (7), and we no longer
necessarily obtain the uniform asymptotic (9).

We note finally that in the limit case A = 1, the results of [1] imply that
there exist C, Cy > 0 such that for n large enough and for all A > 0,

Ci/v/ ¢ (1+2X)) < (W2 < Co//o (1+2)),

so the ratio does not decay to 0.
"As a final example in this section, we apply Theorem 1.1 to orthonormal
expansions:

Application 1.7

Let W = exp (—Q) be as in Theorem 1.1 and let f : R — R be differentiable
a.e. with (f, f) finite. Assume for simplicity that ¢ = 1. We may then form
the Sobolev orthonormal expansion

> (f,n) n-

n=0
/

We shall show that there is a close relationship between the term by term
derivative of this series, namely

> " (fr ) i

n=0

and the standard orthonormal expansion of f’ in (p,). More precisely, we
shall show that ‘

H [Z (f,@n) @ — ( / f an2> pn] Wil

n=m . azn—rln/21 . |
< c(f,f)1/2<z ;1—2> : 37)

where C is independent of f and m. If for example, Q (z) = |z|, where a >
2, then this series converges, and the right-hand side of (37) is O (n%_%

12




To establish (37), we write

(fa qn) q;z = (f7 Qn) I:Q;z - %pn-—l] + \/LX (f7 qn) Pn—-1 »
and

\/— f7 Qn) Prn—-1

B T (T T L T s

Using these last two identities, we see that the left-hand side in (37) is
bounded above by

> Il [q; - %pn-l] Wil

(& o) A E e b T)

= 1+ To+Ts.

Here by (7), the triangle inequality, and Bessel’s inequality,

, oo 1/2 / oo 2 12 .
no<o(Swr) (3%

n=m n=m

oo 2\ V2
o(f,f)1/2(zn—g> .

n=m

[ [raw] <[ [ #w] [ [éw?] <cne (%)

see (78), (88) below. Then T, admits a similar estimate to Ty. Finally, as

1| 1 ] ”72]2 |:/ 121172] / [ ! 1 ]2”r2
n T T oen— S n n—1-
[/Rf[q \/Xp ' Rf Rq \/Xp '
1 an\2
< == —_
< stnc(Z),
by (7) again, T3 also admits an estimate similar to that for T;. Then (37)
follows.

IA

Next,
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2 Proof of Theorems 1.4 and 1.5

Throughout, we assume the hypotheses of Theorem 1.4. We also let P*
denote the set of monic polynomials of degree n.

Proof of Theorem 1.4
Firstly,
k72 = _inf (P,P)
PePr .
> : 2 2 : i "2 2
> i, [ OWP e et [ ()
= 72 (WW)?) + w22 (W), (38)

as P € P™ implies that P'/n € P}, and by the extremal property of
leading coefficient of orthonormal polynomials. In the other direction, fix
a € I, and define a monic polynomial P, by

n T
P* (:12) = m/a Pn—-1 (W2,t) dt+ C,

where the constant of integration C is chosen so that

[ P (wW)?) 6w)* =0 (39)
Observe that )
A/ P;2W2=,\<——”—> . 40
I ( ) V-1 (W?) (40)
Now expand in terms of the orthonormal polynomials for the weight (¢W)2 :

n

n—1
P.=y b (W) + an (wwy), &

S0

| P wy =§b§ +7:2 (W) 2

(The coefficient of po ((¢W)2) is zero by (39)). An integration by parts

gives

b = [ Py (@W)?) W)’
e [ ) { [ (0w se) oW ) e

14




, (43)
To see that the first terms in the integration by parts, namely

z=d

[ [ (wrse) owy ]

r=cC

do indeed vanish, we note that it is trivial if ¢, d are finite. Suppose now
- that ¢ = —oo. It suffices to show that for each pair of non-negative integers
(k, ), we have

lim_|[af? / 141¢ (WW)? (£) dt = 0.

The integral in this last limit is bounded above for z < 0 by

[ 1 ow® @y a

and that decays to 0 as £ — —oo by convergence of the power moments of
(yW)?. Similarly we may handle the case d = oo, also using that

/ca:pj ((¢W)2;t> (¢W)2 (t) dt = —Adpj ((’(/)W)2 ;t) (1/)W)2 (t) dt.

So (43) is correct as stated. Next, we use the dual formulation,

n—1 1/2 n—1 n—1 /
Zb? = sup chbj:z:cj2-=1 .
j=1 j=1

j=1

For any such {¢; };’;11, set

R = nil ij]' ((¢W)2> ,
j=1
SO

n—1 d T
D oeb = —7‘1%‘;[,—25/ a1 (W2 ) {/ R(t) (pW)*(2) dt}dw
J=1 n— c c

n d .
= / Pa-1 (W2 2) I [R] (z) W? (z) dz

15




with the notation (29). If S is any polynomial of degree < n — 2, we can use
orthogonality to continue this as

n—l' n d
;cjbj L) / Pt (W 2) (I[R] (2) - S (2)) W (&) da

d 1/2
————n xTr) — T 2 T)ax .
s { [ U@ -5 @) W @) as

Since S is any such polynomial, we obtain

Zc]b < 1(W2) En_2[I[R];W].

Finally the only restriction on R apart from having degree < n —1, and
that the sum of the squares of the coefficients is 1, is that its coefficient of

Do ((¢W)2) is zero, that is,
/I Rpo ((¢W)2) WW)? = q.

Since pp is a constant, this reduces to (32). Hence, taking sup over all (cj);:l1
whose sum of squares is 1, we obtain

/

n—1 1/2 .
(Z bﬁ) < ﬁv—ﬁ) sup E2 [I [R]; W)

where the sup is taken over all polynomials R of degree< n — 1 satisfying
both (31) and (32). Combining this with (40) and (42), gives

k.2 < (P, PY)
n

< (sZm) Cwmmatrmsw e (6w) +2 (5T

Tn—1 (W2)

Rearranging this and using (38) gives the result. W
In the course of the proof above, we actually proved:

Lemma 2.1
Assume the hypotheses of Theorem 1.4. Let a € I,n > 1, and let by denote

16
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the coefficient of po ((¢W)2 ; :c) in the orthonormal expansion of the polyno-

mial -7—1”(‘7;5 I pa—1 (W2) with respect to the polynomials {pj ((¢W)2 ;x> }n .
n— j=

Then.
| (;ﬁ_{) / " pt (W?) = bopo (WW)?) - an ((¢W)2)) W [0

n
N sup E,—2 [ [R]; W], (44)
where the sup is taken over all polynomials R of degree< n — 1 satisfying
both (81) and (32).

For the proof of Theorem 1.5, we need a lemma, which follows classical
ideas of Freud. It is presented in Mhaskar’s book [24, p. 84ff.] for Freud
weights.

Lemma 2.2
Assume the conditions on W and 1 in Theorem 1.5. Let 1 < p < co. Let
h: I — R be measurable, with

/ h(yW)? =0. (45)
I
Then _

IR W L,y < Coll bW ||,y (46)
where C, depends only on p, W and .
Proof :
We prove this first for p = 0o, then p = 1, and then use interpolation to do
1 <p<oo.
Step 1: p=o00

Assume first z € (c, 0) and recall that we are assuming that @' (z) < @' (0) =
0 for such z. Now

111 () = 9@ [“h 90 0t
so for a.e. z € (c,0),
T[] (z) = 2Q (z) €*9¢) / “h (£) e 2902 (8) dt + h () ¥* (2)

= TR} (@) W @)| < IAWY ooy 1 oy {2 Q' (2)] %) / e Wdt + 1} :

17




Because @’ is increasing, and negative in (c,0),

@ ()] 9 / Q0 gt < (@)

/ ’ e~ (1) dtl =1. (47

c

So for z < 0,
[T () W ()| < 3I1Y ooy IBWY llLeaq) -

Next, for z > 0, we use (45) to deduce that
d
I[h] (z) = —e29@) / B (£) e=290y2 (1) dt

and proceed similarly. In summary,

IL1B) W ooy 3I1Y Loty IRWH || ooty -

Step 2: p=1
Now

' 0
110 Wieo, = [ 1107 @)W @) da
0
[t

+ / ’ |k (z)] e~ 9@ y? () da

2| ()] 20y (1) [/ 1@/ (=) e9)dz] dt > |
+ [} |7 ()| e=9@ [ ()| dz

dz

IA

/ " b (1) 2002 (1) dt

< Y |z (

Here, as Q' < 0in (¢,0), in the integral,
0
/ Q| (2) 2@ dz = Q) — QO < Q)
t

SO

1B W llLien) S BllY |zwn) 1MW llLyc0) -
Similarly, using (45), we deduce that

WA W lly0,0< BlIY lzw@) 1BWY |z, 0.) -

18




In summary,

WA W |y e < (8l ||L°°(I)_) 1AW Y Ly () -

Step 3: 1<p< 0 _
We would like to interpolate this inequality to get an estimate of the norm of
(3119 Nl z.oot I-)) in any L, space. However, the standard interpolation theorems
do not seem to apply to a space of functions restricted by the condition (45).
Accordingly, we define (as did Mhaskar [24, p. 86 fL.)

Aum=lhwwf[ﬁwwf

and

LR =Ih-Ah].
Note that h — Ag [h] satisfies (45), that is,
[ = a0l ww* =0
The above estimates show that for p =1 and p = oo,

LW | Lyea |
(Bl% | zea(ny) II (h = Ao [A) WY L, (c0)
GlY o) IRV Iz, cq) + Ao BV L)

@wmwmwwmm@@ﬂwwmwﬂﬁwmﬁ,

IN A

IA

where g is the dual parameter of p. The standard form of the Riesz-Thorin
theorem gives for 1 < p < oo and some C depending on p, W, %,

LR W e < Coll WY Ly (c,a) -

Then for functions h satisfying (45), which is equivalent to Ag[h] = 0, we
have £ [h] = I [h]' and so obtain (46). B
We turn to

The Proof of Theorem 1.5
Let R be a polynomial satisfying (31) and (32). The Jackson inequality (33),
followed by the lemma above gives . ’

Ena[I[R;W] < nusallI[RI' W ||y
' Conp_o| RWY || 1y(y= Conp—2-

IA
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Thus (30) gives
2
0< <7n—1 (W2)>2 _ { (Ml_ al<am,
Nikn vy, ((¢W)2>

w2 (@w)?) = nt | PPaw)

< 2 : 21172
< 10l st [ PW
= i o (W?).

Combining these last inequalities and rearranging gives (34). W
We record for future use

Lemma 2.3 ‘

Assume the hypotheses of Theorem 1.5. Then

Here

n (T_fw—z) JE=e —an (<¢W)2)) W llacry
< Cgm [nn_2 + l/lpn_1 (W?) sign (-) W? J , | (48)

where the constant Cs is independent of n but depends on W, 1.
Proof .
In view of Lemma 2.1, we must estimate the term bopo ((¢W)2) that ap-

pears in the left-hand side of (44). We showed in the above proof that the
right-hand side of (44) in Lemma 2.1 is bounded above by Con,,_o _172W 3

In estimating b, we can follow similar steps to that for bj, j > 1 in the proof
of Theorem 1.4, but extra difficulties arise because '

J oo (@w?) ww? # 0 (49)
Now as pg ((1/)W)2> is constant,

o = wo(w?) [+ [][ [ s 90) | o

= 1o <(¢W)2) (T +T),

Tamt (W),
n
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say. Integration by parts gives
: . ]
n, = “/ Pn-1 (WZ;SG) [/ (¢W)2 (t) dt} dz;
dc dc
o= [ (0) | [ 0w ] as
0 z

(It is here that we have to proceed differently from b;, j > 1, to circumvent
(49)). Let

[Law) @ ds, ze0d)

f (z) = sign (z) W2 (z) { [ (TPW)g () dt, € (c,0]

Then

Mb = ’ 2.2) F(z) W2 () dz
npo (@W)7) [ oo (7252) s @) W2 (@)

Observe that, since W (0) = i,
d 0
= 2 and f(0-) = — 2,
£ (0+4) /0 (W)* and £ 0-) = [ W)

To take account of this jump discontinuity at 0, we define a function A such
that h (0+) = f (0+£), by ,

1 ) 1 d 0
v =[5 [ oW s+ 5[ [ wwr - [Cowr|.
Then f — h has limit 0 at 0, so is continuous there. Also for a.e. £ > 0,

(f =) (z) = f' (2) = 2Q (z) e*°¢) / @WW)? - ¢* (z)

and for a.e. x <0,
(F =0 (@)= £ (@) = 2@ (@) ) [ ()~ 2 a).

So (f —h)’ + %?* has essential limit 0 at 0, and then f — h is absolutely
continuous. Moreover, the convexity of @) gives, as at (47),

|(f =R @)| <2019 13y ae z€l (50)
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Next, split

Yn—1 (W2) bO
npo <(¢W)2)
d d
= / Pn-1 (W% 2) (f — B) (z) W? (z) dz + / Pr-1 (W2 z) h(z) W2 (z) dz
= T1+ T2 e
Here
|71] Eno[f — kW]

Mzl (f = B) Wi,y
22 | 9% 17ty W llan)s

IA N A

by our Jackson estimate (33) and our bound (50). Next, the definition of h
and orthogonality of p,—1 to constants gives

ol =[5 [

Combining these last two relations, and that from Lemma 2.1 gives the
result. W

d
/ Pn1 (W2 z) sign (z) W? (z) da| .
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3 A General Jackson Inequality

We shall deduce Theorem 1.3 from Theorem 1.5 and the following crude,
but general, Jackson inequality. More precise Jackson theorems for more
restricted classes of weights can be found in [7], [8], [24]. In this section
only, we use the notation

Enp[f;W]=inf {|| (f = P) WL, : deg(P) <n}.
In the notation of the introduction, of course,

En[f;W]=En,2[f;W]'

Theorem 3.1

Let I = (c,d) be a finite or infinite interval containing 0. Let Q : I — [0, 00)
be convez and Q' be absolutely continuous in I, with @' (0) = 0= Q (0) and
Q positive in I\ {0}. Assume also that for j = 0,1,

lim
T—c+

QW (x)l =co= lim |Q<J'> (:n)‘ . (51)

Let W =e 9 and 1 < p < co. Then there ezists a decreasing sequence (n,,)
of positive numbers with limit 0 such that for every gbsolutely continuous
function f: I — R with f'W € L, (I), we have

EnplfiW] <np | FW I,y - (52)

We shall prove this in a series of lemmas. We may assume, by dilating
I, that '
: ID>(-2,2).

Throughout this section, we use special notation. We shall use integers
n > 1 and m << n, as well as parameters '

G < A_ < —-land 1 < Ay < ap. (53)

We denote by p (m) an increasing function that depends on m and W, while
o (A—, \+) denotes a function increasing in Ay and decreasing in A_. These
functions change in different occurrences. The main feature is that o is
independent of m, n and functions f, while p is independent of Ay, and
functions f. At the end, we choose m to grow slowly enough as a function
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of n, and then Ay also to approach the endpoints of I sufficiently slowly.

Our strategy is to use the usual Jackson’s theorem to approximate f on
[A—,X4], and then to “damp down” this polynomial on [a—m, am]\ [A—, A4]
using fast-decreasing polynomials. Restricted range (or infinite-finite range)
inequalities give the rest. We begin with a technical lemma:

Lemmé 3.2
Assume the hypotheses on @ in Theorem 3.1. Then
(a) For 0 < p < oo and polynomials P of degree <n — %,

”PW”LP(I) < 21/p||PWan[a_n,an]'
(v)

lim a_, =cand lim a, =d.
n—oo N> OO0

(c)
lim d,/n = 0.

n—eo

Proof

(a) This is part of Theorem 4.1 in [15, p. 95].

(b) This follows from convexity of Q. See for example, Theorem 2.4 in [15,
p. 41]. ’ :

(c) If I is finite, then (6,) is bounded and the result is immediate. Now
assume that I is unbounded. Let n > 1 and assume a, > |a_y|, so that
an > 6n. Then from (18), as 2@’ (z) > 0 in I, and as @’ is nondecreasing in

I,
1 1 Gn dr
n o 2 _aan (‘an)

2 2 Lan /(2 = a-p) (an — )
1 1 n dz

= 2 @ 2 lan V(z + an) (an — )

1. (1 Voa

= 26,,@ (26n)/% "

Similarly, if a, < |a—n|, we obtain

1
Q <_§6n)
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Since §, — oo as n — oo, and since @)’ becomes unbounded at both end-
points of I, we then obtain the desired limit. W

Lemma 3.3 '

(a) There is a function o : (¢,0] x [0,d) — [0,00), decreasing in the first
variable, and increasing in the second variable, with the following proper-
ties: let m > 1 and Ay satisfy (53). For all absolutely continuous f with
f'W € L, (I), there exists a polynomial Ry, of degree < m such that

O, 04,
1 = Be) Wiy < L2221 pwi . 59)

(b) Moreover, there is an increasing function p : Zy — (0, oo) depending
only on W such that

IR W) + IRBaWlzooiry < 2 (m) (Wl + 1 Wllzy(ry) - (35)

Proof :
(a) By the classical form of Jackson’s Theorem [6, Theorem 6.2, p. 219],
translated from [—1,1] to [A—, A4], there exists R, with '

Ay — Ao

m

| f = Rmllz,a- 2y < Co (PP T (56)

Here Cj is an absolute constant, independent of f,m, A+. Then

Ay — Ao
m

1
| (f = Bm) WL, p_ay < Co |IW”L°°[)\_,A+]”W”Lw[A_,A+]“f/W”Lp(I)-

So we can take
| 1
o (Ao, Ay) =Co (A —A2) ||W||L°°[,\_,,\+]||-W7||Loo[,\._,,\+]-
(b) By the restricted range inequalities in Lemma 3.2,

IBnW sy + 1RaW ity < 2PURmW Ly mom] + | B W |Lenfa_ ]
< 2% Bmllzfomam) (IW 2o + 1Wllzeo(n)
(57)

Recall the Chebyshev inequality [6, Proposition 2.3, p. 101], valid for poly-
nomials P of degree < m :

|P ()] < 1T (@) | Plloof-1,115 2] > 1.
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Here T, is the classical Chebyshe'v polynomial of the first kind. By trans-
lating and dilating this, and using the bound

T (2)] < (212, |2] > 1,
we obtain for some absolute constant Cy,

— a_m

Qm m '
Rl Loolaemiam] < (CO"X_'__T) | Rl L oo A 24

Using Nikolskii inequalities [6, Theorem 2.6, p. 102], we continue this for
some absolute constant C; as

am — G\ [ C1m? 1/p
“'R’m”Loo[a_m,am] < (CO ).‘+ — ) ()‘+ _ )‘__) |IR’ln"Lp[)\_,)\+]
< (Codm)™ (Crm)*? || Rl 5 a4

Ap — A
< @)™ ©m (I8lzyp- 1 + o™= N )

by the fact that [A+| > 1 and by (56). Using our bound (53) on Ax, we
continue this as

IRmllLecfocmam] < (Cobm)™ (CLmY P W Lo facmsam] ¥
26 )
(14 Q%2 ) (W Iy i + 19 W a0
Combining this and (57) gives the result. I

To handle the norm of fW away from 0, we use the following lemma. It is
an extension of one that Mhaskar used extensively [24, pp. 75-76].

Lemma 3.4
Let 1 < p < oo, and let W be as in Theorem 3.1. Assume in addition that

"
lim sup ¢ (93)2 <1. (58)
z—c+ or z—d— Q’ (-’L‘)

(a) There exists C > 0 such that for z € I,

Q (z) W (z) /0 ’ w-t(t) dt‘ <C. (59)
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(b) There exists Cp depending only on p, W such that

19 9W L,y < N9 WL,y (60)

for all g: I — R absolutely continuous, with g (0) =0 and gW e Ly (I).
(c) Moreover under the same conditions on g, there exists C, depending
only on p and W such that

(1@ +1) gW i,y < Colld WllL,)- (61)

Proof
(a) Choose € € (0,1) and A € [0,d) such that
/"
vedd =@ g,
Q@@

An integration by parts shows that

/ eQWdt = / Q@ ()~ eQ(*’)) dt
A

Q @) eQ(m)_Q (4)~1eRA) 4 gl (i)) Q00 gt

IA

Q (z)"1ef® 4 (1 - s)/ 9.
A

So . _
/ QW gt < e~10) (z) 1 R,
A

Note that for z € (4, d),

2 (@@ @] e [1- g, (g)] 0

so @ (z)~! €9 is increasing there. Then there exists C > 0 such that for
z €[A,d),

A
/ Q0Gt < O ()1 4@,
0

So for z € [A,d) and some C; independent of z,

/ Q0 gt < C1@f (2) 1 €9,
0
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Since the left-hand side is an increasing function of z, while ¢’ ()"t is a
decreasing function of , this inequality also holds for = € [0, A]. So we have
(59) for z > 0. The case x < 0 is similar.

(b)We do this first for p = oo, then for p = 1, and then interpolate, as did
Mhaskar.

Step 1: p=o0

Assume z € (0,d). Then by (a),

Q' ()W (z) /0 ’ (dW) &)W (t) dt\
ClIW | Loory-

|@gW|(z) =

IA

Step 2: p=1
Now as above

d
[ 1@ow| @ iz

Q@)W (@) [ [ emewe dt]

/Od
/Od |9 W] () (/td Q' ()W (z) da:> WL (£) dt
= /Od l9'W| (t) dt.

IA

A similar inequality holds in (c, 0), so we obtain

QW L,y < g WLy )

Step 3: 1 <p< o0
We have effectively shown that if we define the linear operator £ on Ly (1)
by

LH@ =@ @W @) [ oW @)
_ 0
(above h = g'W), then for p =1 and p = o0,
LR Ly < CollbllL -

Now the Riesz-Thorin Theorem [2, Theorem 3.6, p. 213] shows that this
holds in L, (I) for any 1 < p < co. Taking h = ¢'W then gives (60).

(c) Because @' becomes unbounded at c or d, while W= are bounded in any
compact subinterval of I, it suffices to show that for finitec < r < 0 < s < d,
there exists C > 0 (depending on r, s and p) such that

“g”Lp[r,s] < Op“g,”Lp['r,s]'
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Since

"8 z , P 1/p
v“g”Lp['r,s] = (/ /Og(t)dtd:c)
1/p
< ([0 pglebra)

the desired inequality follows. H
Since we do not assume (58) in Theorem 3.1, we also need a weaker
version of Lemma 3.4 that avoids that hypothesis:

Lemma 3.5
Assume W is as in Theorem 3.1. There exists a positive increasing function
®: I — [0,00) such that

lim |@ (z)| = oo, ' (62)

z—rc+ or z—d—

and with the following properties: Let g : I — R be absolutely continuous,
with g(0) =0 and ¢W € L, (I).
(a) There exists C > 0 such that for z € I,

1@ (z)| =9 /0 QMg < C. (63)

(b) There exists Cp depending only on p and W such that
(12 +1) gWllL,(1y < Cpllg Wll,(2)- (64)

Proof
(a) Let > 0 be such that

Q) >2Q(1) | (65)
and choose A = A(z) > 1 to be the smallest = such that

QA)=3Q().

(This will be possible as @ is continuous and increasing). Since @' is in-

creasing,
/ ) (t) Q0 gt

/ * Q0 g
A
= QA (e @ _eQ(A)) < Q (A)LeR®@,

IA
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Also, B
/ QW 4t < 0 (1)1 QA = @ (1) €39,
1

Then

T 1
e~ 9@ / et < e==) / eQWdt + @' (1) e"390) + Q' (A)71.  (66)
0 0

Let Q[:ll denote the lower inverse function of @ when restricted to [0, d), so
that Q[J:I] : [0,00) — [0,d) and

QY (y) = min{z € [0,d) : Q(z) =}
Then
| =0 (F0).
Let

. -1
® (:1:)_1 = ¢ Q) / e9Odt + Q' (1) e"390) 4 Q (Q[;l] (%Q CB))) :
0
Then we have by (66),
® () e~ 9@ / QWdr <1,
0 .

Also
o (e@) <@ @) <,

@7z (e(jew)) ze@t @

Moreover, we see that @ is increasing to co as * — d with limit co there. For
z > 0 for which (65) fails, we use the fact that e~ [ e@®d¢ is bounded
in a compact subinterval of [0, d), and can just define ® to be constant there.
Similarly, we handle z < 0.

(b) One proceeds much as in Lemma 3.4. For p = oo, the inequality (63)
ensures (as in Lemma 3.4) that

(@] +1) gW Loy < Colld WllLeo()-
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Next, note that for p = 1 in Lemma 3.4, we did not use (58). Using (67)
and its analogues for other ranges of z, we have

o] < C(|Q|+1)
and then the case p = 1 of Lemma 3.4(b), (c) give
(@l +1) gWllz, ) < Cpllgd WLy -

Now interpolation for 1 < p < oo gives the rest. B
Next, we need fast decreasing polynomials: xg denotes the characteristic
function of a set S.

Lemma 3.6
Let

-1<r<s<1.

There exists C > 0, and for n > 1, polynomials Uy, of degree < n/2 such
that for xz € [-1,1],

n

_ 1/2
Un (z) — X[r,s] (:1:)\ < C’exp(— [8 min {|z —r|, |z — s|}] ) .
Here C is independent of n,z,r,Ss.
Proof

Nevai and Totik [30, Corollary 2, p. 117] showed that there exist polynomials
P, of degree < n/4 such that for z € [-1,1],

|P, (z) — sign| (z) < Cexp (— 2 al] 2) .

The constant C is independent of n and z. For a € [0, 1], we set -

Sna () = 5 <1+Pn G;Z))

~ Since z € [-1,1] = {72 € [-1,1], and since (except at z = a),

oo @)= & (1530 (259)
]1/2) S'Oexp (_ [% |z — a|] 1/2) .

we have

n

Sn,a (%) — X(a,cx;) (93)‘ < Cexp (— [Z

r—a
1+a
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For a € [-1,0), we set
Sn,a (@) =1=8p-a(-7),
and see that it admits a similar estimate. Now we set
Un (2) = Spyr () (1 = Sn,s (7))
and use
Xir,s] (Z) = X(r,00) (%) (1 ~ X(s,00) (x))
(except at z = r) to deduce that

0n @)~ X @] < Comp (— [ o =] " e (= [f1a=al]™) ).

|
From this, we conclude:

Lemma 3.7
With the restrictions on Ay in (53), there exist polynomials V,, of degree
< n/2 such that for x € [a_on — 1,02, + 1],

n 1/2
Xpoay] (@) = Va (»’U)l < Cexp <— [m min {|z — A-|, |z — /\+|}] > -

Here C is independent of n and x.
Proof ’
Let 4,, denote the linear map of [a—2, — 1, a2, + 1] onto [—1,1], so that

z — (a—on —1)

Let :
r=4L,(A\_) and s = £, (A\4),

and :
Vo (2) = Un (bn (2)) -
Then (except possibly at A_, Ay),

[ 21 (@) ~ Vo (@)
Xir) (bn (2)) = Un (8 (2))|

< Cexp (— (2 min {6 (2) ~ £ ()] 6o (2) — £ O] 1/2)

n 1/2
Cexp (— [m min {|z — A-|, |z - }\+|}} ) -
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[ |
Finally, we can give

The proof of Theorem 3.1

We may assume that f (0) = 0. (If not, replace f by f — f(0) and absorb
the constant f(0) into the approximating polynomial). We choose n > 1
and 1 < m < n/2, and let' Ay satisfy (53). Let R, and V;, denote the
polynomials of Lemma 3.3 and 3.7 respectively, and let

Pn b anVn.
Then P, is a polynomial of degree < n, and

EnplfiW] < (f=P) WL,
< N =B Wie,poagd F Wi agd) + IBW Lo 2

= 1+ T2+ Ts. (68)
Firstly
Ty < |I(f—Rn) W”LP[A_,/\+] + |[Rm (1 = Va) W||Lp[/\_,>\+]
< N = R Wlpoag) IR Wllzepo adlil = Vallzoiao au
g (A, A
< 20 1F" WL,y + 2 (M) (IFW L,y + 1 Wllz,@) 111 = Vallzoiaoag

(69)

by Lemma, 3.3(a), (b). Here by Lemma 3.5(b), for some C independent of

fim,n, Ag,
I Wl < CUF WL,y (70)
Moreover, by Lemma 3.7, '
At

1/2
_1|P P DL _ _
I1=Vallzpnyg < C N eXP( p[8(62n+1) min {|z — A_|, |z >\+|}} )dm

< 0(62n+1),
n

with C independent of f, m,n, A+. Combining all these gives

1/p ,
Tls||f'w||L,Jw{f‘“—;;Af—)+p(m) (E=t2) } (1)

n
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The crucial thing here is that o and p are independent of f,n. Next, if ® is
as in Lemma 3.5,

1
Ty < 12fWhn,a\poallgliemn-
1
< ||f'WNL,,(1\[,\_,,\+])HEHLN(I\[,\_,,\J,]) (72)
by Lemma 3.5(b). Finally,

Ts < (BaWlLy(lo-sn-tozntnn\Bo]) + | PaW L1\ [a—2n—1,azn+1])
: T31 + T32.

Here

T31 < |RaW Lo ()1 Vall Ly (lacon—1,02n+ 1N\ A AL ]) -

For the first term in the product on the right-hand side, we can use Lemma
3.3(b) and (70). For the second term, we can use Lemma 3.7:

Vel (fa—2n-1.a2m 410N\ ])

1/2
n
< C exp | — [———min =M, |z -\ } dz
I\Doy] ( P3G il HEEPWY )
< 0162n+1.
n /
Th ,
) / Son + 1\ /P
T31§P(m)||fW||LP(I)< : ) | 3

Next, let £, denote the linear map of {a—on, a2n) onto [—1, 1], so that

Ly (z) = __1_*_:1:_—;620,_&'

We see that for ¢ > ag, + 1,

1 1
by (2) > Lp (a2n) + — =14+ —,
52n 5211,
SO 1 n i
L(z) > {14+ ] >exp o).
5211, 5211,
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A similar estimate holds for z < a_o, — 1. Then
n mn
Tz, < exp|-C W 125 PaW || Ly(1\[a—20—1,020-+1])
13
1/p n n
< 27Fexp <'—05 ) ”enPnW”Lp[a_zn,agn]v
2n

by the restricted range inequality in Lemma 3.2(a). Then as |[£,| < 1 in
[a—2n, agn], while V, is bounded (independent of n there), we obtain

n

n

< exp (_C )P(m) IF Wl L1y

62n

Combining all the estimates (namely (68), (71), (72), (73)) ‘gives

B [EW < P f=de) 4 2o
n,p [fa ] = ”f “LP(I) +p (m) ["(62n+1) 4 +exp (—Cg"g;.)] .

(74)
The functions o and p obey the conventions listed at the beginning of this
section, and are independent of f. For a given large enough n > 1, we choose
m = m(n) to be the largest integer < n/2 such that

/

1/p 1/(2p)
(222)" sen(o)] = (3)"™
n 6211. n

Since (by Lemma 3.2(c)) d2,/n — 0 as n — 00, necessarily m = m (n)
approaches oo as n — oo. Next, for the given m = m(n), we choose the
largest ¢ < m such that

p(m)

o (at,at) <vVm

and then set A\_ = a_; and Ay = a;. Then (at least for large n and m =
m (n)), (53) will be satisfied, and
0'(/\__,)\_’_) < 1

m = Jm
As o is finite valued, necessarily Ay — d and A_ — ¢ as n — o0, so (recall
(62))

1
||6||L°°(I\[A_,,\+]) — 0,n — oo0.
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Then denoting the term in {} in (74) by 7,,, we have that (n,,) has limit 0 as
n — 00, and is independent of f. By a straightforward argument, we may
modify them so that they are decreasing. W
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4 Proof of Theorem 1.3

The Proof of (21) of Theorem 1.3
First, recall the estimate (34) of Theorem 1.5:

2 2
Tn—1 (W2) . Yn—1 (W2) 2
(T =M< 1Y e ., (W) + C1mp—a-
We shall show that -
7"_—1(_.2_) < 46,
Yo (W?)

and then using Theorem 3.1, and Lemma 3.2(c),

(=)

To prove (75), we use the well known identity

_o (%—)2+O(ni)=0(1)-

2
7_;:1(1(4/—W2)l - /,"’pn—l (2) pn (2) W? (z) d.

(75)

(76)

If we apply the restricted range inequality in Lemma 3.2 (a), applied with
p=1and to W?2 rather than W, and if we use the fact that ato, for W?is

a+n, for W, we obtain

”—7—%)- < 2 [ s @ () W @)
< 2max{omlaal} [ [pact @)pa @) W2 (@) do
< 46, o |
as desired.

Next, define a polynomial 7, (z) of degree < n — 2 by

n

! K '
T (Z) = ¢, — N———=57Pn—1-
n() =t Yna (W2
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We see that by orthogonality of p,—1W? to polynomials of degree < n — 2,

/I 2 /I (q; - n;;—_——f?Tz)pn_Q (@) 7o () W2 () dz

_ /I d, (@) 7o (2) W2 (z) do
_ N\2w2 _ g, En ’ 2
iy A

o e P

Here we have used the definition of the inner product, the normalization
(Gn, @n) = 1, and orthogonality. The identity (77) also implies, as its left-
hand side is non-negative,

/I Z@W)2 <1 (nﬂ/i(nﬁﬁiy (78)

Now we continue (77) as

/I (q':z - n?_l’izw—%]?n—1>2 w2 < % - (n:yrn("w—zj)Z (79)
= o(1),

by (76). Then orthogonality of p,_; to polynomials of degree < n — 2 gives

/ 1 )2 2

———pp_ W
| /I (q'n, \/Xp 1

2
Kn
= G, — N P ) w?
/I ( Tn—1 (W2) '

(5 = 75) P (&)
= o(l).

/

The Proof of (23) of Theorem 1.3 assuming (22)

e [Qn () = ¢ (0) - % Om pn—l] =0,

|z=0
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Lemma 3.4(c) gives

I 021+1) o= 00 © = T2 [“0cs]| W o

1
< C “ [q; - —\/_ipn—ljl w ||L2(I)= 0(1) .

||
For the asymptotics in the plane, we need an estimate for polynomials
in the plane, in terms of their values on a segment:

Lemma 4.1
Let 1 <p < oo and let w € Ly [—1,1] be a non-negative function. Let

w (#) = |sin HI% w(cosh),0 € [—m, 7],

satisfy Szegd’s condition (4). Let P be a polynomial of degree < m. Then
for z € C\[-1,1],

\ P(2)

D2 ('&5; 5(15)
¢ ()™ '

<l Pw g1y 77 =
1-|¢(2)|

Proof
See, for example, Lemma 14.6 in [15, p.395]. B

/

The Proof of (25)
Let L, denote the linear map of [a_n, az] onto [—1, 1] let Lt denote its
inverse, and let as at (24),

W, (0) =W (LL‘” (cos 9)) ,0 € [-m, 7],

and ~
Wi (8) = Wy (0) |sin0]Y/2,0 € [-m,7].

Then the lemma gives (with p=2,m=n—1,w = W,)

(= dhonr) (257 0)
6 ()" D2 (Wai )

_ 1 _ _
112 [(q; - ﬁpn_l) o L ”] Wo LY iy

—1/2 o 1 _
= w50 (g = et | W o= (5772) - (8D

(1-1e@1™)

IA
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In each closed subset of C\ [-1, 1], there exists r > 1 such that in that set

|¢p| >r>1.

Moreover,

o Wi 53) 127 (P g )| = 72 (ln 50|

is bounded above and below in such a set. Then (25) follows. W

The Proof of (27)
This very similar to that above, just apply Lemma 4.1 to

Ly (2)
an (Ln (z)) qn (0) \/— Pn—1
and with W' replacing W. We obtain

4o (En (2)) = 4 (0) = 5 o™ o

¢ (2)" D2 (Wﬁk ’ ¢(z))
< 7272 (14]Q) ( —qn (0) - \/— P )W Iz2(a—nan)
= o(1). (82)

(1-16(=)I™)
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5 Proof of Theorem 1.1 and Corollary 1.2

We begin with a technical lemma:

Lemma 5.1
Assume that @ is as in Theorem 1.1.

(a) .
lim Q (@ )2 0.
== Q (o)

(b) For n > 1 and polynomials P of degree < n,
' n\ 12

1PWleam <€ (2) 1 PWliaco, )
(c) Let n > 1 and

90 (0) =1+ |Q’ (ancosb)|,0 € [-m,7]. (84)

Let 0 < r < 1. There exists C > 1 such that for |z| <r and n > 1,

¢ < |D (903 2) V@ (@) < C. )
(@ )
Cy < Q' (an) /-(-1— < Co. ) (86)
Proof
(a) By (6) and the unboundedness of @' at oo,
Q@) . _B

— 0,z — oo.

0< o (m)z = 2Q' (z)

(b) This is a special case of Nikolskii inequalities. See for example, [24, p.
94] or [15, p. 295].
(c) Now if v > u >0,

1 QI ('U) — Q” (t) 2 > /v ~dt = Ol].Og %,

oW L Q0
by (6). Simllarly we obtain an upper bound, and hence,
PO
(-1:) Sow S () ,0<u <. : (87)

41




Then for t € [—m, 7],
|log (gn (t)) — log @' (ax)|

- (2
< e (@( 31 st}
Then for |z| <r <1,
og | D (90 2) / V@ (@)
= | [ Bogn(© - tox @ (@] e (522 )

1147 [T 1 5
L — _—
< 47T1_T/_7rma,x{log (Q' @) +1>,Ilog|cost| \}dt

(d) As @' is increasing,

2 L a,tQ (ant) ,
n-—;r-/o ﬁdtganQ (an).

Also,

2 2 (%) 1 1 1\
> = L——_ﬁ_dt>n’n—/——— =
n_ﬂ/% — aQ(a)W% ,.___1_.l52d1f;v2 ,

by (87). B

The Proof of (7) of Theorem 1.1
The weight W = exp (—@Q) is even, so the numbers a.;, become just +an,
while 6, = a,. We apply Theorem 1.5, and note that from (75),
| Yn-1
Tn

while we may take as the number 7,, in the Jackson inequality (33),

L < day,

' a
M = C—.

See [24, p. 81] or [7]. Then (76) becomes

(=) -
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so from (79),

2 2
b Kk 2l (. B\ _ 5%\
/,-<q" Mt (W‘Z)””"l) DY (”vn,l (WZ)) (%)

Then also,
Nknp,

-] 0 (%)’
/I (q; - \/ixpn_lfwz ~0 (‘%")2

Next, we estimate gy (0) :

so (80) yields

Lemma 5.2
Assume the hypotheses of Theorem 1.1. Then

lgn ()] < Cy /22 (89)
n
Proof

First let us denote the Sobolev orthogonal polynomial for the special case
¥ =1 by ¢¢. By Lemma 5.1(b), '

* LT k/an

by (78), with 1 = 1 and the estimates (88) above. Now we return to general
1, denoting as usual the corresponding Sobolev orthogonal polynomials by
gn- The triangle inequality gives

lgn (0) — q;, O)] 1YW || Low)
< Ham - @) YW@ + | (@n — @) — (a0 — @3) (O] ¥ WL, (w)(91)

Here by (78) and (88) applied to ¢, and gj,,

* * G,
| (gn — @) YW L, ®) < g W l|Low) + g Wl ) < 07- (92)
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Next, by Lemma 3.4(c),

1 an —22) — (an — a2 O W law

< Yl LwmColl (g — a5) WllL,@)
1 ) 1
AT [(q o) = (6 = oot ) | Wlia
<

an
Cc—,
n

by (7) applied to g, and g%. Combining the last inequality and (91), (92)
gives
a
4 (0) 45 (0)] < C22. (93)

. Then (90) gives the result. B

Proof of (8)
This follows from what we have just proved, (7) and Lemma 3.4(c). More
precisely, Lemma 3.4(c) gives (recall that (58) is valid by the lemma above)

an

1@ +1@D) (3= @ = o2 (50 ) W =0 (). 09

By Lemma 5.2,

192 O (14 Q) Wllzam < o\/EnE.

Note that Lemma 5.1(a) implies that for each ¢ > 0, Q'2W* is decreasing
for large z, so the norm in the last left-hand side is finite. Then (8) follows. W

Proof of (9) and (10)
The Nikolskii inequality in Lemma 5.1(b) and (7) give

1 7 1 Qp,
Il (q;, - ﬁpn—l) W Lwm< C\/ o I (q; - "‘\/—Xpn—l) W lL,®m< C —

Then Lemma 3.4 gives
T

Ia+]Q1) (qn ~¢n (0) = \/LX O'zpn—l) W lze@=0 ( ;;) :

Our estimate above for gy, (0) then gives the result. W
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The Proof of (12) and (13)

Firstly (12) follows from (7), (81) and the fact that e (2) = ap2 in this
even case. For (13), we use (82) and (94) to obtain, uniformly for z in closed
subsets of C\ [-1,1},

AnZ

tn (an2) — qn (0) — f Joo pn
¢(Z) D2 ( n; W)
a2 —1/2 I (IQ’| + 1) < —qn (0) - \/-— mpn——l) W || Lafan.an]

= 0 (‘/“_") . (95)

Here by (26) and Lemma 5.1(c), (d),
2 (g, L
o (si573)

D (Wi 1) 10 <Wﬁ)‘=£

is bounded above and below for z in closed subsets of C\ [-1,1]. Also, as
log W, <0,

(1-161™)

I

n

Gn

|D? (Wa;u)| < 1,]ul < 1.

o0 (30 (515
< C‘qn(o)'a%y( ”’¢<>>i/'¢("‘

decays geometrically, in view of the decay (89) of ¢x, (0), and the geometric
growth of the denominator. We can then drop gy (0) in (95) and (13) fol-
lows. B

Hence the term

Proof of Corollary 1.2
From [15, Theorem 15.1, p. 402],

V1 (W) = # (%) —n+3 exp <% Oa” \/’%(—i—’)?ds> (1+0(1)).

Then (76) gives the result. Similarly the Ly asymptotics (15) follow directly
from (7) of Theorem 1.1 and the Ly asymptotics for p,_1 given in [15, The-
orem 15.1, p. 402]. The asymptotics in the plane (16) follow from (12)
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and asymptotics in the plane for p,—; given in [15, Theorem 15.1, p. 402].
Finally the pointwise asymptotics on the segment [—an, a,] follow from (9)
and Theorem 15.3 in [15, p. 403]. (We warn the reader that the notation
used there is a little different). W

Acknowledgements _

The work by F. Marcellan has been supported by Direccién General de In-
vestigacién (Ministerio de Ciencia y Technologia) of Spain under grant BFM
2003-06335-C03-07, as well as NATO Collaborative grant PST.CLG 979738.
J Geronimo and D. Lubinsky acknowledge support by NSF grants.

The authors would like to thank a referee for pointing out a gap in the
proof of (8).

References

[1] M. Alfaro, J. J. Moreno-Balcazar, T. E. Perez and M.A. Pifiar, M.L.
Rezola, Asymptotics of Sobolev Orthogonal Polynomials for Hermite
Coherent Pairs, J. Comp. Appl. Math., 133(2001), 141-150.

[2] C. Bennett and R. Sharpley, Interpolation of Operators, Academic
Press, New York, 1988.

/

[3] A. Cachafeiro, F. Marcellan and J. J. Moreno-Balcazar, On Asymp-
totic Properties of Freud-Sobolev Orthogonal Polynomials, J. Approx.
Theory, 125(2003), 26-41.

[4] P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann-
Hilbert Approach, Courant Lecture Notes, Volume 3, New York, 1999.

[5] P. Deift, T. Kriecherbauer, K. McLaughlin, S. Venakides and X. Zhou,
Strong Asymptotics of Orthogonal Polynomials with Respect to Expo-
nential Weights, Comm. Pure Appl. Math., 52(1999), 1491-1552.

[6] R. A. DeVore and G. G. Lorentz, Constructive Approzimation,
Springer, Berlin, 1993.

[7] Z. Ditzian and D. S. Lubinsky, Jackson and Smoothness Theorems for
Freud Weights in L,(0 < p < 00), Constr. Approx., 13(1997), 99-152.

46




[8] Z. Ditzian and V. Totik, Moduli of Smoothness, Springer, New York,
1987.

[9] A.J.Duran, editor, Proceedings of the VIIIth Symposium on Orthogonal
Polynomials and Their Applications - Sevilla, J. Comp. Appl. Math.,
99(1999), Nos.1-2.

[10] G. Freud, Orthogonal Polynomials, Akademiai Kiado/ Pergamon Press,
Budapest, 1971.

[11] W. Gautschi and A. B. J. Kuijlaars, Zeros and Critical Points of Sobolev
Orthogonal Polynomials, J. Approx. Theory, 91(1997), 117-137.

[12] J. S. Geronimo and W. Van Assche, Relative Asymptotics for 0ﬁhdg-
onal Polynomials with Unbounded Recurrence Coefficients, J. Approx.
Theory, 62(1990), 47-69.

[13] A. Iserles, P. E. Koch, S. P. Norsett and J. M. Sanz-Serna, On Poly-
nomials Orthogonal with Respect to Certain Sobolev Inner Products, J.
Approx. Theory, 65(1991), 151-175. ‘

[14] T. Kriecherbauer and K. T-R McLaughlin, Strong Asymptotics of Poly-
nomials Orthogonal with Respect to Freud Weights, International Math.
Research Notices, 6(1999), 299-333.

[15] E. Levin and D. S. Lubinsky, Orthogonal Polynomials for Exponential
Weights, Springer, New York, 2001.

[16] G. L. Lopez, F. Marcellan and W. Van Assche, Relative Asymptotics
for Polynomials Orthogonal with Respect to a Discrete Sobolev Inner
Product, Constr. Approx., 11(1995), 107-137.

[17] G. G. Lorentz, M. von Golitschek and Y. Makovoz, Constructive Ap-
prozimation: Advanced Problems, Springer, Berlin, 1996.

[18] D. S. Lubinsky, Asymptotics of Orthogonal Polynomials: Some old,
some new, some identities, Acta Applicandae Mathematicae, 61(2000),
207-256.

[19] F. Marcellan, M. Alfaro and M. L. Rezola, Orthogonal Polynomials
on Sobolev Spaces: Old and new directions, J. Comp. Appl. Math.,
48(1993), 113-131. :

47




[20] F. Marcellan and J. J. Moreno-Balcazar, Strong and Plancherel-Rotach
Asymptotics of non-diagonal Laguerre-Sobolev Orthogonal Polynomials,
J. Approx. Theory, 110(2001), 54-73.

[21] A. Martinez-Finkelshtein, Analytic Aspects of Sobolev Orthogonality
Revisited, J. Comp. Appl. Math., 127(2001), 255-266.

[22] A. Martinez-Finkelshtein, A Bernstein-Szeg’s theorem for Sobolev or-
thogonal polynomials, Constr. Approx. 16 (2000), 73-84.

[23] A. Martinez-Finkelshtein, J. J. Moreno-Balcazar, T. E. Perez and M.
A. Pifiar, Asymptotics of Sobolev Orthogonal Polynomials for Coherent
Pairs of Measures, J. Approx. Theory, 92(1998), 280-293.

[24] H. N. Mhaskar, Introduction to the Theory of Weighted Polynomial
Approzimation, World Scientific, Singapore, 1996.

[25] H. N. Mhaskar and E. B. Saff, Extremal Problems for Polynomials with
FEzxponential Weights, Trans. Amer. Math. Soc., 285(1984), 204-234.

[26] H. N. Mhaskar and E. B. Saff, Where Does The Sup Norm of a Weighted
Polynomial Live?, Constr. Approx, 1(1985), 71-91.

[27] H. N. Mhaskar and E. B. Saff, Where Does The L, Norm of a Weighted
Polynomial Live?, Trans. Amer. Math. Soc., 303(1987), 109-124.

(28] P. Nevai, Geza Freud, Orthogonal Polynomials and Christoffel Func-
tions: A Case Study, J. Approx. Theory, 48(1986), 3-167.

[29] P. Nevai (ed.), Orthogonal Polynomials and Special Functions: Theory
and Practice, NATO ASI Series, Vol. 294, Kluwer, Dordrecht, 1990.

[30] P. Nevai and V. Totik, Weighted Polynomial Inequalities, Constr. Ap-
prox., 2(1986), 113-127. :

[31] E. A. Rakhmanov, On Asymptotic Properties of Polynomials Orthogo-
' nal on the Real Azis, Math. USSR. Sbornik, 47(1984), 155-193.

[32] E. A. Rakhmanov, Strong Asymptotics for Orthogonal Polynomials As-
sociated with Ezponential Weights on R, (in) Methods of Approxima-
tion Theory in Complex Analysis and Mathematical Physics, (eds. A.
A. Gonchar and E. B. Saff), Nauka, Moscow, 1992, pp. 71-97.

[33] E. B. Saff and V. Totik, Logarithmic Potentials with Ezternal Fields,
Springer, Berlin, 1997.

48




[34] G. Szegd, Orthogonal Polynomials, American Math. Soc. Colloquium
Publications, Vol. 23, Providence, 1975.

49



