NEW INTEGRAL IDENTITIES FOR ORTHOGONAL
POLYNOMIALS ON THE REAL LINE

D. S. LUBINSKY

ABSTRACT. Let pu be a positive measure on the real line, with associated or-
thogonal polynomials {pn} and leading coefficients {v,,}. Let h € L1 (R) . We
prove that for n > 1 and all polynomials P of degree < 2n — 2,

o ()= (roa) ([ro wo)

As a consequence, we establish weak convergence of the measures in the left-
hand side.
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grals 42C05

1. INTRODUCTION!

Let i be a positive measure on the real line with infinitely many points in its
support, and [ 2/du (x) finite for j = 0,1,2,... . Then we may define orthonormal
polynomials

D () =v,2" + ..oy v, > 0,

satisfying
/Z PnPm Al = Omn-
Let
(1.1) Ln (2,9) = 2L (o (2) P (4) = P (@) P (1))

and for non-real a,

(12) En,a (Z) = |Ln2(+C_L)|Ln ((i, Z) .

In a recent paper [6], we used the theory of de Branges spaces [1] to show that
for Ima > 0, and all polynomials P of degree < 2n — 2, we have

*P(@) _
(1.3) /_OO mdt— /P(t) dp (t) .

This may be regarded as an analogue of Geronimus’ formula for the unit circle,
where instead of E,, ,, we have a multiple of the orthonormal polynomial on the
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unit circle in the denominator [3, Thm. V.2.2, p. 198], [8, p. 95, 955]. There is an
earlier real line analogue, due to Barry Simon [9, Theorem 2.1, p. 5], namely

L . ar= [P dur).
L ST from

Simon calls this a real line orthogonal polynomial analogue of Carmona’s formula
and refers also to earlier work of Krutikov and Remling [5] and Carmona [2]. The
latter is the special case of (1.3) with (pn—1/pn) (@) = £i7v,,_1/7,- In a subse-
quent paper, we gave a self contained proof of (1.3), and deduced results on weak
convergence, discrepancy, and Gauss quadrature.

In this paper, we first establish the following alternative form of (1.3):

Proposition 1.1
Let 1 be a positive measure on the real line with infinitely many points in its sup-

port, and with [zidp(x) finite for j = 0,1,2,... . Let z € C\R. Then for all
polynomials P of degree < 2n — 2,
1 e P(t
(1.4) —|Imz\/ ® Sdt = 11 /P(t) dp (1) .
™ —oo [2pn () = pr—1 ()] Tn
and
1 o P(t
(1.5) f|Imz\/ ®) _dt = 121 /P(t) dp (1) .
@ - |pn (t) — ZPn-1 (t)| Tn

The factor involving z inside the integral above is essentially the Poisson kernel
for the upper-half plane. By using limiting properties of Poisson integrals, we de-
duce our main result, a new integral identity for orthogonal polynomials:

Theorem 1.2
Let p be a positive measure on the real line with infinitely many points in its sup-
port, and with [x?dp(z) finite for j = 0,1,2,... . Let {p,} and {v,} denote

respectively, the orthogonal polynomials, and leading coefficients corresponding to
w. Let h € Ly (R). Then for all polynomials P of degree < 2n — 2,

w0 [ Ui o= 5 (Lrom) (fro ao)

and

00 [t )= 5 (Lroa) (fro wo)

Note that if we choose P = p2_; in (1.7), we obtain, if the denominator integral

is not 0,
oo P (t)
Yooy ool (52205 at
It might be possible to derive this special case in an alternative way - from the par-
tial fraction expansion of p;—’l (z) and known formulae for the distribution function,

meas {x : p;—;l (x) > t}. We may replace h (t) dt in (1.6) and (1.7) by a signed mea-

Pn(t)
Pn—1(t)

sure dv (t) of finite total mass, provided one appropriately defines dv ( ) over
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Pn(t) -2

Pn—1(1)
1.2, we obtain an entropy type integral:

logz
1—22

each interval in which is monotone. If we choose h (x) = , in Theorem

Corollary 1.3
With the notation of Theorem 1.2,

2 [~ Inpp—1 (@) —Inlpa )] ,, _ Yns
(1.8) ﬁ/_OOP(t) T C—r: dt = 2= /P(t) du (t).

We also obtain a weak convergence type result: recall that p is said to be deter-
minate if the moment problem

/:cjdu(x) :/xjdu(z),j:O,l,Q,...,

has the unique solution v = u from the class of positive measures. We also say a
function f has polynomial growth at oo if for some L > 0 and for large enough ||,

|f (@) < ||

Theorem 1.4

Assume the hypotheses of Theorem 1.2, and in addition that u is determinate.
Then for all functions f : R — R having polynomial growth at oo, and that are
Riemann-Stieltjes integrable with respect to p, we have

(1.9)

i (52) [ (- (o) (10 )

and
(1.10)

(2] [ () ([ n0s) (] o ),

Of course, if f is continuous on the real line, it will be locally Riemann-Stieltjes
integrable with respect to p. Simon [9] proved weak convergence involving his
Carmona type formula.

2. PROOF OF THE RESULTS
Proof of Proposition 1.1
Fix z € C\R. Choose a € C such that
pn—1(a@) = zpn (a).
There are n choices for a, counting multiplicity. Then from (1.1), we see that
Tn—1

L, (a,t) =
Tn

Pn (@) (zpn () = pn1 (1))

and
Ly (a,a) = 202" Tm (2) [p, ()]

n
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Hence
27T 2
Ena (W = = |Ln(@,t)]
|Ln(a7a)|
Qo Vn—-1 2
= n (t) — pn_1 ()| .
Tz o e () =Pt (1)

Substituting into (1.3) gives (1.4), while replacing z by < in (1.4), gives (1.5). B

Proof of (1.6) of Theorem 1.2
Step 1: A Poisson integral identity
Let z = x + iy, where y > 0. We can recast (1.4) as

(2.1) /OO P Y dt = In=t /P(t) dpu (1) .

cee T (pu ()T — pu_1 (8)% + %P2 () T

Let h € Ly (R). We multiply (2.1) by h(z), integrate over the real line, and
interchange integrals, obtaining

- 1/~ yh (z) de| d
[mP(t) [7? [oo (pn (1) T — Py (£))° + 12p2 (t) ] '

(2.2) - 7;7;1 </o:oh(t)dt) (/P(t) d,u(t)).

This is justified, if the integral on the left converges absolutely, namely,

= [ P @)lIh ()] "
23 /. Voo (bn (07— pos () + 52 (1)

To prove this, choose A such that all zeros of p,, lie in (—A, A). Let

dt < oo.

CcC = mf [(pn (t) T — Pn—1 (t))Q + y2p721 (t)i| .

t,zeR

This is positive as p,_1 and p, don’t have common zeros. Then we can bound the
left-hand side in (2.3) above by

Jioniity (L 1)

+/|t<A P2l (/Z |h(x)|da:) dt/c

< ©0Q.

Thus (2.3) is valid. Recall that if h € L; (R), its Poisson integral for the upper-half
plane is

We can recast (2.2) as
(2.4)

Il e R R VKD VRO
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Step 2: The case where h is bounded and has compact support
Firstly, as h is bounded, we have the elementary bound

’P (] (p;:(t()t i 2y>

valid for all y and t. Next, if 2 ;f(lt()t) is a Lebesgue point of h, we have the classic

< Al )

result

2 g P (i) < (P,

Now, if u is not a Lebesgue point of h, (and such points have measure 0), the equa-

tion 2 ;*gt()t) = v has at most n solutions for ¢, and locally these vary differentiably

with . It follows that (2.5) holds for a.e. t.

Let ¢ > 0 and &. denote the union of n closed intervals of radius e, centered
on the zeros of p,. Since P (t) /p2(t) = O (t72) at oo, we may use Lebesgue’s
Dominated Convergence Theorem to deduce that

PM) o (par () |
ylio+/R\g pn()P[h]< 0 “y) a
B P(t), (pos(t)
(26) - /R\gs 2 <t>”< P (1) )dt

It remains to estimate

L, = /5 P) by <p"‘1 ) —|—iy) dt

o= (oot )

As p,_1 and p,, have no common zeros, if € > 0 is small enough,

—~

and

Moreover, as h has compact support, we may choose € > 0 so small that for x in
the support of h and t € &., we have

|pn (t) & — p—1 ()] > % [pn—1 ()]

71T/e [/ . (pn (t )96—1)71(@1}(2(3)63 +y?p7 (1) dm] “
L [ I (Plpnulh ] "
el | ([ o) 1

— sup
This is a bound independent of y, and decreases to 0, as € decreases to 0. Finally,

T te&.
if € > 0 is small enough h (p;‘(lt()t)) =0 for t € &, (recall h has compact support),

Then

|Is,y| =

IN
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so for such e,
I.o=0.

Combining the above, we obtain

[ PW Pai(t)
B (t)mh]( PO “y> a
[ P@), (P (t)
(2.7) = /,oo pz<t>h< P (8) )‘”’

and hence, from (2.4),

o [ (i) ([ ns) ([ )

Thus we have (1.6), for the case where h is bounded and has compact support.
Step 3 The case where h is bounded but has non-compact support
Let

hm = hX[—m,m]’ m 2 1.
We have (1.6) for h,,, that is,

2o 2L G o= (L) S oo

Now for each ¢ with p,, (t) # 0, and all large enough m,
Pn (t) Pn (t)

P@ , (i ®Y| | PO, (2r®

o ) /|~ ? ® /|
This upper bound is independent of m, and moreover is integrable over (—o0, c0),
since it is O (t’Z) at oo, and has an integrable singularity at each zero of p,. To
see the latter, we proceed as follows. Let xz;, be a zero of p,. We can write, in
(% jn, Tjn + €], with small enough € > 0,

paa () _ 9()
pn (1) t—

where g is non-vanishing and continuously differentiable. If ¢ > 0 is small enough,
we have for some appropriate constant C, and t € (wjn, Tjn + el,

P, (reorlt)

Next,

() \ Pn (1)
= C(t—;n)Q (ti(i)ﬂ)‘
< C 9’(0((2—_2:);9(0 ’h<t9(2n>’

- ela L))
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In the second last line, we use the fact that if € is small enough, |g(¢)] >>
lg’ (t) (t — xj)|, while |g| is bounded below. Then, if g (z;,) > 0, the substitu-

g(t)
Tjn+e
I

tion s = Tz, 8Blves
in

dt

P, (resl0)

pn (8)? P (1)

TjnteE
h(“” )HW“ )|
Tjn t— Tjn dt — Tjn
C/ s)|ds < C/ s)| ds.
(TJ.,L+€)

If g (xj,) < 0, we proceed similarly. Thus, indeed, the function ‘ ((Z))Q h (P; Et()t))‘

provides an integrable bound independent of m. Then Lebesgue’s Dominated Con-
vergence Theorem allows us to let m — oo in (2.9) to obtain (1.6) for the case
where A is bounded, but has non-compact support.

Step 4 The case where h is unbounded

Let us define

c

IN

[ R, it h<m,
H (1) = { 0, otherwise.

We have that (1.6) holds for h = H,,. Next, for each ¢ with p, (¢t) # 0, and
h (”"*71(”) finite, and all large enough m,

Pn(t)
i () ()

((:))ZH (p;;(lt()t))‘ admits the same integrable bound as in Step 3.

Then Lebesgue s Dominated Convergence Theorem gives the result.

Moreover,

Proof of (1.7) of Theorem 1.2 )
For the given h, define a new function i by

h(z)=z"%h (z71).
A substitution shows that also h € Ly (R), and
P () \ pa(t) Pra () \Pn-1(t)

So applying (1.6) to h, gives (1.7) for h. W

Proof of Corollary 1.3

Choose in (1.6) of Theorem 1.2,
logz—2
h =

(@) =1"3

which has h € L; (R). Moreover, the fact that h is even and a substitution show
that [4, p. 533, 4.231.13]

[e’e) 1 —1
!
/ h:8/ Og$2dx=ﬂ'2.
— 00 0 11—z
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Proof of Theorem 1.4

We may prove the result for non-negative h, because every h satisfying the hy-
potheses of Theorem 1.2 is the difference of two non-negative functions satisfying
the same hypotheses. Let f be Riemann-Stieltjes integrable with respect to u and
of polynomial growth at co, and let ¢ > 0. Since u is determinate, there exist upper
and lower polynomials P, and P, such that

P, < f<P,in (—00,00)
and

/(Pu —P)dp < e.

See, for example, [3, Theorem 3.3, p. 73]. Then for n so large that 2n — 2 exceeds
the degree of P, and P, (1.3) gives

gl e f
(n—1> / 5 h(pn)—/fd/,é
Yn —oo Prn—1 Pn—1
-1
n— * - P, n
(’Y 1> f2 tzh(p )—/(f—Pg)d,u
’yn —00 pnfl Pn—1
—1
* P,— P, n
(7n—1> . éh( p ) -0
Tn —o00 Pn-1 Prn-1
- /(Pu—Pg)du<5.

Similarly, for large enough n,
Va1 [ S
(52) [ Gem)-fom
’Yn — 00 pn—l p’nfl
-1
< f-P
’Yn —00 pnfl Pn-1
-1 0o
Py — Pu n
() (1)
f}/n —00 pnfl Pn—1

/(Pz — P,)du > —¢.

IA
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