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Abstract

In 1978, Freud, Giroux and Rahman established a weigh-
ted Ly Jackson theorem for the weight exp (— |2|) on the real
line, using methods that work only in L;. This weight is
somewhat exceptional, for it sits on the boundary between
weights like exp(— |2|%), @ > 1, where weighted polynomials
are dense, and the case o < 1, where weighted polynomials
are not dense. We obtain the first L, Jackson thecrem for
exp (— |z]), valid in all L,, 0 < p < co, as well as for higher
order moduli of continuity. We also establish a converse Bern-
stein type theorem, characterizing rates of approximation in
terms of smoothness of the approximated function.
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1 Statement of Results

Let W : R — (0, c0). Bernstein’s Approximation Problem asks when
is it true that for every continuous f: R — R with

lim (fW) (x) =0,

|| —o0

there exist a sequence of polynomials {F,} ., with
lim || (f — Po) Wl Loom) = 0-
TT—0Q

~ This problem was resolved independently by Pollard, Mergelyan and
Achieser in the 1950’s, all with the aid of some sort of regularization of
W. W <1 and is even, and is regular in the sense that In1/W (e*)
is even and convex, a simple necessary and sufficient condition for
density of the polynomials is {11, p. 170] '

o0
1
/ /W), _ o
0 1+ x2
In particular, for :
Wa (z) = exp (— [2[7), (1.1)

the polynomials are dense iff c > 1.

Once the density question had been resolved, the natural next step
was to look for analogues of the Jackson-Bernstein theorems on the
degree (or rate) of approximation. Dzrbasjan took the first steps in
the 1950’s, with major strides being made by Freud and Nevai in the
1970°s. The simplest theorems are the Jackson-Favard inequalities,
which involve the derivative of the function being approximated. For
the weights W,, where o > 1, and 1 < p < o¢, these take the form

o[ Woly := nf || (f = P) Wallrym
< Cn W E | F Wallz,m), (1.2)

where P,, is the set of polynomials of degree < n. Here C is inde-
pendent of f and n [7, p. 185, (11.3.5)] [20, p. 81, (4.1.5a)]. The
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rate is best possible for the class of absolutely continuous functions

[ with || /Wi @ finite. Freud proved these for @ > 2, and later

E. Levin and the author provided the necessary technical estimates
to extend this to all & > 1. More general Jackson fype theorems
involving weighted moduli of continuity for various classes of weights
were proved in [2], [5], [7], [8], [10], [16], [17], [20], 23]

One particularly interesting case is = 1, namely W; (z) =
exp (— [z|). For this weight Bernstein’s approximation problem has a
positive solution, that is, the polynomials are dense. However, (1.2)
suggests that there may not be an analogue of a Jackson theorem,
because n~1*% has limit 1, as @ — 14. On the other hand, a result of
Freud, Giroux and Rahman [9, p. 360] for L, suggests that possibly
(1.2) is true with n~*& replaced by Ten-

In a recent paper [18], we characterized those weights on R that ad-
mit a Jackson or Jackson-Favard inequality. In particular, we showed
that there is no Jackson-Favard inequality like (1.2) for the weight
exp (— |#]). The reason for the failure of such a theorem, is that there
is no suitable estimate for “tails”. There does not exist a function
7 : [0, 00) — (0, oc) with limit 0 at oo, such that there is an inequality
of the form '

1AWl zp@y-aan < 7 () 1 FWallzm

valid for all A > 0, and for all absolutely continuous functions f with
f(0)=0.

Despite this inherent problem for the weight Wi, Freud, Giroux
and Rahman [9] did establish an L1 Jackson theorem back in 1978,
by avoiding estimation of the tail. Their technique was a classical
one, that involves Christoffel functions, and gives estimates for the
rate of one-sided weighted L, approximation. They used the modulus
© of continuity -

w{f,€) = sup / W) (@ + ) — (fW) () da 4 e [ wl

|hi<e J —o0 oo




and proved that

Eulfs Wiy < C | (fipp=) + /} e ).

Here C' is independent of f and n. More generally, they allowed
the tail integral to be over the range |z| > n'~¢, any § € (0,1).
Ditzian, the author, Nevai and Totik later extended this result [6] to
a characterization of smoothness in L, also involving higher order
moduli of continuity.

In this paper, we establish the first L, analogue of this result, by
substantially modifying.techniques from [5]. We also treat higher
order moduli of continuity. The approach involves approximating
f by a spline (or piecewise polynomial), representing the piecewise
polynomial in terms of certain characteristic functions, and then ap-
proximating the characteristic functions (in a suitable sense) by poly-
nomials. For unweighted approximation on a bounded interval, this
method has been used extensively [3], [25]. In the weighted setting,
this method has also been used in [2], [17]. All previous attempts by
this author to adapt the technique of [5] in a simople way failed; our
novelty here is to use the reproducing kernel for the weight Wi to get
a peaking kernel, rather than modified Chebyshev polynomials.

Our modulus of continuity is similar to that in [5, [7], [20], and
involves two parts, a “main part” and a “tail”. The “main part”
involves rth symmetric differences over a suitable interval, and the
tail involves an error of weighted polynomial approximation over the
remainder of the real line. Fix

& (0,1).

For h > 0, an interval J, and r > 1, we define the rth symmetric
difference

AT =3 (Z) (—1)if (%% ~—z’h> ,

i=0

provided all arguments of f lie in J, and 0 otherwise. Our rth order
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modulus of continuity is
I '
nnW1,1) = sup [WLAL( 2 Bl (o (32) exn(5)
oL I = Pz, (- (252 rrm(232) 1)) (18)

The inf in the tail is at first disconcerting, but note that it is over

polynomials of degree at most r — 1, not n. Its presence ensures that

if weo(f, W1,t) = 0, then f € P._; — as one expects for an rth order

modulus. The modulus of continuity is not easy to assimilate, but

still simpler than that for more general Freud weights [5], {7] let alone

those for Erdés weights [2], or for exponential weights on {—1,1] [17].
Following is our main Jackson theorem:

Theorem 1 letr > 1 and 0 < p < o0. Let f: R — R and
Wi € Ly(R). Forp = oo, we also require fto be continuous. For
1L Z 03}

1
En[f; Wilp £ Crp (f, Wi, W) : (1.4) -

where C;, 1 =1,2,3, do not depénd on f orn.

When p > 1, C; can be dropped. It is not clear if it can be dropped
for p < 1. We emphasize that there can be no corollary of the form
(1.2) with n=*& replaced by Togn- It is instructive to compare this
to the results in [5, Thm 1.2, p. 102] or [7] for W, & > 1. The results
there become '

Eplf; Walp < Citony,(f, Wayno™?),
where now
T N ) = A , ?R L
Y :P(f W t) OS<1;-LI;1£ ”Wa h(f “ )”Lp(—h, a1 o-1)

ol W= PIWal o st ety

We also prove a Bernstein type theorem:




Theorem 2 Letr > 1 and 1 < p < 0. Let 0 < a < r and
fW e L, (R). The following are equivalent:
(a) Asn — oo,

B, [f;Whl, = O ((logn)™®). (1.5)
(b) As T — 0+, both |
W1 AL, 2, R} Lpm) = O (h%) (1.6)
and
”Wlf”Lpﬂm[Zexp(%)) =0 (h%). (1.7)

For p == 1, this theorem appeared in [6]. The paper is organ-
ised as follows: In Section 2, we present some technical estimates.
In Section 3, we present our crucial approximations to characteris-
tic functions. We prove Theorem 1 in Section 4 and Theorem 2 in
Section 5. ' :

2 Technical Lemmas

We begin with some notation that will be used in the sequel. Through-
out, C, Ci, Cy, ... denote positive constants independent of n, x and
P & P,. The same symbol does not necessarily denote the same con-
stant in different occurrences. In Sections 3 and 4, these constants
will be independent of a parameter 7 as well. We write C # C(L)
to indicate that C' is independent of L. The notation ¢, ~ d, means
that C1 < ¢,/d, < C; for the relevant range of n. Similar notation
is used for functions and sequences of functions.

We define the Mhaskar-Rakhmanov-Saff numbers a,, u > 0, for
the weight W) by

Qo = gu, u > 0. (2.1)

One of their features is the Mhaskar-Saff identity

”PW}-”LOQ(R) = [iPWIHLm[—an;an])




valid for all polynomials P of degree < n [15], [21], [22], [26]. These
numbers play an important descriptive role in all aspects of weighted
approximation, and asymptotics of orthogonal polynomials.

The orthonormal polynomials for the weight W2 are denoted by
{pn}. Thus

/oo Pn (33) Pm (37) le (:B) dx = Opp.

—00
The positive leading coefficient of p,, is v, and the nth reproducing
kernel is

n—1
K, (x,t) = ij {x)p; (t)
- 920

_ Yn-1Dn (37) Pn—1 (t) — Pn— (37) Pn (t)

" p—— L (2.2)
The nth Christoffel function is
A (W2 z) = 1/K, (2, ). (2.3)

We begin by listing some known general results associated with
the weight W2 :

Lemma 2.1 Let L >0 and 0 < p < 00.
(a) Formn > 1, and polynomials P of degree < Ln,

IPWE ey < Clog nl| PWE| Ly, (2.4)

where C' depends only on p, L, W.
(b) Forn > 1 and polynomials of degree < Ln,

I1PWE N z,@ < CHPWEN Ly anan]- (2:5)
Moreover, if r > 1,
IPWE Ly camarm) < C1e™ P I PWE | yfcanan)  (2.6)
Here C,Ch,Cy depend only on p, L,W.
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Proof

(a)} For L =1, this was first proved in Nevai and Totik [24], see also
[26, Theorem VI.5.5, p. 338]. The case of general L follows by a
substitution £ — Lz in the integrals defining the L, norm.

(b) Firstly (2.5) is a special case of Theorem 1.8 in [13, p. 469], while
(2.6) follows, for example, from Theorem VI.5.1 in [26, p. 334].
O

Next, we list bounds on orthogonal polynormials, and reproducing
kernels:

Lemma 2.2
(a}) Forn>1andt€R,

1 -2

~1/4
I WAL (1) < Cn_l/Q( fl —I—n_2/3> | @7

(b) Uniformly forn >1 and |t| < an (1 + Ln~2/3),

Ko (4, ) W2 (£) ~ log ——— 2,
(c) Forn>1,
sup |Ky, (z,1)| Wi (z) Wi (t) ~ logn (2.9)
zteR
and
sup K, (£,8) Wi (¢) ~ logn. (2.10)
teR
(d) Forn =1 and z,t € [—2ay,2a,],
| K ()| Wi () Wi (2)
—1/4
co (1 k]2
1—I—10gn‘x—t} Gn,
—1/4
X ( 1— ﬂ‘ +n‘2/3) : (2.11)
n _
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(e) Let € > 0. There exists C > 0 such that for |t| < n'~* and
|$ - t| < %7

Ky (z,1)

>
Kn(t,0) —

_ (2.12)

[Nl

Proof
(a) Let € € (0,1). It was shown in [14, Corollary 1.4, p. 222], that

n > 1and |z} € [€an, an],
_1/4
L n_2/3> _

A sharper asymptotic for p, has been given in [12, Theorem 1.16,
p. 303]. For |z| < ea,, where ¢ is small, the bound can be deduced
from the asymptotic in [12]. In Theorem 1.16(v) (with # =1 and
the range Dj there), they establish a uniform asymptotic of the form

Ipa (2) W3 (2)] < Cn™ /2 (‘1 -

B (@) W (002) = | 2= (1) ™ (o5 @) 4.0 (1)),

wN logn

valid for x € [—¢,¢|. Here ¢, is an explicitly given real valued func-
tion. This implies

|pn (ZU) Wi ($)| < Cn“1/27 |‘T| < gap.

Together these two estimates give for z € [—ayn, ay],

n

v (m)’ (1 - (3)2)2+n"4/3 Wi (z) < Cn~4 (2.13)

The pelynomial

2
P(z) =p, () [(1 — (%)2) n n“lﬁ}

is of degree m = 8n + 4. As a, for W) is ag, for the weight WE, we
can use Theorem 1.8 in [13, p. 469], to deduce that

IPWE N sty < CUPWN 1 (1ol (1-Cmm212))
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Since
O3 (1 — C’m_2/3) = Ont1/2 (1 — C’m_z/?’) < g,

for large n, we see that (2.13) holds for all x € R. So we obtain (2.7).
{b) The estimate (2.8) for the Christoflel function was established
in {14, Theorem 1.1, p. 221]. (For a smaller range of z, this was
established in the 1978 paper of Freud, Giroux and Rahman [9].)
(c) Cauchy-Schwarz gives for |z|, |#| < a,,

K (,8) Wa () Wy ()] < [Ka (o, ) WP ()] [K (6, ) W2 (8)] 2

< Clogn.

The restricted range inequality Lemma 2.1(b), applied separately in
x,1, then gives this result for all z,¢ € R. In particular, for all ¢t € R,

K, (t, ) W2(t) < Clogn.

Then we have the upper bounds implicit in (2.9} and (2.10). Finally
(2.8) gives the matching lower bounds required for the ~ relation in
(2.9), (2.10).

(d) 1t is known [19] that

— 1
u=§a'n(1'|'o(1))s

Fr
and more precise asymptotics are given in [12]. Then
Tn—1 ~ T,
Tn

so (a}, (c) and the Christoffel-Darboux formula (2.2) give for all z,¢ &
R, :

| Kn (2, 2) W1 (z) Wh (2)]

< Cming logn, —— (|1— [+n*2/3)

rl Gten
-2
Gy,

—1/4
—I—n_z/?’) / }
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For |z|, |¢| < 2ay, this implies (2.11).
() We use (2.9) and the Bernstein-inequality Lemma 2.1(a). For
|z —t| <1, and some £ between z and ¢,

| K (2, t) W (@) Wy () — K (8, 8) W) () W (2))]

= [ = W2 (€) o K (g W (O W ) W5 (1)

< |z —1 Clogn sup W1 (y) Kn (3, )| W1 ()
yE

| < Clx—t (logn)?.
Since
K, (t, ) W, (z) Wy (t) > CK,, (t,t) W (t) > C;logn,

for [t] < n'~*, we obtain for such ¢,

K (x,1)
>1— —
D) 1-Clz—tllogn
For
|z — 1| 1
— 2Clogn’

we then obtain (2.12). O

3 Polynomials approximating character-
istic functions

Our Jackson theorem is based on polynomial approximations to the
characteristic function x.5 of an interval [a,b]. We believe the fol-
lowing result is of independent interest, because the technique used
in [5, Theorem 4.1, p. 117], based on the peaking polynomials V, .
totally fails.

Theorem 3 Let L,l be even positive integers with L > £+ 2 and
L > %E. Let € € (0,1}). There exists ny such thet for n > ng and
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|7| < nl=¢, there ewist polynomials R, . of degree at most Ln such
that for x € R,

]X[’r,2n1“5] - Rn,fl(m)WlL(x)/WlL(T) = Cl(l + lOgTL |$ - Tl)_g' (31)

We emphasise that the constants ng and C) are independent of
n,7,z. The sequence {logn};_, cannot be replaced by a faster
growing sequence, as this would lead to a faster Jackson rate, which

would contradict Theorem 2.

Lemma 3.1 Let € > 0. There ewists ny such that for n > ny and
0<7<nl,

741
Wk (7) f K (s,7)0ds > .C (logn)*". (3.2)
-1 .
Proof This follows as the integrand is nonnegative, and since for
s — 71 < &,

K, (s,1) > %Kn (r,7) > CW;2 (7) logn,
by (2.8) and (2.12). Here C' is independent of s, 7,n. O

The Proof of Theorem 3 for 7 € [0,n'~¢].
We fix 7 € [0,n!7%] and set
ffl K, (s, T)L ds

R'n,'r (m) = f_:l‘l Kn (S,T)L dS,

a polynomial of degree < L{(n — 1} 4+ 1 < Ln. We also set
A () = |Xirant-e] = Rar ()W () /W (7),

and congider several different ranges of z, taking account of whether
x <7 orx > 7, and whether or not z € [, 2n'~%]. We frequently use
the fact that for |s|,|7f < 1a, = Zn, Lemma 2.2(d) simplifies to

1Ky (s, )| Wi (s) Wy (1) < C logn

T l+4logn|s—7} (3:3)
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Range I: z € [0,7)
Here

W@ Wi (n)” [2 Kn (s, 7)" ds
W@ T K (s, ds

T 1 L
< L{s—z)
_C(logn)/; (1—§-logn|s—’r|> ¢ as,

by Lemma 3.1, and (3.3). We have also used the fact that W=! are
bounded in [—1,0]. We continue this as

< € (logn) /j; (1 +10g71L(T—S))Ld8

< C{1+logn(r— :1:))_‘1'rnLl ,

A (z)

recall that = > z. Since L > £ + 2, we obtain (3.1).
Range IL: z € [r,7+ 1)

Here for n large enough, as 7+ 1 < la,, and 74+ 1 < 20!,
Lemma 3.1 and (3.3) again give

W@t Wi [T K, (s, ds
Wy (N [T K, (s,7)" ds

1 1 L
< C(logn) / ( ) ek ds
x

ANED)

1+lognl|s— 7|
o : 2
< C (logn) _ f ( 1 ) s
(1+logn(xz— 1)) —oo \1+lognl|s—r]
< C

T (1+logn(x— T))E}

as L >0+ 2.
Range 111: z € (7 + 1,2n'~*]
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We assume that 7 is so large that 2n'™* < %an. Here Lemma 3.1
and (3.3) again give .

Wi ()" Wi ()" [7, Ku (s,7)" ds
Wi ()2 [T Ky (s,7) " ds

L
“ 1
<C( Me=a)g
= (Og”)[rﬂ(wlognls—fl) o

(1+logn) f 7 el(s=2) g

L2 5
I T z __ 1
() e ()’

L2
rez 1

< C(logn) M elS 4 C .

< C(logn) e + 1+logn|§-§1

Afx) =

< C (logn)

Since the function e~ fuyl—2

we can continue this as

is bounded for u € {3, 00), while 22T > 2,

L2 TI_L+2

(logn)™""" [z —

<C
< C(1+1logn |z —7))7¢,
recall that L > ¢+ 2.

Range IV: z € (2n'%, 2a,)]
Here we split

Wi @) W ()" (55 + [0 + 5, ) K (5,7) dis
W‘l ZLJ"’T‘I'].K )Lds
= T1+T2 +T3

If © < 1a,, we drop the third integral and replace <0y, by « in the
integral in T5. The terms T3 and T3 can be handled much as before,
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using Lemma 3.1 and (3.3). We also use that z — 7 > /2 > n!~¢.

h+1

% 1 Y Heear,
< : §~T
¢ (logn) f (1—I—lognls—7‘|> ¢ ds

ois . L—2
1 L{s—m)d
(logn) { 5+ 1—|—Iogn|“’2i

2
(l—l—logn[s—ﬂ) d3:|

I—2
s 1
< Ol IS 4 ¢ '
< C(logn)e = + (1+logn|%)

L-2
1—e 1
< C(logn)e ™ 21 C

< C(1+lognlz—7))7F,
since L > £+ 2 and

T+logn|z— 7} < Cnlogn.

Next, in T3, we cannot drop the factor involving ‘1 ~ ~2/3 from
the estimate in (2.11), but s — 7 2 tay, —n'~F ~m, s0
L
- (o)™
Ty < C(1 Ls—a)g
8= (ogn)/%an 1+10gnls—f| ¢ °

L &
< i He=alg
< C(logn) nlogn ¢ °

< Clogn)'™ Lp-§L
< C(nlogn)™t < C(1 + (logn) |z — 7)),

as L >fand L > £+ 1, while |z — 7| < Cn.
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Range V: z € [-1a,,0)
Here

Wl ()" Wi ( (s,7) ds!
W ( 2L f'r+1 T) ds

e 1 L
] L(w—s)d
/_1 (1 Flogn (3] +,,)) o

If x € [-1,0], we have |s| > z in the integral, so we continue this as

1 -2 g 1 2
< Cllogn) (1+1ogn(|cs|+f)) f (1+logn|s|> ds

< C(1+lognl|z— 7))~

< C{logn) (3.4)

If z € {—1a,,—1], we instead continue (3.4) as

I—2
1 z/2
(1+10g n(]m]+'r)) fw ( 1+log 'n,[s|) ds )

-2
1 L2 —1
+ (1+logn(1+'r)) € & ©/2 (1+10gnis{) ds

s O((1 +zogn1(|x| n ¢)>L_2

" (1 T logflb(l T T))M et 2)- (3.5)

Here we have as x < —1,

A(x) < C{ogn) (

"2 < O (14 |af) ™D

while
I+ |z)) (1 +7) > |2+,

and hence we can continue (3.5) as

1 L—2 »
8@ <0 () <CO+logn)ls—1)

16




Range VIL: z € [—2a,, —3a)

Here
—1 an
Wy ()" (f A ) (s,7)"ds
A(z) = 25 = T
Wi (r)™ [T K (s,7)" ds
=: Tl —i— Tg. (36)
As before,

_ 1 -2
< L.‘):/2
T < C(logn) (1 +logn (1 +T))

| ) @
_1g, \1+1logns|

1 L2 o
SC(I+logn(1+»,—)) A+ |z~
1 L2
SO<1-|-10gn(|g;|_|_1—)) < C(1+ (logn) |z — 7)*
Next,
~lag (’1 _ _2/3) 12\ L .
TzSC(logn)fw 1+10gn(|8|+7') eV ds

L o0
<cq il Le=9)g
< Cllogn) nlogn e 3

< C(logn)'™* ek
< C(nlogn)™ < C(1+ (logn) |« — 7)~*
In sumnriary, we have proved that for z € [--2a,, 2a,],
[Xrsani—e] = s (@)W (@) [WE(T) < C(L+ (logm) | — 7))~

Since Y[r,ant-e) vanishes outside [r,2n'~¢] and Wi(z)/W{(r) <1 for
x € [7,2n'~¢], this also gives

]RM [ WL <, z € [—2an, 2a,)] ,
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for some C independent of z,7,n. Then, recalling that as, = 2a,,

(2) " R (@) W ()

a WlL (l’) S C, T e [—azn,agn] .
2n

As ( £ )an,T (%) has degree < (L + 1)n == §L2n, with§ = ZH < 1,

Q2n

(2.6) of Lemma 2.1(b) then gives

(i) "R () Wi ()

W (z) < e, |2 > agy.
on

Then for |z| > 2a,, we obtain

|Rn,,1- (ﬂ:’) WI_L (T)l WIL (CB) < e—Cln—nlog EI%

< C(1 + (logn) |z — 7)~%
Thus (3.1} istrue for allz € R. O

- Proof of Theorem 3 for negative 7
Let 7 € (0,n!7%). We set

Rn,—‘r(x) =1- Rn,‘r("‘x): z € R.
Note the identity
X[~7,2n1—¢] (CC) =1- X(T,gnl—e](—x), AR [—2’]’?,1_6,2?’1,1_'8] .
Then for |z| < 2n!7¢, x # —7,
lX[—‘r,2n1*5] (SC) - Rn,—7($)| WIL (SC) /WIL (_T)
= [X(r2n1¢] (—2) — Rayr (—) Wi (—2) /Wi (1)
< C(1+logn|(—z) — 7)) |
=C(1+lognl|z— (—7)))°.

This estimate also holds for x = —7, since R, is continuous. For
|| > 2n'—e,
| Xterant—e () = R~ ()| W () /W] (—7)
= |1 = Rur(—2)| W () /W] (7) (3.7)

S WY (&) /WY (7) + | R ()| W (=) /W ()
< C(L+lognlz— (-n)),
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by what we proved for 7 > 0, and since |z| — 7 > J%l >nl=e O
Remark

In [5, p. 118, last line], there was a small mistake, the 1 inside
the modulus was omitted in the analogue of (3.7). But this is easily
fixed.O

In the next section, we shall use the following consequence of The-
orem 3:

Theorem 4 Let £ be an even positive integer, A > 1 and € € (0,1).
There exist L > 0 and ny such that for n > ng and |7| < n'=°, there
exist polynomials S, . of degree al most Lnsuch that for x € R,

X, ant—¢] = Sn| (@YW {x)/WilT) < Ci(1 ++logn |z — )74 (3.8)
Here C| 1s independent of n, T, 2.

Proof
By Theorem 3, there exist polynomials Ry, . of degree< Ln with

|Xfr2n1-¢) () — Bn (x) e~ BT < ¢y (1 4+ logn |z — )74,
forallz € R. We now make the substitutions
y=DLa; 0 =L7; Sps (y) = R ().

As
X[r,2nl—<] (-’L') = X[e,2Ln1—¢] (y) 3
we obtain for y € R, o] < Ln'~¢,

Xo2zni-¢) (%) — Sne () [(@)e PH < Ci(1+logn |y — o)) 7% (3.9)

In Theorem 3, L could be as large as we please. We assume L > A/2
and restrict |o| < n!™*. We obtain for y € R\(An'~%,2Ln'"¢], and
such o, :

X[o,ani—] () — Sno (1) |(@)W1 () /Wi (0) < Ci{1+lognly — o)™
(3.10)

19




For y € (An'*,2Ln'~¢], we obtain instead from (3.9),

|X[o,4n1-2] () — Snoc W) [(2)W1 () /W1 (o)
= |Sn,q () {2)W1 (y) /W1 (o)
< el L ¢y (1 4-logn |y — o)~

Since y—o > (1 — L)y > £51n?~%, we again get (3.10). Thus (3.10)
holds for all ¥ € R. Fmally, replace o by 7 and y by x to get the
result. O

4 The Proof of Theorem 1

In this section, we prove Theorem 1. We need some unweighted, semi-
classical moduli of continuity. If 7 is an interval, and f: I — R, we
define for t > 0, 0 < p < oo,

Avglfyt,T) = sup f AL, @, T)Pdz) o

0<hst

and its averaged cousin

Q.o(f,t, 1) ( / f|AT frx, DPdz ds) p.

(There are obvious modifications if p = co0.}) Note that for some
C1, Cs depending only on r and p, (not on f, [, t) [4], [25, Lemma 7.2,
p. 191],

CI S Ar,p(fatzf)/gr,p(f:tﬁf) S 02. (41)

For large enough n, we choose a partition by equally spaced points,

““nl_e = Tﬂ,ﬂ < Tl)rn, < " < Tm,fn = nl_s,

where foreach 0 < 7 <m —1,

in —g

R A LA
Tittan = Tim 10n1~log n)
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and where [z] denotes the greatest integer < x. Since mh = 2n'~*,

we see that
m = [10n' "% log n]
and . !
<h< .
5logn —  ~ 5Slogn — 1/(2n'-=)

We set
Tin = [Tk, Tetin), 0<k<m-—1,

so that for k£ < m — 1, and large n,

1 1
S |Ik'n.| S

(4.2)

5logn 4logn’

(|I] denotes the length of the interval I.) We also set [y := In—1,n-
Let us set

m—1
Iyi= [ont, 0t = | L
k=0
and
an(x) = X[rgn,2nl-e] (SC) = X(nl—=,2n1—¢] + XU?;TCI .Im (:l:)
We set,
Il;kn = I Uy, C0<k<m—1,

and I, = Iy, ,. By Whitney’s theorem [25, p. 195], we can find a
polynomial p, of degree at most 7, such that

1F ~ Prllptgy < Cobro(f 1Tl Ti) < CoQup(f Ml 2} (43)

with Cs, C; independent of f,n,k, I},
Now define an approximating piecewise polynomial/spline by

m-—1

Lo[f1(®) = po()on () + Y (P — Pk-1)(2)0hn () — Pt O () -

k=1
(4.4)
We first show that L,[f] is a good approximation to f:
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Lemma 4.1 For 0 < p < oo,
I(f = Lalf WAL, )
1/(2logn)
<Cillogn [ WAL R, ey
0
+ ||fW1||jz,p(|m|an—s}]' (4.5)

Here C; # Ci(f,n), 7 =1,2,3. For p= oo, (4.5) holds if we remove
the exponents p.

ds

Proof
We first deal with p < co. Now

m .
” (f - Lﬂ[f])Wl ||_j;,p(R) = Z Ajﬂ + ”le ”21,(]1{\[_”1-—5,273,1—61): (46)
4=0
where for 0 < 5 <m—1,
Bjwi= [ V7= IalIPWE,
. in

while
opl-e
A = ] | = Lol f}PWY.
n

1—e

Note that for j < m—1, In (7jn, Ti+1,n), Lalf] = p;, 50 that Whitney’s
Theorem (4.3) gives ‘

A = ff = p P
Jn

Sllwllle(Ijn)CpQﬁp( | ’1 yn,)

o, {15l
125
:r'ﬂ 0

< [ W 1) pds ds
I}fn

< WAL IV s
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Sinee C'/(logn) < | | < 1/(2logn), we can continue this as
1/(2logn)
<Cs logn/ / WAAL(f, z, I},) Pdz ds.
0 .
Adding over j gives
1/(2logn)
Z Ajn < Cslogn / f |WAAT(f, 2, R)[Pds ds.  (4.7)

Next, in (n*~%,2n'~%), L, [f] =0, so

opl—e
A = / AP

l—¢&

This, (4.6) and (4.7) give the result. Note that we have also effectively
shown that

Z Q f) | 7 gn)Wp(TJﬂ)

=0
1/(2logn}
< Cslogn / WAL(f, 2, R)Pdeds.  (4.8)
0 In

For p = oo, the proof is similar, but easier: We see that

I = Lol DWalzo |
< o {107 = )Wt WAl |-

The rest of the proof is as before. O
Now we can define our polynomial approximation to f:

m—1
Pn [f] =D (2’)) Sn,?‘on (.’L‘) + Z(pk _pk—l) (x)Sﬂ,Tkn (m) _pm—lsn,rmn (ZII) y
k=1
Note that this has been formed from L,[f] of (4.4} by replacing the
characteristic function fpa{x) = X[n,,,2n1—)(x) by its polynomial ap-
proximation S, ., () from Theorem 4 with A = 2. We shall assume
that £ in Theorem 4 is chosen large enough {depending only on r, p)
and then L accordingly.
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Lemma 4.2 For 0 <p < o0,

I(Lnlf1 = Flf DWi 2oy

gc{ sup WAL, @, Ry fnimemie)
0<h<1/(2logn)

1 Wiltyizg) + 17l mptr (49)

Proof
We see that if we define p_,{z) =0, and p,, (z) =0,

(Lalf] - PN (@) |
= Z(Pk — Pr—1) (@) (Opn (X)) — Spry, (). (4.10)
k=0

We shall make substantial use of the following inequality: let S be
a polynomial of degree at most r, and [a, b] be a real interval. Then
for all x € R,

min{|z — a|, |z — b|}\"

e R e
Here C # C(a,b,z,8) but C = C(p,r). This follows from standard
Nikolskil inequalities and the Bernstein-Walsh inequality. See for
example [25, p. 193] for the relevant Nikolskii inequality. Hence for
zeR and1 <k<m—1,

i/p (

Pk — pr—1l(z) < Clogn)™* (1 +logn|z — mknl)" ok — Pr—11l Lo (Fn)-

{(4.11)
This is still true for £ = 0 and k = m if we recall that p_; =0 = pp,.
Now for 1 <k <m—1, (4.3) gives

k
1Pk — Prt | Epti) < Cr Y (11501, I
i=k—1

where Cy # C1(f, k,n). For k =0, we instead obtain
1ok — Pr—1ll 2oy < Crlnp(f, [ onls 100) -+ 1 Fllzpz5,)
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and for k£ = m, we instead obtain
ok — Pr-1llzptnn) < Cr8lp(Fi M1 als Ime1n) + ||fHLp(I;1,m)-
For notational convenience, we set
Qep(f, |Ii1 nls I—l,n) = “f“Lp(Ié‘n)E

T‘;P(f:' |J mn) = ”f“Lp(I;m}:
T—1,n = To.n- (412)

Since uniformly in k, n, and z € R,
1+logn |z — Tru| ~ 1 +logn|z — Tk

we obtain from (4.11) and Theorem 4, uniformly for 0 < k < m and
z € R,

(9 = 2o Oin@) = S () s
k
< Cy g’ 3 (1-+10g ke = a1, )

i=k—1
(4.13)

We consider three different ranges of p:
() 0<p<1
Here from (4.10) and then (4.13),

]R (Ualf) = RIAIWAY <3 /R (10 = Dol — S, [W1)?

<Clogn Z Qg,p(f: |Izn|!ﬁ:n)wf(7kﬂ)
k=—-1

X /(1 +logn [z — 7k |) TP d.
R
Here if £ is so large that (r — £)p < —1,

| logn/(l +logn|z — 7 )T~ Pde = /(1 o )Py =: O < oo
R R
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So assuming this,

m
[ Ual) = BAAITAP < Co 3 08 B W ().
k=—1

This is the same as the sum in (4.8), except for the terms for k = —1
and k = m. So the estimate (4.8) gives the estimate (4.9), keeping
in mind our conventions (4.12).

(I} 1 <p<oo

From (4.10) and (4.1)) and then Holder’s inequality,

{Lnlf] = Bilf]l(z)Wa(z)}?

m—1 P
< Clogn { Z (1+logn|z — Tk,nDTHEan(f: [ ienls Ten) W1 (Tfm)}
k=—1
m—1
< Clogn E (1 +lognjz — 7 |) 742/
k=-1
X 8, il Lo )WH (i) - om(@)?/ (4.14)
where g .= p/(p— 1) and
m—1
an(z) =Y (1 +logn|z —7,0)) 992,
k=0
We shall show that if (r — £)q/2 < —1, then
sup sup o, () < Cy < 0. (4.15)
n>1 ek

Note that o,{x) is a decreasing function of x for = > 7,,, and in-
creasing for x < 7on, so it suffices to consider & € [1on, Timn]- Recall
that for k<m—1,

It is then not difficult to see that

nlgs

Ty (95') < Clogn/ (1 + logn |£U . T|)('r‘—£)q/2 dr

—nl—e

< Clogn/ (1+lognlz — 7)) gr = C,
—0
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as {r—4£)q/2 < —1. Now assume also (r —€)p/2 < —1. Then
integrating (4.14) and using (4.8), (4.15) gives our result.
(I p= oo

Now

|Lalf] = Balfll@)W1 (2) < C Y Ipk — pe1l(2) 0k — Snry | (@) Wi ()

k=0
m—1
< C_mpx, Oroll Uil LinWA() - 31 +log o = sl

As before, the sum is bounded if £ is large enough. Then we can
continue this as

<o swp | sup IS Wil + 1 Willzaoz,)

0<kgm—1 0<h<ITL,

1S Wil etz }

<G sw swp (AL B Wallzwogy + 1 Willza s
0<k<m—10<h<1/(2logn)

F Wil |

<CG{ s 850, RWiliomoen
0<h<1/(2logn)

F Wil iy + 1 Wil 2t

O
We can now turn to the

Proof of Theorem 1
Recall that S, - has degree at most Ln, so B,[f] has degree at most
Im +7 <2Ln, for n > r. So, for such n,

Batnlf; Wily < I(F = PalfWillz,e)
<N~ Ll Wil

+ILalf] = PO Willzae }
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SCH{ sup  [|AL(S 2, RYW| Lyent < n1e)
0<h<1/210gn

logn

+ 1 Wil 2, ojznt—e— 22 )},

by Lemmas 4.1 and 4.2. For large enough k, choose n such that

2n<k<2L(n+1).

k 1—& » - k 1-¢
() +oe=n=(3)

while for large enough k,

Here

1 < 1 ‘
2logn — Iog%

(The lower bound on % is independent of f.) Thus with ¢p = 5=, we
have

Ee[f;Wil, < Earn [f; W1,

<G { sup AL 2 RYWA 1 — (o) =%, (eale) )
0<h<1/ log(cok)

+ “fW1||Lp(|:c|2(cok)l5—1)}

1
= Cf}(x)lr,p (f, W1 ) .

" log cok

O

5 Proof of Theorem 2

We begin with some simple estimates:
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Lemma 5.1 Let 1 <p< oo andr > 1.
(a) For|h| <1,

1AL 2, R L@y < ClWA Loy, (5.1)

where C' is independent of f and h.
(b) If MW, € L, (R) and f0~V is absolutely continuous, then for
h € R,

1AL 2 RIW o) < C LM Will,m,  (5.2)
where C is independent of f and h.

Proof
(a) For p < o0,

IAL(f =z, R)W, ||I;;,,(R)

=f:: ;(:)(—l)if(m—i-?;—-hwih)pr’(;c)da:
chf_: f(a:—[—%—z’h)pﬂff(x—l—%—fih)dw

= Clr+1) W g

- We have used here that |h| < 1, and the fact that for |t —z| <
1, W1 (t) < eWi (x). The case p = oo is easier.

(b) Assume p < co and r = 1, and let g == ﬁ—l-. Then

1A(S, 2 R, &)

Lo

h
=3

o0 a2
| 2
<[ wE| [ Cireres

< Ch)i* / 1 (8) Wi ()P ds,

—0CQ

ry

WP (x)dx

WP (z) dx
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by first Holder’s inequality and then Fubini’s Theorem. Taking pth
roots gives the result for » = 1. Induction then gives the case of
general . Again, the case p = oo is easier. O

Proof of Theorem 2
(b) = (a)
Let £ € {0,1). With 0 < h < ==, and (% as in (1.4), (1.6) gives

logn?

AR, =, R)Wl||Lp(—(cgn)1—£,(czn)1—6) = O ((logn)™)
while (1.7) with h = 2 gives

logn

IS Wil 2, afznirzy = O ((logn) ™).

Applying Theorem 1 gives (1.5).
(a) = (b)
We proceed as in [6].

Proof of (1.6)
For k > 0, let Py, be a polynomial of degree < k such that

(S = Pe) Willz,my < C (log (k+2))7%, (5.3)

where C is independent of k. Let 0 < h < 1. Choose m > 1 such
that
z—m S h < 21—m

and let
n = 22",

We have

“A‘E(f: x, R)WIHLp(R} .
S ”Az(f - Pﬂ} T,y R)Wl IILp(R) + ||A£(Pﬂ7 xr, R)W].”LP(R)- (54)

By Lemma 5.1(a),

||A?L(f - Pn:x:R)WIHLp(R)
L CY(f = Pa)Wll L,
< C(logn) ™ < C27™, (5.5)
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Moreover, by Lemma 5.1(b), if we set Pp-1 := P,
”A};(Pﬂ,) x, R)Wl “LP(R)

ki1
=) AR(Pyr — Py, 3, R)Wi | Lm)
k=0
m
< ChH Z H(Pzzk - Pzzk—l)(T)WIHLp(R)‘
k=0

Using the Bernstein inequality Lemma 2.1(a), and then (5.3}, we
continue this as

<CH Z2kTII(P22k - P22k"'1)W1“Lp{R)
k=0

< CH" Z2kr2—ka < (hTomr—a) < g2me,
k=0

(Recall that r > «.) Combined with (5.4) and (5.5), this gives
|ALLS, 2, R)W || n,m < €277 < Ch%.
So we have (1.6).

Proof of (1.7)
Agsume that A > 0 is so small that exp (%) < 16m. Choose M
such that for
n = 22"

we have

1
dan, < €Xp (E) <7 lal. (5.6)

Note that this is possible, since it is equivalent to

22" < exp (%—) < 722
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We have
LWl L, (oo (2))
< (F = PIWiliL oz (1)) T 1BWIl L (oppep()y- (5-7)
Here by (5.3),
1 = P Wil (e (2)) < c27Me, (5.8)
Moreover, by Lemma 2.1(b), and (5.6),

1BVl (orenn())

< B |y (el azn)
< exp (=Cin) | PaWh |z, x)

< exp (—=Cin) (1 (f = Po) Wil + 1 FWillz,m))
< exp (—Cm) (C27M* + } WillL,m)) -

Together with (5.7) and (5.8), this gives

||fW1||Lp(|m[26xp(%)) < Cz—Ma < Ch®. O
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