L_p MARKOV-BERNSTEIN INEQUALITIES ON ALL ARCS OF THE CIRCLE

C.K. KOBINDARAJAH¹ AND D.S. LUBINSKY^{1,2}

ABSTRACT. Let $0 and <math>0 \le \alpha < \beta \le 2\pi$. We prove that for $n \ge 1$ and trigonometric polynomials s_n of degree $\le n$, we have

$$\int_{\alpha}^{\beta} |s_{n}'(\theta)|^{p} \left[\frac{\left| \sin\left(\frac{\theta-\alpha}{2}\right) \right| \left| \sin\left(\frac{\theta-\beta}{2}\right) \right| + \left(\frac{\beta-\alpha}{n}\right)^{2}}{\left(\cos\frac{\theta-\frac{\alpha+\beta}{2}}{2}\right)^{2} + \left(\frac{1}{n}\right)^{2}} \right]^{p/2} d\theta$$
$$\leq cn^{p} \int^{\beta} |s_{n}(\theta)|^{p} d\theta,$$

where c is independent of α, β, n, s_n . The essential feature is the uniformity in $[\alpha, \beta]$ of the estimate, and the fact that as $[\alpha, \beta]$ approaches $[0, 2\pi]$, we recover the L_p Markov inequality. The result may be viewed as the complete L_p form of Videnskii's inequalities, improving earlier work of the second author.

1. INTRODUCTION AND RESULTS

The classical Markov-Bernstein inequality for trigonometric polynomials

$$s_n(\theta) := \sum_{j=0}^n (c_j \cos j\theta + d_j \sin j\theta)$$

of degree $\leq n$ is

 $||s'_n||_{L_{\infty}[0,2\pi]} \le n ||s_n||_{L_{\infty}[0,2\pi]}.$

The same factor n occurs in the L_p analogue . See [1] or [3]. In the 1950's V.S. Videnskii generalized the L_{∞} inequality to the case where the interval over which the norm is taken is shorter than the period [1, pp.242-5]: let $0 < \omega < \pi$. Then there is the sharp inequality

$$|s_n'(\theta)| \left[1 - \left(\frac{\cos \omega/2}{\cos \theta/2}\right)^2\right]^{1/2} \le n \|s_n\|_{L_{\infty}[-\omega,\omega]}, \theta \in [-\omega,\omega].$$

This implies that

$$\sup_{\theta \in [-\pi,\pi]} |s'_n(\theta)| \left[\left| \sin\left(\frac{\theta-\omega}{2}\right) \right| \left| \sin\left(\frac{\theta+\omega}{2}\right) \right| \right]^{1/2} \le n \|s_n\|_{L_{\infty}[-\omega,\omega]}$$

and for $n \ge n_0(\omega)$, gives rise to the sharp Markov inequality

(1)
$$\|s'_n\|_{L_{\infty}[-\omega,\omega]} \le 2n^2 \cot \frac{\omega}{2} \|s_n\|_{L_{\infty}[-\omega,\omega]}$$

What are the L_p analogues? This question arose originally in connection with large sieve inequalities [7], on subarcs of the circle. In an earlier paper, the second author

 $Date:\,11$ October 2001 .

proved the following result:

Theorem 1.1

Let $0 and <math>0 \le \alpha < \beta \le 2\pi$. Then for $n \ge 1$ and trigonometric polynomials s_n of degree $\le n$,

$$\int_{\alpha}^{\beta} \left| s_{n}'(\theta) \right|^{p} \left[\left| \sin\left(\frac{\theta - \alpha}{2}\right) \right| \left| \sin\left(\frac{\theta - \beta}{2}\right) \right| + \left(\frac{\beta - \alpha}{n}\right)^{2} \right]^{p/2} d\theta \le Cn^{p} \int_{\alpha}^{\beta} \left| s_{n}(\theta) \right|^{p} d\theta$$

Here C is independent of α, β, n, s_n .

This inequality confirmed a conjecture of Erdelyi [4]. Theorem 1.1 was deduced from an analogous inequality for algebraic polynomials.

While Theorem 1.1 is almost certainly sharp with respect to the growth in n when $[\alpha, \beta]$ is a fixed proper subinterval of $(0, \pi)$, and most especially when $[\alpha, \beta]$ is small, it is not sharp when $[\alpha, \beta]$ approaches $[0, 2\pi]$. For example, Theorem 1.1 gives

$$\int_0^{2\pi} |s_n'(\theta)|^p \left[\left(\sin \frac{\theta}{2} \right)^2 + \left(\frac{2\pi}{n} \right)^2 \right]^{p/2} d\theta \le C n^p \int_\alpha^\beta |s_n(\theta)|^p d\theta,$$

while the correct Markov inequality is (with C = 1),

(3)
$$\int_{0}^{2\pi} |s'_{n}(\theta)|^{p} d\theta \leq Cn^{p} \int_{0}^{2\pi} |s_{n}(\theta)|^{p} d\theta.$$

It is possible to derive this by two applications of (2) (on different intervals) and then by using 2π -periodicity of the integrand. However for general $[\alpha, \beta] \subset [0, 2\pi]$, we are not able to use 2π -periodicity, so for $\beta - \alpha$ close to 2π , it seems that we cannot obtain the sharp result from (2). In this paper, we establish an improvement of Theorem 1.1 which does yield (3), and is almost certainly sharp for $[\alpha, \beta]$ close to $[0, 2\pi]$. In particular, we prove:

Theorem 1.2

Let $0 and <math>0 \le \alpha < \beta \le 2\pi$. Then for $n \ge 1$ and trigonometric polynomials s_n of degree $\le n$, (4)

$$\int_{\alpha}^{\beta} |s_n'(\theta)|^p \left[\frac{\left| \sin\left(\frac{\theta - \alpha}{2}\right) \right| \left| \sin\left(\frac{\theta - \beta}{2}\right) \right| + \left(\frac{\beta - \alpha}{n}\right)^2}{\left(\cos\frac{\theta - \frac{\alpha + \beta}{2}}{2} \right)^2 + \left(\frac{1}{n}\right)^2} \right]^{p/2} d\theta \le C n^p \int_{\alpha}^{\beta} |s_n(\theta)|^p d\theta.$$

Here C is independent of α, β, n, s_n .

For example, if we take our interval to be $[-\omega, \omega]$, where $0 < \omega < \pi$, we may reformulate the above inequality as

(5)
$$\int_{-\omega}^{\omega} |s_n'(\theta)|^p \left[\frac{\left| \sin\left(\frac{\theta-\omega}{2}\right) \right| \left| \sin\left(\frac{\theta+\omega}{2}\right) \right| + \left(\frac{2\omega}{n}\right)^2}{\left(\cos\frac{\theta}{2}\right)^2 + \left(\frac{1}{n}\right)^2} \right]^{p/2} d\theta \le C n^p \int_{-\omega}^{\omega} |s_n(\theta)|^p d\theta,$$

2

(2)

${\cal L}_p$ MARKOV-BERNSTEIN INEQUALITIES ON ALL ARCS OF THE CIRCLE

with C independent of ω, n, s_n , or equivalently,

(6)
$$\int_{-\omega}^{\omega} \left|s_n'(\theta)\right|^p \left[\frac{\left(\cos\frac{\theta}{2}\right)^2 - \left(\cos\frac{\omega}{2}\right)^2 + \left(\frac{2\omega}{n}\right)^2}{\left(\cos\frac{\theta}{2}\right)^2 + \left(\frac{1}{n}\right)^2}\right]^{p/2} d\theta \le Cn^p \int_{-\omega}^{\omega} \left|s_n(\theta)\right|^p d\theta.$$

As $\omega \to \pi$, we recover the Markov inequality (3). Note that also as ω becomes small, (5) reduces to

$$\int_{-\omega}^{\omega} |s_n'(\theta)|^p \left[\left| \sin\left(\frac{\theta - \omega}{2}\right) \right| \left| \sin\left(\frac{\theta + \omega}{2}\right) \right| + \left(\frac{2\omega}{n}\right)^2 \right]^{p/2} d\theta \le C n^p \int_{-\omega}^{\omega} |s_n(\theta)|^p d\theta,$$

which in turn implies the L_p Markov inequality

$$\int_{-\omega}^{\omega} |s_n'(\theta)|^p d\theta \le C \left(\frac{n^2}{\omega}\right)^p \int_{-\omega}^{\omega} |s_n(\theta)|^p d\theta.$$

The latter is the L_p version of (1).

We shall deduce Theorem 1.2 from:

Theorem 1.3

Let $0 and <math>0 \le \alpha < \beta \le 2\pi$. Let

(7)
$$\varepsilon_n(z) := \frac{1}{n} \left[\frac{\left| z - e^{i\alpha} \right| \left| z - e^{i\beta} \right| + \left(\frac{\beta - \alpha}{n}\right)^2}{\left| z + e^{i\frac{\alpha + \beta}{2}} \right|^2 + \left(\frac{1}{n}\right)^2} \right]^{1/2}.$$

Then for $n \ge 1$ and algebraic polynomials P of degree $\le n$,

(8)
$$\int_{\alpha}^{\beta} \left| (P'\varepsilon_n) \left(e^{i\theta} \right) \right|^p d\theta \le C \int_{\alpha}^{\beta} \left| P\left(e^{i\theta} \right) \right|^p d\theta.$$

Here C is independent of α, β, n, s_n .

Our method of proof uses Carleson measures much as in [8-10], but also uses ideas from [7] where large sieve inequalities were proved for subarcs of the circle. Despite the similarities in many of the proofs to especially those in [10], we provide the details, for otherwise the proofs would be very difficult to follow. The chief difference to the proofs in [10] is due to the more delicate choice of ε_n , which substantially complicates the proofs in Section 3.

We shall prove Theorem 1.3 in Section 2, deferring some technical estimates. In Section 3, we present estimates involving the function ε_n and also estimate the norms of certain Carleson measures. In Section 4, we prove Theorem 1.2.

2. The Proof of Theorem 1.3

Throughout, $C, C_0, C_1, C_2, ...$ denote constants that are independent of α, β, ω, n and polynomials P of degree $\leq n$ or trigonometric polynomials s_n of degree $\leq n$. They may however depend on p. The same symbol does not necessarily denote the same constant in different occurrences. We shall prove Theorem 1.3 in several steps:

(I) Reduction to the case $0 < \alpha < \pi; \beta := 2\pi - \alpha$

After a rotation of the circle, we may assume that our arc $\{e^{i\theta}: \theta \in [\alpha, \beta]\}$ has the form

$$\Delta = \left\{ e^{i\theta} : \theta \in [\alpha', 2\pi - \alpha'] \right\}$$

where $0 \leq \alpha' < \pi$. Then Δ is symmetric about the real line, and this simplifies use of a conformal map below. Moreover, then

$$\beta - \alpha = 2 \left(\pi - \alpha' \right).$$

Dropping the prime, it suffices to consider $0 < \alpha < \pi$, and $\beta - \alpha$ replaced everywhere by $2(\pi - \alpha)$. Thus in the sequel, we assume that

(9)
$$\Delta = \left\{ e^{i\theta} : \theta \in [\alpha, 2\pi - \alpha] \right\};$$

(10)
$$R(z) = (z - e^{i\alpha})(z - e^{-i\alpha}) = z^2 - 2z\cos\alpha + 1.$$

Since then $\frac{\alpha+\beta}{2} = \pi$, we may take for $z = e^{i\theta}$ (dropping the subscript *n* from ε_n in (7) and a factor of 2 in $\pi - \alpha$), (11)

$$\varepsilon(z) = \frac{1}{n} \left[\frac{|R(z)| + \left(\frac{\pi - \alpha}{n}\right)^2}{|z - 1|^2 + \left(\frac{1}{n}\right)^2} \right]^{1/2} = \frac{1}{n} \left[\frac{4\left|\sin\left(\frac{\theta - \alpha}{2}\right)\sin\left(\frac{\theta + \alpha}{2}\right)\right| + \left(\frac{\pi - \alpha}{n}\right)^2}{4\left(\sin\frac{\theta}{2}\right)^2 + \left(\frac{1}{n}\right)^2} \right]^{1/2}$$

We can now begin the main part of the proof:

(II) Pointwise estimates for P'(z) when $p \ge 1$

By Cauchy's integral formula for derivatives, (or by Cauchy's estimates),

$$|P'(z)| = \left| \frac{1}{2\pi i} \int_{|t-z|=\varepsilon(z)/100} \frac{P(t)}{(t-z)^2} dt \right|$$

$$\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| P\left(z + \frac{\varepsilon(z)}{100} e^{i\theta}\right) \right| d\theta / \left(\frac{\varepsilon(z)}{100}\right).$$

Then Hölder's inequality gives

$$|P'(z)|\varepsilon(z) \le 100 \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \left| P\left(z + \frac{\varepsilon(z)}{100} e^{i\theta}\right) \right|^p d\theta \right)^{1/p}$$

$$\Rightarrow \left(|P'(z)|\varepsilon(z)\right)^p \le 100^p \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| P\left(z + \frac{\varepsilon(z)}{100} e^{i\theta}\right) \right|^p d\theta.$$

(III) Pointwise estimates for P'(z) when p < 1

We follow ideas in [9, 10]. Suppose first that \hat{P} has no zeros inside or on the circle $\gamma := \left\{ t : |t - z| = \frac{\varepsilon(z)}{100} \right\}$. Then we can choose a single valued branch of P^p there, with the properties

$$\frac{d}{dt}P(t)_{|t=z}^{p} = pP(z)^{p} \frac{P'(z)}{P(z)}$$

and

$$\left|P^{p}\left(t\right)\right| = \left|P\left(t\right)\right|^{p}.$$

Then by Cauchy's integral formula for derivatives,

$$p |P'(z)| |P(z)|^{p-1} = \left| \frac{1}{2\pi i} \int_{|t-z| = \frac{\varepsilon(z)}{100}} \frac{P^p(t)}{(t-z)^2} dt \right|$$

$$\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| P\left(z + \frac{\varepsilon(z)}{100} e^{i\theta} \right) \right|^p d\theta / \left(\frac{\varepsilon(z)}{100} \right).$$

Since also (by Cauchy or by subharmonicity)

$$|P(z)|^{p} \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| P\left(z + \frac{\varepsilon(z)}{100} e^{i\theta}\right) \right|^{p} d\theta$$

and since 1 - p > 0, we deduce that

$$p \left| P'\left(z\right) \right| \varepsilon\left(z\right) \le 100 \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \left| P\left(z + \frac{\varepsilon\left(z\right)}{100} e^{i\theta}\right) \right|^{p} d\theta \right)^{1/p}$$
$$\Rightarrow \left(\left| P'\left(z\right) \right| \varepsilon\left(z\right) \right)^{p} \le \left(\frac{100}{p}\right)^{p} \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| P\left(z + \frac{\varepsilon\left(z\right)}{100} e^{i\theta}\right) \right|^{p} d\theta.$$

Now suppose that P has zeros inside γ . We may assume that it does not have zeros on γ (if necessary change $\varepsilon(z)$ a little and then use continuity). Let B(z) be the Blaschke product formed from the zeros of P inside γ . This is the usual Blaschke product for the unit circle, but scaled to γ so that |B| = 1 on γ . Then the above argument applied to (P/B) gives

$$\left(\left|\left(P/B\right)'(z)\right|\varepsilon(z)\right)^{p} \leq \left(\frac{100}{p}\right)^{p} \frac{1}{2\pi} \int_{-\pi}^{\pi} \left|P\left(z + \frac{\varepsilon(z)}{100}e^{i\theta}\right)\right|^{p} d\theta.$$

Moreover, as above

$$\left|P/B(z)\right|^{p} \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \left|P\left(z + \frac{\varepsilon(z)}{100}e^{i\theta}\right)\right|^{p} d\theta,$$

while Cauchy's estimates give

$$\left|B'\left(z\right)\right| \le \frac{100}{\varepsilon\left(z\right)}$$

Then these last three estimates give

$$|P'(z)|^{p} \varepsilon(z)^{p} \leq \left(\left|(P/B)'(z)B(z)\right| + |P/B(z)| |B'(z)|\right)^{p} \varepsilon(z)^{p}$$
$$\leq \left\{\left(\frac{200}{p}\right)^{p} + 200^{p}\right\} \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} \left|P\left(z + \frac{\varepsilon(z)}{100}e^{i\theta}\right)\right|^{p} d\theta\right].$$

In summary, the last two steps give for all p > 0,

(12)
$$\left|P'\varepsilon\right|^{p}(z) \leq C_{0}\frac{1}{2\pi}\int_{-\pi}^{\pi}\left|P\left(z+\frac{\varepsilon(z)}{100}e^{i\theta}\right)\right|^{p}d\theta,$$

where

$$C_0 := 200^p \left(1 + p^{-p} \right).$$

(IV) Integrate the Pointwise estimates

We obtain by integration of (12) that

(13)
$$\int_{\alpha}^{2\pi-\alpha} \left| (P'\varepsilon) \left(e^{i\theta} \right) \right|^p d\theta \le C_0 \int \left| P(z) \right|^p d\sigma,$$

where the measure σ is defined by

(14)
$$\int f \, d\sigma := \int_{\alpha}^{2\pi-\alpha} \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} f\left(e^{is} + \frac{\varepsilon\left(e^{is}\right)}{100} e^{i\theta} \right) \, d\theta \right] ds.$$

We now wish to pass from the right-hand side of (13) to an estimate over the whole unit circle. This passage would be permitted by a result of Carleson, provided Pis analytic off the unit circle, and provided it has suitable behaviour at ∞ . To take care of the fact that it does not have the correct behaviour at ∞ , we need a conformal map:

(V) The conformal map Ψ of $\mathbb{C}\setminus\Delta$ onto $\{w : |w| > 1\}$. This is given by

$$\Psi\left(z\right) = \frac{1}{2\cos\alpha/2} \left[z + 1 + \sqrt{R\left(z\right)}\right],$$

where the branch of $\sqrt{R(z)}$ is chosen so that it is analytic off Δ and behaves like z (1 + o(1)) as $z \to \infty$. Note that $\sqrt{R(z)}$ and hence $\Psi(z)$ have well defined boundary values (both non-tangential and tangential) as z approaches Δ from inside or outside the unit circle, except at $z = e^{\pm i\alpha}$. We denote the boundary values from inside by $\sqrt{R(z)}_+$ and $\Psi(z)_+$ and from outside by $\sqrt{R(z)}_-$ and $\Psi(z)_-$. We also set (unless otherwise specified)

$$\Psi\left(z\right) := \Psi\left(z\right)_{-}, z \in \Delta \setminus \left\{e^{i\alpha}, e^{-i\alpha}\right\}.$$

See [6] for a detailed discussion and derivation of this conformal map. Let

(15)
$$\ell := \text{least positive integer} > \frac{1}{p}$$

In Lemma 3.2 we shall show that there is a constant C_1 (independent of $\alpha,\beta,n)$ such that

$$a \in \Delta$$
 and $|z - a| \le \frac{\varepsilon(a)}{100} \Rightarrow |\Psi(z)|^{n+\ell} \le C_1.$

Then we deduce from (13) that

(16)
$$\int_{\alpha}^{2\pi-\alpha} \left| (P'\varepsilon) \left(e^{i\theta} \right) \right|^p d\theta \le C_1^p C_0 \int \left| \frac{P}{\Psi^{n+\ell}} \right|^p d\sigma.$$

Since the form of Carleson's inequality that we use involves functions analytic inside the unit ball, we now split σ into its parts with support inside and outside the unit circle: for measurable S, let

(17)
$$\sigma^{+}(S) := \sigma \left(S \cap \{ z : |z| < 1 \} \right);$$
$$\sigma^{-}(S) := \sigma \left(S \cap \{ z : |z| > 1 \} \right).$$

Moreover, we need to "reflect σ^- through the unit circle": let

(18)
$$\sigma^{\#}(S) := \sigma^{-}\left(\frac{1}{S}\right) := \sigma^{-}\left(\left\{\frac{1}{t} : t \in S\right\}\right).$$

Then since the unit circle Γ has $\sigma(\Gamma) = 0$, (16) becomes (19)

$$\int_{\alpha}^{2\pi-\alpha} \left| \left(P'\varepsilon\right)\left(e^{i\theta}\right) \right|^{p} d\theta \leq C_{1}^{p}C_{0}\left(\int \left|\frac{P}{\Psi^{n+\ell}}\right|^{p}\left(t\right)d\sigma^{+}\left(t\right) + \int \left|\frac{P}{\Psi^{n+\ell}}\right|^{p}\left(\frac{1}{t}\right)d\sigma^{\#}\left(t\right)\right) + \int \left|\frac{P}{\Psi^{n+\ell}}\right|^{p}\left(\frac{1}{t}\right)d\sigma^{\#}\left(t\right)\right)d\sigma^{\#}\left(t\right)d\sigma^{\#}\left(t\right)$$

We next focus on handling the first integral in the last right-hand side:

(VI) Estimate the integral involving σ^+

We are now ready to apply Carleson's result. Recall that a positive Borel measure μ with support inside the unit ball is called a *Carleson measure* if there exists A > 0 such that for every 0 < h < 1 and every sector

$$S := \left\{ re^{i\theta} : r \in [1-h,1]; |\theta - \theta_0| \le h \right\}$$

we have

$$\mu(S) \le Ah.$$

The smallest such A is called the Carleson norm of μ and denoted $N(\mu)$. See [5] for an introduction. One feature of such a measure is the inequality

(20)
$$\int |f|^p d\mu \le C_2 N(\mu) \int_0^{2\pi} \left| f\left(e^{i\theta}\right) \right|^p d\theta$$

valid for every function f in the Hardy p space on the unit ball. Here C_2 depends only on p. See [5, pp. 238] and also [5,p.31;p.63].

Applying this to $P/\Psi^{n+\ell}$ gives

(21)
$$\int \left|\frac{P}{\Psi^{n+\ell}}\right|^p d\sigma^+ \le C_2 N\left(\sigma^+\right) \int_0^{2\pi} \left|\frac{P}{\Psi^{n+\ell}}\left(e^{i\theta}\right)\right|^p d\theta.$$

(VII) Estimate the integral involving $\sigma^{\#}$

Suppose that P has degree $\nu \leq n$. As $\Psi(z)/z$ has a finite non-zero limit as $z \to \infty$, $P(z)/\Psi(z)^{\nu}$ has a finite non-zero limit as $z \to \infty$. Then $h(t) := P\left(\frac{1}{t}\right)/\Psi\left(\frac{1}{t}\right)^{n+\ell}$ has zeros in |t| < 1 corresponding only to zeros of P(z) in |z| > 1 and a zero of multiplicity $n + \ell - \nu$ at t = 0, corresponding to the zero of $P(z)/\Psi(z)^{n+\ell}$ at $z = \infty$. Then we may apply Carleson's inequality (20) to h. The consequence is that

$$\int \left| \frac{P}{\Psi^{n+\ell}} \right|^p \left(\frac{1}{t} \right) d\sigma^\# \left(t \right) \le C_2 N \left(\sigma^\# \right) \int_0^{2\pi} \left| \frac{P}{\Psi^{n+\ell}} \left(e^{-i\theta} \right) \right|^p d\theta.$$

Combined with (19) and (21), this gives

(22)
$$\int_{\alpha}^{2\pi-\alpha} \left| \left(P'\varepsilon\right)\left(e^{i\theta}\right) \right|^p d\theta \le C_0 C_1^p C_2\left(N\left(\sigma^+\right) + N\left(\sigma^{\#}\right)\right) \int_0^{2\pi} \left| \frac{P}{\Psi^{n+\ell}}\left(e^{i\theta}\right) \right|^p d\theta.$$

(VIII) Pass from the Whole Unit Circle to Δ when p > 1

Let Γ denote the whole unit circle, and let |dt| denote arclength on Γ . In Step VIII of the proof of Theorem 1.2 in [10], we established an estimate of the form

(23)
$$\int_{\Gamma \setminus \Delta} |g(t)|^p |dt| \le C_3 \left(\int_{\Delta} |g_+(t)|^p |dt| + |g_-(t)|^p |dt| \right),$$

valid for all functions g analytic in $\mathbb{C}\setminus\Delta$, with limit 0 at ∞ , and interior and exterior boundary values g_+ and g_- for which the right-hand side of (23) is finite. Here, C_3 depends only on p. We apply this to $g := P/\Psi^{n+\ell}$. Then as Ψ_{\pm} have absolute value 1 on Δ , so that $|g_{\pm}| = |P|$ on Δ , we deduce that

$$\int_{\Gamma \setminus \Delta} \left| P(t) / \Psi(t)^{n+\ell} \right|^p |dt| \le C_3 \int_{\Delta} |P(t)|^p |dt|$$
$$\Rightarrow \int_0^{2\pi} \left| \frac{P}{\Psi^{n+\ell}} \left(e^{i\theta} \right) \right|^p d\theta \le \left(\int_{\alpha}^{2\pi-\alpha} \left| P\left(e^{i\theta} \right) \right|^p d\theta \right) (1+C_3)$$

Now (22) becomes (24)

$$\int_{\alpha}^{(24)} \left| \left(P'\varepsilon \right) \left(e^{i\theta} \right) \right|^p d\theta \le C_0 C_1^p C_2(1+C_3) \left(N\left(\sigma^+\right) + N\left(\sigma^\#\right) \right) \int_{\alpha}^{2\pi-\alpha} \left| P\left(e^{i\theta}\right) \right|^p d\theta.$$

(IX) Pass from the Whole Unit Circle to Δ when $p \leq 1$

It is only here that we really need the choice (15) of ℓ . Let

$$q := \ell p \left(> 1 \right).$$

Then we would like to apply (23) with p replaced by q and with

(25)
$$g := (P/\Psi^n)^{p/q} \Psi^{-1} = (P/\Psi^{n+\ell})^{p/q}.$$

The problem is that g does not in general possess the required properties. To circumvent this, we proceed as follows: firstly, we may assume that P has full degree n. For, if P has degree < n, we can add a term of the form δz^n , giving $P(z) + \delta z^n$, a polynomial of full degree n. Once (8) is proved for such P, we can then let $\delta \to 0+$.

So assume that P has degree n. Then P/Ψ^n is analytic in $\mathbb{C}\backslash\Delta$ and has a finite non-zero limit at ∞ , so is analytic at ∞ . Now if all zeros of P lie on Δ , then we may define a single valued branch of g of (25) in $\overline{\mathbb{C}}\backslash\Delta$. Then (23) with q replacing p gives as before

$$\int_{\Gamma \setminus \Delta} |g(t)|^{q} |dt| \leq C_{3} \left(\int_{\Delta} |g_{+}(t)|^{q} |dt| + |g_{-}(t)|^{q} |dt| \right)$$
$$\Rightarrow \int_{\Gamma \setminus \Delta} |P/\Psi^{n+\ell}|^{p} |dt| \leq 2C_{3} \int_{\Delta} |P(t)|^{p} |dt|$$

and then we obtain an estimate similar to (24). When P has zeros in $\mathbb{C}\setminus\Delta$, we adopt a standard procedure to "reflect" these out of $\mathbb{C}\setminus\Delta$. Write

$$P(z) = d \prod_{j=1}^{n} (z - z_j).$$

For each factor $z - z_j$ in P with $z_j \notin \Delta$, we define

$$b_{j}(z) := \begin{cases} \left(z - z_{j}\right) / \left(\frac{\Psi(z) - \Psi(z_{j})}{1 - \overline{\Psi(z_{j})}\Psi(z)}\right), & z \neq z_{j} \\ \left(1 - \left|\Psi(z_{j})\right|^{2}\right) / \Psi'(z_{j}), & z = z_{j} \end{cases}$$

This is analytic in $\mathbb{C}\setminus\Delta$, does not have any zeros there, and moreover, since as $z \to \Delta, |\Psi(z)| \to 1$, we see that

$$|b_{j}(z)| = |z - z_{j}|, z \in \Delta; |b_{j}(z)| \ge |z - z_{j}|, z \in \mathbb{C} \setminus \Delta.$$

(Recall that we extended Ψ to Δ as an exterior boundary value). We may now choose a branch of

$$g(z) := \left[d\left(\prod_{z_j \notin \Delta} b_j(z)\right) \left(\prod_{z_j \in \Delta} (z - z_j)\right) / \Psi(z)^n \right]^{p/q} / \Psi(z)$$

that is single valued and analytic in $\mathbb{C}\setminus\Delta$, and has limit 0 at ∞ . Then as Ψ_{\pm} have absolute value 1 on Δ , so that $|g_{\pm}|^q = |P|^p$ on Δ , we deduce from (23) that

$$\int_{\Gamma \setminus \Delta} \left| P(t) / \Psi(t)^{n+\ell} \right|^p |dt| \le \int_{\Gamma \setminus \Delta} |g(t)|^q |dt|$$
$$\le C_3 \int_{\Delta} \left(|g_+(t)|^q + |g_-(t)|^q \right) |dt| = 2C_3 \int_{\Delta} |P(t)|^p |dt|$$

and again we obtain an estimate similar to (24).

(X) Completion of the proof

We shall show in Lemma 3.3 that

(26)
$$N(\sigma^{+}) + N(\sigma^{\#}) \le C_4.$$

Then (24) becomes

$$\int_{\alpha}^{2\pi-\alpha} \left| \left(P'\varepsilon_n \right) \left(e^{i\theta} \right) \right|^p d\theta \le C_5 \int_{\alpha}^{2\pi-\alpha} \left| P\left(e^{i\theta} \right) \right|^p d\theta.$$

So we have (8) with a constant C_5 that depends only on the numerical constants $C_i, 1 \leq j \leq 4$ that arise from

- (a) the bound on the conformal map Ψ ;
- (b) Carleson's inequality (20);
- (c) the norm of the Hilbert transform as an operator on $L_p(\Gamma)$ and the choice of ℓ ; (d) the upper bound on the Carleson norms of σ^+ and $\sigma^{\#}.\square$

3. Technical Estimates

Throughout we assume (9) to (11). Recall that

(27)

$$R(e^{i\theta}) = (e^{i\theta} - e^{i\alpha})(e^{i\theta} - e^{-i\alpha})$$

$$= -4e^{i\theta}\sin\left(\frac{\theta - \alpha}{2}\right)\sin\left(\frac{\theta + \alpha}{2}\right)$$

$$= -4e^{i\theta}\left(\cos^{2}\frac{\alpha}{2} - \cos^{2}\frac{\theta}{2}\right)$$

$$= -4e^{i\theta}\left(\sin^{2}\frac{\theta}{2} - \sin^{2}\frac{\alpha}{2}\right).$$

From this, we derive the following bounds, valid for $\theta \in [\alpha, 2\pi - \alpha]$:

(28)
$$\left| R\left(e^{i\theta}\right) \right| \le 4\left(\sin\frac{\theta}{2}\right)^2;$$

(29)
$$\left| R\left(e^{i\theta}\right) \right| \le 4\left(\cos\frac{\alpha}{2}\right)^2;$$

(30)
$$\left| R\left(e^{i\theta}\right) \right| \le 4 \left| \sin \frac{\theta}{2} \right| \cos \frac{\alpha}{2}$$

Our first lemma deals with properties of $\varepsilon(z)$ of (11),

$$\varepsilon\left(e^{i\theta}\right) = \varepsilon_n\left(e^{i\theta}\right) = \frac{1}{n} \left[\frac{4\left|\sin\left(\frac{\theta-\alpha}{2}\right)\sin\left(\frac{\theta+\alpha}{2}\right)\right| + \left(\frac{\pi-\alpha}{n}\right)^2}{4\left(\sin\frac{\theta}{2}\right)^2 + \left(\frac{1}{n}\right)^2}\right]^{1/2}$$

Note that we drop the subscript n, as in the previous section, to simplify notation.

Lemma 3.1

(a) For $a \in \Delta$,

(31)
$$\left|\varepsilon\left(e^{i\theta}\right)\right| \le 6\frac{\cos\frac{\alpha}{2}}{n}.$$

- (b) For $a, z \in \Delta$,
- $\left|\varepsilon\left(z\right) \varepsilon\left(a\right)\right| \le 14 \left|z a\right|.$ (32)

(c) For $a, z \in \Delta$ such that $|z - a| \leq \frac{1}{28} \varepsilon(a)$, we have

(33)
$$\frac{1}{2} \le \frac{\varepsilon(z)}{\varepsilon(a)} \le \frac{3}{2}.$$

(d) Let $\theta \in [0, 2\pi]$ be given and let $s \in [0, 2\pi]$ satisfy

$$\left| e^{is} - e^{i\theta} \right| \le r < 2.$$

Then s belongs to a set of linear Lebesgue measure at most $2\pi r$. Proof We shall write

$$f(\theta) := |R(e^{i\theta})| + \left(\frac{\pi - \alpha}{n}\right)^2;$$
$$g(\theta) := 4\left(\sin\frac{\theta}{2}\right)^2 + \left(\frac{1}{n}\right)^2,$$

;

so that

$$\varepsilon \left(e^{i\theta} \right) = \frac{1}{n} \left(\frac{f\left(\theta \right)}{g\left(\theta \right)} \right)^{1/2}$$

(a) It follows from (28) that

(34)
$$f(\theta) \le 4\left(\sin\frac{\theta}{2}\right)^2 + \left(\frac{\pi}{n}\right)^2 \le \pi^2 g(\theta),$$

so that

$$\varepsilon\left(e^{i\theta}\right) \leq \frac{\pi}{n}.$$

Also, from the inequality

(35)
$$\frac{\pi - \alpha}{\pi} \le \cos\frac{\alpha}{2} = \sin\left(\frac{\pi - \alpha}{2}\right) \le \frac{\pi - \alpha}{2},$$

and from (29), we obtain

$$\varepsilon\left(e^{i\theta}\right) \le \frac{\left(4+\pi^2\right)^{1/2}}{n} \frac{\cos\frac{\alpha}{2}}{\left|\sin\frac{\theta}{2}\right|} \le \frac{4}{n} \frac{\cos\alpha/2}{\sin\alpha/2}$$

Then the two bounds on ε give

$$\frac{\varepsilon\left(e^{i\theta}\right)}{\cos\frac{\alpha}{2}} \le \frac{4}{n}\min\left\{\frac{1}{\cos\frac{\alpha}{2}}, \frac{1}{\sin\frac{\alpha}{2}}\right\} \le \frac{6}{n}.$$

(b) Write $z = e^{i\theta}$; $a = e^{is}$. We shall assume, as we may, that

(36)
$$\left|\sin\frac{s}{2}\right| \ge \left|\sin\frac{\theta}{2}\right|,$$

or equivalently, that s is closer to π than θ . Note from the definition of f, g and (27) that

$$f\left(\theta\right) = g\left(\theta\right) + c,$$

where

$$c = -4\left(\sin\frac{\alpha}{2}\right)^2 + \frac{(\pi - \alpha)^2 - 1}{n^2}.$$

Then

$$\varepsilon \left(e^{i\theta} \right) = \frac{1}{n} \left(1 + \frac{c}{g\left(\theta \right)} \right)^{1/2},$$

 \mathbf{SO}

$$n\left[\varepsilon\left(e^{i\theta}\right) - \varepsilon\left(e^{is}\right)\right] = \frac{\left(1 + \frac{c}{g(\theta)}\right) - \left(1 + \frac{c}{g(s)}\right)}{\left(1 + \frac{c}{g(\theta)}\right)^{1/2} + \left(1 + \frac{c}{g(s)}\right)^{1/2}}$$
$$= \frac{c\left[g\left(s\right) - g\left(\theta\right)\right]}{g\left(\theta\right)g\left(s\right)\left[\left(1 + \frac{c}{g(\theta)}\right)^{1/2} + \left(1 + \frac{c}{g(s)}\right)^{1/2}\right]}.$$

Here

$$|g(s) - g(\theta)| = 4 \left| \sin\left(\frac{s-\theta}{2}\right) \sin\left(\frac{s+\theta}{2}\right) \right|$$
$$= 2 \left| e^{is} - e^{i\theta} \right| \left| \sin\frac{s}{2}\cos\frac{\theta}{2} + \cos\frac{s}{2}\sin\frac{\theta}{2} \right|$$
$$\leq 4 \left| e^{is} - e^{i\theta} \right| \min\left\{ \sin\frac{s}{2}, \cos\frac{\alpha}{2} \right\}.$$

(We have used the fact that $s, \theta \in [\alpha, 2\pi - \alpha]$ and also (36)). Also,

$$\begin{aligned} |c| &\leq 4\left(\sin\frac{\alpha}{2}\right)^2 + \left(\frac{\pi}{n}\right)^2 \\ &\leq 4\left(\sin\frac{\theta}{2}\right)^2 + \left(\frac{\pi}{n}\right)^2 \leq \pi^2 g\left(\theta\right). \end{aligned}$$

Then

$$n \left| \frac{\varepsilon \left(e^{i\theta} \right) - \varepsilon \left(e^{is} \right)}{e^{i\theta} - e^{is}} \right| \leq \frac{4\pi^2 \min\left\{ \sin \frac{s}{2}, \cos \frac{\alpha}{2} \right\}}{g\left(s \right) \left(1 + \frac{c}{g(s)} \right)^{1/2}} \\ = \frac{4\pi^2 \min\left\{ \sin \frac{s}{2}, \cos \frac{\alpha}{2} \right\}}{\left(f\left(s \right) g\left(s \right) \right)^{1/2}}.$$

We now consider two subcases: **Case I:** $\alpha \leq \frac{\pi}{2}$ Here we use

$$f(s)^{1/2} \geq \frac{\pi - \alpha}{n} \geq \frac{\pi}{2n};$$
$$g(s)^{1/2} \geq 2\left|\sin\frac{s}{2}\right|,$$

to deduce

$$\left|\frac{\varepsilon\left(e^{i\theta}\right)-\varepsilon\left(e^{is}\right)}{e^{i\theta}-e^{is}}\right| \le 4\pi < 14.$$

Case II: $\alpha > \frac{\pi}{2}$ Here we use

$$f(s)^{1/2} \ge \frac{\pi - \alpha}{n} \ge \frac{2\cos\frac{\alpha}{2}}{n},$$

by (35), and also

$$g\left(s\right)^{1/2} \ge 2\left|\sin\frac{s}{2}\right| \ge 2\sin\frac{\pi}{4}$$

to deduce

$$\left|\frac{\varepsilon\left(e^{i\theta}\right)-\varepsilon\left(e^{is}\right)}{e^{i\theta}-e^{is}}\right| \le \frac{\pi^2}{\sin\frac{\pi}{4}} < 14.$$

- (c) This is an immediate consequence of (b).
- (d) Our restrictions on s, θ give

$$\left|\frac{s-\theta}{2}\right| \in [0,\pi]\,.$$

Then

$$0 \leq \sin \left| \frac{s - \theta}{2} \right| = \frac{1}{2} \left| e^{is} - e^{i\theta} \right| \leq \frac{r}{2}$$
$$\Rightarrow \left| \frac{s - \theta}{2} \right| \in \left[0, \arcsin \frac{r}{2} \right] \cup \left[\pi - \arcsin \frac{r}{2}, \pi \right].$$

It follows that s can lie in a set of linear Lebesgue measure at most $8 \arcsin \frac{r}{2}$. The inequality

$$\arcsin u \leq \frac{\pi}{2} u, u \in [0,1]$$

then gives the result. \Box

We next discuss the growth of the conformal map

(38)
$$\Psi(z) = \frac{1}{2\cos\frac{\alpha}{2}} \left[z + 1 + \sqrt{R(z)} \right],$$

mapping $\mathbb{C}\setminus\Delta$ onto $\{w: |w| > 1\}$. The proof here is more complex than that in [7], because of the more difficult choice of $\varepsilon(z)$.

Lemma 3.2

Let $\ell \ge 1$. For $a \in \Delta$ and $z \in \mathbb{C}$ such that (39) $|z-a| \le \varepsilon(a)/100,$

 $we\ have$

$$(40) \qquad |\Psi(z)|^{n+\ell} \le C_0$$

Here C_0 depends on ℓ , but is independent of n, α, z .

Proof

We shall assume that $|z| \ge 1$. The case |z| < 1 is similar. Let us write

(41)
$$z = te^{i\theta} = e^{i\xi}$$
 where $\xi = \theta - i\log t$

and set

$$v := e^{i\theta}.$$

We consider two subcases.

(A) Suppose that $v \in \Delta$.

We shall show that for some numerical constant C_1 ,

(42)
$$|\Psi(z) - \Psi(v)| = |\Psi(z) - \Psi(v)_{-}| \le \frac{C_1}{n+1}.$$

Then as $|\Psi(v)| = 1$, we obtain

$$|\Psi(z)|^{n+\ell} \le (1 + \frac{C_1}{n+1})^{n+\ell} \le C_0.$$

.

.

First we see that

$$\begin{aligned} |\Psi(z) - \Psi(v)| &\leq \frac{|z - v|}{2\cos\alpha/2} + \frac{\left|\sqrt{R(z)} - \sqrt{R(v)}\right|}{2\cos\alpha/2} \\ &= :T_1 + T_2. \end{aligned}$$

(43) Here

$$T_1 = \frac{|z - v|}{2\cos\alpha/2} \le \frac{|z - a|}{2\cos\alpha/2} \le \frac{\varepsilon(a)}{200\cos\frac{\alpha}{2}} \le \frac{1}{n+1},$$

by Lemma 3.1(a). We turn to the more difficult estimation of

(44)
$$T_2 := \frac{\left|\sqrt{R(z)} - \sqrt{R(v)}\right|}{2\cos\alpha/2}.$$

We see from (10) that

$$R(v) - R(z) = (v^{2} - 2(\cos \alpha)v + 1) - (z^{2} - 2(\cos \alpha)z + 1)$$

= $(v - z)(z - v + 2(v - \cos \alpha))$
= $-(v - z)^{2} + 2(v - z)(\cos \theta - \cos \alpha) + 2i(\sin \theta)(v - z)$.

Then

(45)
$$|R(z) - R(v)| \leq |v - z| \left(|v - z| + 4 \left(\cos^2 \frac{\alpha}{2} - \cos^2 \frac{\theta}{2} \right) + 2 |\sin \theta| \right)$$
$$= |v - z| \left(|v - z| + |R(v)| + 2 |\sin \theta| \right),$$

see (27). We now consider two subcases: Case I: $|R(v)| \le \left(\frac{\pi-\alpha}{n}\right)^2$ Then as

$$|a - v| \le |a - z| \le \varepsilon(a) / 100,$$

Lemma 3.1 (c), followed by (11), gives

$$\varepsilon(a) \le 2\varepsilon(v) \le \frac{2\sqrt{2}\left(\frac{\pi-\alpha}{n}\right)}{n\left(\left(\sin\frac{\theta}{2}\right)^2 + \left(\frac{1}{n}\right)^2\right)^{1/2}} \le 2\sqrt{2}\frac{\pi-\alpha}{n}\min\left\{1, \frac{1}{n\left|\sin\frac{\theta}{2}\right|}\right\}.$$

Also,

$$|v - z| \le |a - z| \le \frac{\varepsilon(a)}{100} \le C \frac{\pi - \alpha}{n}$$

Then (45) and our assumption on R(v) give

$$\begin{aligned} |R(z) - R(v)| &\leq C\left\{ \left(\frac{\pi - \alpha}{n}\right)^2 + \left(\frac{\pi - \alpha}{n}\right)^2 + \varepsilon(a) \left|\sin\frac{\theta}{2}\right| \left|\cos\frac{\theta}{2}\right| \right\} \\ &\leq C\left\{ \left(\frac{\pi - \alpha}{n}\right)^2 + \frac{\pi - \alpha}{n^2 \left|\sin\frac{\theta}{2}\right|} \left|\sin\frac{\theta}{2}\right| \left|\cos\frac{\alpha}{2}\right| \right\} \\ &\leq C\left(\frac{\pi - \alpha}{n}\right)^2, \end{aligned}$$

recall also that $\cos \frac{\theta}{2} \le \cos \frac{\alpha}{2}$. Hence

$$|R(z)| \le C\left(\frac{\pi-\alpha}{n}\right)^2$$

Then we see from (44) that

(46)
$$T_2 \le \frac{C}{n}$$

Case II: $|R(v)| > \left(\frac{\pi - \alpha}{n}\right)^2$ As above, Lemma 3.1 (c) gives (47)

$$\varepsilon(a) \le 2\varepsilon(v) \le \frac{2\sqrt{2} |R(v)|^{1/2}}{n \left(\left(\sin \frac{\theta}{2} \right)^2 + \left(\frac{1}{n} \right)^2 \right)^{1/2}} \le 2\sqrt{2} |R(v)|^{1/2} \min\left\{ 1, \frac{1}{n |\sin \frac{\theta}{2}|} \right\}$$

Then (45) and the fact that $|R(v)| \leq 4$ give

$$\begin{aligned} |R(z) - R(v)| &\leq \frac{\varepsilon(a)}{100} \left(\frac{\varepsilon(a)}{100} + |R(v)| + 2 \left| \sin \frac{\theta}{2} \right| \left| \cos \frac{\theta}{2} \right| \right) \\ &\leq \frac{8}{10,000} |R(v)| + \frac{4\sqrt{2}}{100} |R(v)| + \frac{4\sqrt{2}}{100} \frac{|R(v)|^{1/2}}{n} \cos \frac{\alpha}{2}. \end{aligned}$$

But

$$R(v)|^{1/2} > \frac{\pi - \alpha}{n} \ge 2\frac{\cos\frac{\alpha}{2}}{n}$$

 \mathbf{SO}

$$|R(z) - R(v)| \le \frac{1}{4} |R(v)|.$$

It then follows that for some numerical constant C,

$$\left|\sqrt{R(v)} - \sqrt{R(z)}\right| \le C \frac{\left|R(v) - R(z)\right|}{\sqrt{\left|R(v)\right|}}.$$

(See the proof of Lemma 3.2 in [7] for a detailed justification of this inequality). Then from (44) and (45),

(48)
$$T_{2} \leq C \left\{ \frac{|v-z|^{2}}{\cos\frac{\alpha}{2} |R(v)|^{1/2}} + \frac{|v-z||R(v)|^{1/2}}{\cos\frac{\alpha}{2}} + \frac{|\sin\theta||v-z|}{|R(v)|^{1/2}\cos\frac{\alpha}{2}} \right\}$$
$$= : C \left\{ T_{21} + T_{22} + T_{23} \right\}.$$

Here from (31), (47),

$$T_{21} = \frac{|v-z|^2}{\cos\frac{\alpha}{2} |R(v)|^{1/2}} \le \frac{\varepsilon(a)^2}{\cos\frac{\alpha}{2} |R(v)|^{1/2}} \le \frac{\left(6\frac{\cos\frac{\alpha}{2}}{n}\right) \left(2\sqrt{2} |R(v)|^{1/2}\right)}{\cos\frac{\alpha}{2} |R(v)|^{1/2}} = \frac{12\sqrt{2}}{n}$$

Next,

$$T_{22} = \frac{|v-z| |R(v)|^{1/2}}{\cos \frac{\alpha}{2}} \le \frac{\varepsilon(a) \cdot 2}{\cos \frac{\alpha}{2}} \le \frac{12}{n},$$

by (31). Finally,

$$T_{23} = \frac{\left|\sin\theta\right|\left|v-z\right|}{\left|R\left(v\right)\right|^{1/2}\cos\frac{\alpha}{2}} \le \frac{2\left|\sin\frac{\theta}{2}\right|\left(\cos\frac{\alpha}{2}\right)\varepsilon\left(a\right)}{\left|R\left(v\right)\right|^{1/2}\cos\frac{\alpha}{2}} \le \frac{4\sqrt{2}}{n},$$

by (47). Then these estimates and (48) give

$$T_2 \leq C/n_2$$

and then we have the desired inequality (42).

(B) Suppose that $v \notin \Delta$.

Then $\theta \in [0, \alpha)$ or $\theta \in (2\pi - \alpha, 2\pi]$. We assume the former. We also assume that $a = e^{is}$ with $s \in [\alpha, \pi]$ (the case $s \in (\pi, 2\pi - \alpha]$ is easier). Then

(49)
$$\begin{aligned} \left|\Psi\left(z\right) - \Psi\left(e^{i\alpha}\right)\right| &= \frac{1}{2\cos\frac{\alpha}{2}} \left|z - e^{i\alpha} + \sqrt{R\left(z\right)}\right| \\ &\leq \frac{\left|z - e^{i\alpha}\right|}{2\cos\frac{\alpha}{2}} + \frac{\left|R\left(z\right)\right|^{1/2}}{2\cos\frac{\alpha}{2}}. \end{aligned}$$

Here, as above,

$$\left|z - e^{i\alpha}\right| \le |z - a| + \left|a - e^{i\alpha}\right| \le \frac{\varepsilon\left(a\right)}{50},$$

so from Lemma 3.1(c),

(50)
$$\varepsilon(a) \le 2\varepsilon \left(e^{i\alpha}\right) = \frac{2\left(\frac{\pi-\alpha}{n}\right)}{n\left(4\left(\sin\frac{\alpha}{2}\right)^2 + \frac{1}{n^2}\right)^{1/2}} \le 2\pi \frac{\cos\frac{\alpha}{2}}{n} \min\left\{1, \frac{1}{n\left|\sin\frac{\alpha}{2}\right|}\right\}$$

Then from (31),

(51)
$$\frac{\left|z - e^{i\alpha}\right|}{2\cos\frac{\alpha}{2}} \le \frac{\varepsilon\left(a\right)}{100\cos\frac{\alpha}{2}} \le \frac{6}{n}.$$

Next,

$$\begin{aligned} R(z)| &= |z - e^{i\alpha}| |z - e^{-i\alpha}| \\ &\leq |z - e^{i\alpha}| \left(|z - e^{i\alpha}| + 2\sin\alpha \right) \\ &\leq \varepsilon \left(a \right)^2 + \frac{\varepsilon \left(e^{i\alpha} \right)}{25} 2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2} \\ &\leq C \left(\frac{\cos\frac{\alpha}{2}}{n} \right)^2 + C\frac{\pi - \alpha}{n^2}\cos\frac{\alpha}{2} \\ &\leq C \left(\frac{\cos\frac{\alpha}{2}}{n} \right)^2. \end{aligned}$$

Here we have used (50). This last inequality and (49), (51) give

$$\left|\Psi\left(z\right)\right| \leq \left|\Psi\left(e^{i\alpha}\right)\right| + \frac{C}{n} = 1 + \frac{C}{n},$$

and again (42) follows. \Box

We next estimate the norms of the Carleson measures $\sigma^+, \sigma^{\#}$ defined by (14) and (17-18). Recall that the Carleson norm $N(\mu)$ of a measure μ with support in the unit ball is the least A such that

(52)
$$\mu(S) \le Ah,$$

for every 0 < h < 1 and for every sector

(53)
$$S := \left\{ re^{i\theta} : r \in [1-h,1]; |\theta - \theta_0| \le h \right\}.$$

Lemma 3.3

(a)

- (54) $N\left(\sigma^{+}\right) \leq c_{1}.$
- *(b)*
- (55) $N\left(\sigma^{\#}\right) \le c_2.$

Proof

(a) We proceed much as in [7] or [8] or [10]. Let S be the sector (53) and let γ be a circle centre a, radius $\frac{\varepsilon(a)}{100} > 0$. A necessary condition for γ to intersect S is that

$$\left|a - e^{i\theta_0}\right| \le \frac{\varepsilon\left(a\right)}{100} + h.$$

(Note that each point of S that is on the unit circle is at most h in distance from $e^{i\theta_0}$.) Using Lemma 3.1(b), we continue this as

$$\left|a - e^{i\theta_{0}}\right| \leq \frac{\varepsilon\left(e^{i\theta_{0}}\right)}{100} + \frac{14}{100}\left|a - e^{i\theta_{0}}\right| + h$$

(56)
$$\Rightarrow \left| a - e^{i\theta_0} \right| \le \frac{\varepsilon \left(e^{i\theta_0} \right)}{86} + 2h =: \lambda$$

Next $\gamma \cap S$ consists of at most three arcs (draw a picture!) and as each such arc is convex, it has length at most 4*h*. Therefore the total angular measure of $\gamma \cap S$ is

at most $12h/(\varepsilon(a)/100)$. It also obviously does not exceed 2π . Thus if χ_S denote the characteristic function of S,

$$\int_{-\pi}^{\pi} \chi_S\left(a + \varepsilon\left(a\right) e^{i\theta}\right) d\theta \le \min\left\{2\pi, \frac{1200h}{\varepsilon\left(a\right)}\right\}.$$

Then from (14) and (17), we see that

$$\sigma^{+}(S) \leq \sigma(S) \leq \int_{[\alpha,2\pi-\alpha] \cap \left\{s: \left|e^{is} - e^{i\theta_{0}}\right| \leq \lambda\right\}} \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} \chi_{S}\left(e^{is} + \frac{\varepsilon\left(e^{is}\right)}{100}e^{i\theta}\right) d\theta\right] ds$$

$$(57) \qquad \leq C_{1} \int_{[\alpha,2\pi-\alpha] \cap \left\{s: \left|e^{is} - e^{i\theta_{0}}\right| \leq \lambda\right\}} \min\left\{1,\frac{h}{\varepsilon\left(e^{is}\right)}\right\} ds.$$

Here C_1 is a numerical constant. We now consider two subcases: (I) $h \le \varepsilon \left(e^{i\theta_0}\right)/100$ In this case,

$$\lambda < \frac{\varepsilon \left(e^{i\theta_0} \right)}{25} < 1$$

recall (31). Then Lemma 3.1(d) shows that s in the integral in (57) lies in a set of linear Lebesgue measure at most

$$2\pi \cdot \frac{\varepsilon \left(e^{i\theta_0}\right)}{25}.$$

Also Lemma 3.1 (c) gives

$$\varepsilon\left(e^{is}\right) \geq \frac{1}{2}\varepsilon\left(e^{i\theta_{0}}\right).$$

So (57) becomes

$$\sigma^{+}(S) \leq \sigma(S) \leq C_{1}\left(2\pi \cdot \frac{\varepsilon\left(e^{i\theta_{0}}\right)}{25}\right)\left(2\frac{h}{\varepsilon\left(e^{i\theta_{0}}\right)}\right) = C_{2}h.$$

(II) $h > \varepsilon \left(e^{i\theta_0} \right) / 100$

In this case $\lambda < 4h$. If $h < \frac{1}{2}$, we obtain from Lemma 3.1(d) that s in the integral in (57) lies in a set of linear Lebesgue measure at most $2\pi \cdot 4h$. Then (57) becomes

$$\sigma^+(S) \le \sigma(S) \le C_1(2\pi \cdot 4h) = C_2h.$$

If $h > \frac{1}{2}$, it is easier to use

$$\sigma^{+}(S) \leq \sigma(S) \leq \sigma(\mathbb{C}) \leq 2\pi \leq 4\pi h.$$

In summary, we have proved that

$$N\left(\sigma^{+}\right) = \sup_{S,h} \frac{\sigma^{+}\left(S\right)}{h} \le C_{3},$$

where C_3 is independent of n, α, β . (It is also independent of p.) (b) Recall that if S is the sector (53), then

$$\sigma^{\#}(S) = \sigma^{-}(1/S) \le \sigma(1/S),$$

where

$$1/S = \left\{ re^{i\theta} : r \in \left[1, \frac{1}{1-h}\right]; |\theta + \theta_0| \le h \right\}.$$

For small h, say for $h \in [0, 1/2]$, so that

$$\frac{1}{1-h} \le 1+2h$$

we see that exact same argument as in (a) gives

σ

$$-^{\#}(S) \le \sigma\left(1/S\right) \le C_4h.$$

When $h \ge 1/2$, it is easier to use

$$\sigma^{\#}(S) / h \le 2\sigma^{\#}(\mathbb{C}) \le 2\sigma(\mathbb{C}) \le 4\pi.$$

4. The Proof of Theorem 1.2

We deduce Theorem 1.2 from Theorem 1.3 as follows: if s_n is a trigonometric polynomial of degree $\leq n$, we may write

$$s_n(\theta) = e^{-in\theta} P\left(e^{i\theta}\right),$$

where P is an algebraic polynomial of degree $\leq 2n$. Then

$$|s_{n}'(\theta)|\varepsilon_{2n}\left(\varepsilon^{i\theta}\right) \leq n\left|P\left(e^{i\theta}\right)\right|\varepsilon_{2n}\left(e^{i\theta}\right) + \left|P'\left(e^{i\theta}\right)\right|\varepsilon_{2n}\left(\varepsilon^{i\theta}\right).$$

Moreover,

$$\left|e^{i\theta} - e^{i\alpha}\right| \left|e^{i\theta} - e^{i\beta}\right| = 4 \left|\sin\left(\frac{\theta - \alpha}{2}\right)\right| \left|\sin\left(\frac{\theta - \beta}{2}\right)\right|,$$

and

$$\left|e^{i\theta} + e^{i\frac{\alpha+\beta}{2}}\right|^2 = 4\left(\cos\left(\theta - \frac{\alpha+\beta}{2}\right)\right)^2.$$

These last three relations, the fact that $n\varepsilon_{2n}(e^{i\theta})$ is bounded independently of n, θ, α, β and Theorem 1.3 easily imply (4).

References

- [1] P. Borwein and T. Erdelyi, Polynomials and Polynomial Inequalities, Springer, 1995.
- [2] L. Carleson, Interpolation by Bounded Analytic Functions and the Corona Problem, Annals of Mathematics, 76(1962), 547-559.
- [3] R. de Vore and G.G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.
- [4] T. Erdelyi, Private Communication to P. Nevai.
- [5] J.B. Garnett, Bounded Analytic Functions, Academic Press, 1981.
- [6] L. Golinskii, Akhiezer's Orthogonal Polynomials and Bernstein-Szegö Method for a Circular Arc, J. Approx. Theory, 95(1998), 229-263.
- [7] L. Golinskii, D.S. Lubinsky and P. Nevai, *Large Sieve Estimates on Arcs of the Circle*, manuscript.
- [8] A.L. Levin and D.S. Lubinsky, L_p Markov-Bernstein Inequalities for Freud Weights, J. Approx. Theory, 77(1994), 229-248.
- [9] A.L. Levin and D.S. Lubinsky, Orthogonal Polynomials Associated with Exponential Weights, Springer, New York, 2001.
- [10] D.S. Lubinsky, L_p Markov-Bernstein Inequalities on Arcs of the Circle, J. Approx. Theory, 108(2001), 1-17.

¹Mathematics Department, Witwatersrand University, Wits 2050, South Africa., ²School of Mathematics, Georgia Institute of Technology,, Atlanta, GA 30332-0160, USA.