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Abstract. Let X be a triangular array of interpolation points in a compact
subset of [0; 2�]. We obtain a necessary and su¢ cient condition for the exis-
tence of p > 0 such that the associated trigonometric polynomials are conver-
gent in Lp. We also examine Lagrange interpolation on the unit circle. The
results are analogues of our earlier ones for Lagrange interpolation on a real
interval.

1. The Result

In a recent paper [5], we showed how distribution functions and Loomis�Lemma
can be used to obtain a simple necessary and su¢ cient condition for the existence
of p > 0 for which Lagrange interpolation polynomials converge in Lp. The interest
in this lies in the simplicity of the proof and its general applicability. Most positive
results on mean convergence of Lagrange interpolation are closely linked to zeros
of orthogonal polynomials, and are somewhat technical - see [6], [8], [12], [13]. An
extension to interpolation associated with weights on the real line was presented in
[7], using decreasing rearrangements and an inequality of Hardy and Littlewood.
In this paper, we shall present an analogue for trigonometric interpolation and

for interpolation on the unit circle. The main ideas are similar to those in [5], but
there are some technical complications in the proofs. First, however, let us recall
the result of [5]. Let X be an array of interpolation points X = fxjng1�j�n;n�1 in
a compact set K � R, with

xnn < xn�1;n < � � � < x2n < x1n:
We denote by Ln[ � ] the associated Lagrange interpolation operator, so that for
f : K ! R, we have

Ln[f ](x) =
nX
j=1

f (xjn) `jn(x);

where the fundamental polynomials f`kngnk=1 satisfy
`kn (xjn) = �jk:

We also let �n denote a polynomial of degree n (without any speci�c normalisation)
whose zeros are fxjngnj=1. Our result was:

THEOREM 1
Let K � R be compact, and let v 2 Lq (K) for some q > 0. Let the array X of
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interpolation points lie in K. The following are equivalent:
(I) There exists p > 0 such that for every continuous f : K ! R, we have

lim
n!1

k (f � Ln [f ]) v kLp(K)= 0:

(II) There exists r > 0 such that

sup
n�1

k �nv kLr(K)

0@ nX
j=1

1

j�0nj (xjn)

1A <1:

The necessity of the condition in (II), was established by Ying Guang Shi [11];
the new feature of [5] was the more di¢ cult su¢ ciency.
To formulate our trigonometric analogue, we need some notation. Let � =

f�jng0�j�2n;n�1 be an array of interpolation points in a compact set K � [0; 2�],
with

�2n;n < �2n�1;n < � � � < �2;n < �1;n < �0;n:
We denote by �n[ � ] the associated trigonometric interpolation operator, so that
for f : K ! R, we have

�n[f ](�) =
2nX
j=0

f (�jn) � jn(�);

where the fundamental polynomials f�kng2nk=0 are trigonometric polynomials of de-
gree 2n that satisfy

�kn (�jn) = �jk:

The formula for �kn is a little more complicated than its algebraic polynomial
analogue. Let

!n (�) :=

2nY
j=0

�
2 sin

�
� � �jn
2

��
:

Then

� jn (�) =
!n (�)

!0n (�jn)
�
2 sin

���jn
2

�
[14, p. 174 ¤.], [15]. (This is easily established with a little manipulation).
We let C (K) denote the class of all continuous functions f : K ! C with sup

norm. If K contains both 0 and 2�, we require in addition that f is 2��periodic,
that is

f (0) = f (2�) :

Our �rst result is:

THEOREM 2
Let K � [0; 2�] be compact, and let v 2 Lq (K) for some q > 0. Let the array T of
interpolation points lie in K. The following are equivalent:
(I) There exists p > 0 such that for every f 2 C (K), we have

(1) lim
n!1

k (f ��n [f ]) v kLp(K)= 0:
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(II) There exists r > 0 such that

(2) sup
n�1

k !nv kLr(K)

0@ 2nX
j=0

1

j!0nj (�jn)

1A <1:

Of course, trigonometric interpolation may be viewed as interpolation on the
unit circle � by Laurent polynomials

nX
j=�n

cjz
j :

While these are dense in C (K), interpreted as a space of functions de�ned on the
unit circle, the ordinary polynomials are not: recall that if a sequence of polynomial
converges uniformly on the unit circle, then the limit function must constitute the
boundary values of a function analytic in the unit ball. So in formulating a result for
polynomial interpolation on the unit circle, it is natural to consider Hardy spaces.
For functions f analytic in the unit ball, and 0 < p < 1, their Hardy space

norm is

k f kHp
:= sup

0�r<1

�
1

2�

Z 2�

0

��f �rei����p d��1=p
= lim

r!1�

�
1

2�

Z 2�

0

��f �rei����p d��1=p :
If this norm is �nite, we write f 2 Hp. Then the non-tangential boundary values
f� exist a.e. on the unit circle and

k f kHp=

�
1

2�

Z 2�

0

��f� �ei����p d��1=p :
See [10] for further orientation. We also let D denote the closed unit ball, and
A
�
D
�
denote the space of functions continuous in D and analytic in the open unit

ball, with uniform norm. It is well known that A
�
D
�
coincides with the closure of

the polynomials in the uniform norm on D.
Let Z = fzjng1�j�n;n�1 denote an array of interpolation points on the unit

circle �, with z1n; z2n:::znn distinct and let Ln[�] denote the associated Lagrange
interpolation operator, so that for f : �! C, we have

Ln[f ](z) =
nX
j=1

f (zjn) `jn(z);

where the fundamental polynomials f`kngnk=1 satisfy

`kn (zjn) = �jk:

We also let �n denote a polynomial of degree n (without any speci�c normalisa-
tion) whose zeros are fzjngnj=1. Before stating our second result, we emphasize in
the following simple proposition that limits of (interpolation) polynomials in Lp (�)
must lie in Hp:



4 D.S. LUBINSKY

PROPOSITION
Let p > 0 and f : �! C be measurable. Assume that

lim
n!1

k f � Ln [f ] kLp(�)= 0:

Then there exists F 2 Hp such that

f = F �;

that is, f constitutes the non-tangential boundary values of some F 2 Hp.

Our second result is:

THEOREM 3
Let Z denote an array of interpolation points in �. The following are equivalent:
(I) There exists p > 0 such that for f 2 A

�
D
�
, we have

(3) lim
n!1

k f � Ln [f ] kHp= 0:

(II) There exists r > 0 such that

(4) sup
n�1

k �n kHr

0@ nX
j=1

1

j�0nj (zjn)

1A <1:

Note that the convergence in Hp norm also ensures that fLn [f ]g1n=1 converges
uniformly to f in compact subsets of the unit ball, even for p < 1. Thus (4) also
provides a su¢ cient condition on an array of interpolation points on the unit circle
for locally uniform convergence of the interpolants inside the unit ball. As far as
the author is aware, there are not that many arrays on the unit circle, for which
this convergence is known, so (4) provides a relatively simple condition. Of course
roots of unity are the archetypal example.
After this paper was accepted, the author noticed [2]. That paper gives a nec-

essary and su¢ cient condition for convergence of Lagrange interpolation locally
uniformly inside the unit ball. Boche showed that if �n is monic, the conditions

sup
n�1

nX
j=1

1

j�0nj (zjn)
<1

and for each � 2 (0; 1) ;
sup
n�1

sup
jzj��

j�n (z)j <1

are necessary and su¢ cient for this type of convergence. These are implied by
(4), and so are more general. Of course this is to be expected as the conclusion
of [2] does not involve convergence on the unit circle, it involves a consequence of
Theorems 3.
The implication (I))(II) in Theorem 3 is a little deeper than that in Theorems 1

or 2 - because of the nature of the space A
�
D
�
, we have to use the Carleson-Rudin

Theorem. This ensures the existence of functions in A
�
D
�
with given boundary

values on a closed set of measure 0 on �, and with bounded norm.
We prove Theorems 2 and 3 and the Proposition in Section 2.
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2. The Proof of Theorem 1

Recall that given measurable g : K ! C, its distribution function is
mg (�) := meas (fx 2 K : jg (x)j > �g) ; � � 0:

Here meas denotes linear Lebesgue measure. There is the well known formula [1,
p.43], [10, p. 172]

(5)
Z
K

jgjp =
Z 1

0

ptp�1mg (t) dt; p > 0:

We need a consequence of a lemma of Loomis. See [3] or [1] for a discussion of
lemmas of this type.

LEMMA 2.1
Let c1; c2; :::cn 2 C, and �1; �2; :::�n 2 [��; �]. Then for � > 0;

(6) meas

8<:� 2 h0; �2 i :
������
nX
j=1

cj

sin
�
���j
2

�
������ > �

9=; � 128

�

nX
j=1

jcj j :

PROOF
Let

B :=

nX
j=1

jcj j :

Loomis�Lemma asserts that if �1; �2; :::�n > 0 and t1; t2; :::tn 2 R;

meas

8<:t 2 R :
������
nX
j=1

�j
t� tj

������ > �
9=; =

2

�

nX
j=1

�j :

See [1, p. 128, Lemma 4.4]. By considering positive and negative parts, and
then real and imaginary parts, it is easy to deduce the following consequence: if
d1; d2:::dn 2 C and t1; t2:::tn 2 R; then

(7) meas

8<:t 2 R :
������
nX
j=1

dj
t� tj

������ > �
9=; � 32

�

nX
j=1

jdj j :

To apply this to the sum in (6), we use the inequality,���� 1

sinu
� 1

u

���� � 1; 0 < juj � 3�

4
:

Then �j 2 [��; �], � 2
�
0; �2

�
imply that

��
2
� � � �j

2
� 3�

4
so that if � 6= �j ; ����� 1

sin
���j
2

� 2

� � �j

����� � 1:
Hence we obtain, ������

nX
j=1

cj

sin
�
���j
2

� � nX
j=1

2cj
� � �j

������ �
nX
j=1

jcj j = B:
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So, for � � 2B;

meas

8<:� 2 h0; �2 i :
������
nX
j=1

cj

sin
�
���j
2

�
������ > �

9=;
� meas

8<:� 2 h0; �2 i :
������
nX
j=1

2cj
� � �j

������ > ��B
9=;

� 32

��B

nX
j=1

(2 jcj j) �
128

�
B;

by (7). Also for � < 2B, we have the trivial bound

meas

8<:� 2 h0; �2 i :
������
nX
j=1

cj

sin
�
���j
2

�
������ > �

9=;
� �

2
� 128

�
B:

�

THE PROOF OF THEOREM 2, (II))(I)
Let us assume initially that

k f kL1(K)� 1:
Now we can write

�n[f ](�) = !n (�)
2nX
j=0

f (�jn)

!0n (�jn)
�
2 sin

�
���jn
2

�� =: !n (�) gn (�) :
Let p > 0. Then

(8) k �n[f ]v kLp(K)�k !nv kL2p(K)k gn kL2p(K) :

To estimate the norm of gn, we �rst consider the range
�
0; �2

�
and use its distribution

function
mgn (�) := meas

n
� 2

h
0;
�

2

i
\K : jgn (�)j > �

o
; � > 0:

By the lemma above,

mgn (�) �
128

�

2nX
j=0

���� f2!0n (�jn)
���� � 64

�

2nX
j=0

1

j!0n (�jn)j
=:
64

�

n; � > 0:

Moreover, there is the trivial bound mgn (�) � �
2 . We now use (5):

k gn k2pL2p([0;�2 ]\K)
= 2p

Z 1

0

�2p�1mgn (�) d�

� 2p
Z 1

0

�2p�1min

�
�

2
;
64
n
�

�
d� = 2p
2pn

Z 1

0

s2p�1min

�
�

2
;
64

s

�
ds =: C2pp 


2p
n :

Of course Cp is �nite if p < 1
2 . By translations of the intervals

�
�
2 ; �

�
;
�
�; 3�2

�
and�

3�
2 ; 2�

�
, we see that similar estimates hold over those intervals, and hence,

k gn k2pL2p(K)� 4C
2p
p 


2p
n :
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Then (8) gives

sup
n
k �n[f ]v kLp(K)� 41=(2p)Cp sup

n
k !nv kL2p(K) 
n =: A <1;

by (2), provided 2p � r. For general f 2 C (K), without assuming k f kL1(K)� 1,
we deduce that

(9) sup
n
k �n[f ]v kLp(K)� A k f kL1(K) :

Then if S is a trigonometric polynomial of degree � ` and n � `,

k (f ��n[f ]) v kpLp(K)�k (f � S) v k
p
Lp(K)

+ k �n [S � f ] v kpLp(K)
� k f � S kpL1(K)k v k

p
Lp(K)

+Ap k S � f kpL1(K) :

Now by Tietze�s extension theorem, each function continuous onK has an extension
to a function continuous on [0; 2�]. Also our hypothesis that f (0) = f (2�) if both 0
and 2� lie in K shows that we may ensure that f is 2��periodic. Then Weierstrass�
Theorem for trigonometric polynomials ensures that we can �nd a trigonometric
polynomial S for which k f � S kL1(K) is as small as we please. �

We proceed with the converse. The basic idea appeared in a paper of Ying Guang
Shi [11, pp. 30-31, Lemma 1], although the technicalities are a little more compli-
cated in the trigonometric case:

THE PROOF OF THEOREM 2 (I))(II)
Assume that we have the convergence (1). We may assume that p � q. (For if (1)
holds for a given p, then it holds for smaller p). Then the uniform boundedness
principle gives

k (f ��n [f ]) v kLp(K)� C k f kL1(K);

where C is independent of n and f , and consequently, for some possibly di¤erent
C,

(10) k �n [f ] v kLp(K)� C
�
k f kL1(K) + k fv kLp(K)

�
:

Of course if p < 1, the space�
h : K ! R :k hv kLp(K)<1

	
is not a normed space, but it is a topological vector space, while C (K) is a Banach
space, and there is a version of the uniform boundedness principle that may be
applied. See, for example, [9, p. 44, Thm. 2.6]. Next, �x n � 1 and choose f
continuous on K such that

f (�kn) =
!0n (�kn)

j!0n (�kn)j
; 0 � k � 2n

and k f kL1(K)= 1 (for example, we could choose f to be a piecewise linear
function). Let

Sn(�) := !n (�)
2nX
k=0

1

j!0n (�kn)j
:
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We see that

Sn(�) = !n(�)
2nX
k=0

f (�kn)

!0n (�kn)
=

2nX
k=0

f (�kn)

�
2 sin

� � �kn
2

�
�kn(�)

=

�
2 sin

�

2

�
�n [g] (�)�

�
2 cos

�

2

�
�n [h] (�);

where

g (�) := f (�) cos
�

2
;h (�) := f (�) sin

�

2
:

Then (10) and the fact that jgj � jf j � 1 and jhj � jf j � 1 give

k Snv kLp(K) � 21+1=p
�
k �n [g] v kLp(K) + k �n[h]v kLp(K)

�
� 21+1=pC

�
k g kL1(K) + k gv kLp(K) + k h kL1(K) + k hv kLp(K)

�
� 22+1=pC(1+ k v kLp(K)) =: C1:

As C1 is �nite (recall p � q) and independent of n, we have (2) with r = p. �

We turn to

PROOF OF THE PROPOSITION
Recall that if g 2 Hp, and g� denotes its non-tangential boundary values, while �
denotes the unit circle, then

k g kHp
=

�
1

2�

Z 2�

0

��g� �ei����p d��1=p =:k g kLp(�) :
Now assume that f 2 Lp (�) and that

lim
n!1

k f � Ln [f ] kLp(�)= 0:

We see that fLn [f ]g1n=1 is a Cauchy sequence in Hp. Indeed, the assumed conver-
gence gives

k Ln [f ]� Lm [f ] kHp=k Ln [f ]� Lm [f ] kLp(�)! 0;

as m;n!1. Since Hp is complete (even if p < 1), there exists F 2 Hp such that

k Ln [f ]� F kHp! 0; n!1:

But then as n!1;

k Ln [f ]� F � kLp(�)=k Ln [f ]� F kHp
! 0;

and so f = F �. �

THE PROOF OF THEOREM 3 (II))(I)
Since this is similar to that of Theorem (II))(I), we present a brief outline. Write
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z = ei� and zjn = ei�jn for all j; n. We can write

Ln [f ] (z) = �n (z)
nX
j=1

f (zjn)

�0n (zjn) (z � zjn)

=
�n (z)

2iei�=2

nX
j=1

f (zjn)

�0n (zjn) e
i�jn=2

�
sin
�
���jn
2

�� :
We can now follow the same steps as for �n [�] (�) to prove boundedness of fLng1n=1.
Note that of course

k Ln [f ] kpHp
=
1

2�

Z 2�

0

��Ln [f ] �ei����p d�:
The convergence in A

�
D
�
follows as the algebraic polynomials are dense in that

space. �

THE PROOF OF THEOREM 3 (I))(II)
This is similar to the proof of Theorem 2 (I))(II), but because of the need to
apply the Carleson-Rudin theorem, we give the details. As in the analogous part
of Theorem 2, the uniform boundedness principle applied to the topological vector
space Hp and the Banach space A

�
D
�
shows that there exists C1 > 0, independent

of f and n, such that for f 2 A
�
D
�
,

k Ln [f ] kLp(�)=k Ln [f ] kHp

� C1
�
k f kL1(�) + k f kHp

�
� 2C1 k f kL1(�) :(11)

Now �x n � 1. Since fzjngnj=1 is a discrete set, and so any function de�ned on
it is trivially continuous, the Carleson-Rudin Theorem [4, pp. 125-6] ensures the
existence of f 2 A

�
D
�
with

(12) f (zjn) = e
i arg �

0
n(zjn); 1 � j � n

and k f kL1(�)= 1. Then

Sn (z) : = �n (z)
nX
j=1

1

j�0n (zjn)j

= �n (z)
nX
j=1

f (zjn)

�0n (zjn)

=

nX
j=1

f (zjn) (z � zjn) `jn (z)

= zLn [f ] (z)� Ln [g] (z) ;
where g (z) := zf (z). Then

k Sn kHp� 21=p
�
k Ln [f ] kHp + k Ln [g] kHp

�
� 22+1=pC1;

by (11). �

Remark
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The obvious way to de�ne f above is to choose f to satisfy (12), and then to de�ne
f in such a way that arg f is a piecewise linear function. Then f 2 C (�) and
jf j = 1 on �. But such an f is not obviously the restriction to � of a function in
A
�
D
�
, and for some arrays, will not be. Nor is there any obvious construction, for

example, involving Blaschke products, that will do the job. That is why we need a
relatively deep result like the Carleson-Rudin theorem.
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