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Abstract

For n > 1, let {z;,};_, be n distinct points in a compact set K C R
and let L,[-] denote the corresponding Lagrange Interpolation operator.
Let v be a suitably restricted function on K. What conditions on the
array {acjn}lgjgm n>1 ensure the existence of p > 0 such that

Tim || (f = LalfD) v |z, 0= 10

for every continuous f :: K — R? We show that it is necessary and
sufficient that there exists » > 0 with

= 1
sup || v |1, (x —— < 00.
e ) 2 )
Here for n > 1, m, is a polynomial of degree n having {xjn}?:l as zeros.
The necessity of this condition is due to Ying Guang Shi.

1 The Result

There is a vast literature on mean convergence of Lagrange interpolation, based
primarily at zeros of orthogonal polynomials and their close cousins. See [3 —
10] for recent references. Most of the work dealing with mean convergence of
Lagrange interpolation for general arrays involves necessary conditions [6], [9],
since sufficient conditions are hard to come by. Some sufficient conditions for
convergence of general arrays in L, p > 1, have been given in [3].

In a recent paper, the author showed that distribution functions and Loomis’
Lemma may be used to investigate mean convergence of Lagrange interpolation
in L,, p < 1 [2]. Indeed those techniques show that investigating convergence
of Lagrange interpolation in L, is inherently easier for p < 1 than for p > 1.
Here we show that similar ideas may be used to solve the problem of whether
there is convergence in weighted L,, spaces for at least one p > 0.



Throughout, we consider an array X of interpolation points X = {z;, }, <j<n.n>1
in a compact set K C R, with T

Tpn < Tn—1,n < < Top < Tip-
We denote by L[ - | the associated Lagrange interpolation operator, so that for
f: K — R, we have
n
Lo[fl(@) =Y f (@jn) (),
j=1

where the fundamental polynomials {¢j,};_, satisfy
Cn (Tjn) = G-

We also let 7, denote a polynomial of degree n (without any specific normali-
sation) whose zeros are {xjn}?zl. Our result is:

Theorem 1

Let K C R be compact, and let v € Ly (K) for some g > 0. Let the array X of
interpolation points lie in K. The following are equivalent:

(I) There exists p > 0 such that for every continuous f : K — R, we have

lim | (f = Lo [f) v [, ()= 0 (1)

n—oo

(II) There exists v > 0 such that

n
1
sup || T || L, — | <oo. 2

Remarks

(a) The new feature is the sufficiency; the necessity is essentially due to Ying
Guang Shi [9]. An alternative way to formulate (2) is

sup || Spv ||z, (k)< 00
n>1

where

n

Su(@) =Y |(@ = zj0) Ljn(@)] = |7 (2)] Z

1
j=1 — |7T’/n| (xjn).

(3)

Indeed, Shi [9] used this in necessary conditions on [—1,1].



(b) Note that if (2) holds for a given r, it holds for any smaller r. Likewise
if (1) holds for some p > 0, then it holds for all smaller p. Our proof
shows that if (2) holds for a given r, then (1) holds for p < min {%, 5 q}.

Conversely if (1) holds for a given p, then (2) holds with r = p.

(c) Note that K could, for example, consist of finitely many intervals. What
is somewhat restrictive is the formulation of (2). We may insert a weight
w in (2), so that it becomes

n
1
sup || T,V || L, — | < oo.
s e a0 | 32 pry

The advantage of this is that the requirement on the {z;,} is weakened,
if w (x) approaches oo as ©+ — R\ K. For the proof to work in this more
general formulation, we need

(i) w to be positive and continuous in a neighbourhood (in K') of each
interpolation point;

(ii) the polynomials to be dense in a weighted Banach space of continuous
functions.

Thus, one could assume, for example, that w is positive and continuous in
the interior K° of K and that each z;, € K°. Moreover, one can assume
that the polynomials are dense in

C(w):={f:K —Rst. fiscontinuous in K° and || fw |1 (x)< oo}

and that
| v/w HLP(K)< 00.

(The density is not trivial, and need not be true if w (z) — oo fast enough
as x — R\K). If one wants only boundedness, and not convergence of
{L,}, then one can weaken these requirements on w.

We turn to:

The Proof of Theorem 1
We let C'(K) denote the Banach space of continuous f: K — R with norm
1F A= ) -

We suppose, as we may, that K C [—1,1].
(1) = (@)



We first suppose that || f ||z (x)< 1. Now we can write

(z;
L.[f]( jn =: 7 (2) gn ().
; Jjj7l xj”L)

Let p > 0. Then
I Lalf1o 1L, ) S| T00 sy 0l 90 |2y ) - (4)
To estimate the norm of g,,, we use its distribution function
mg, (A) :=meas{z € K : |go(z)] > A}, A>0.

Here meas denotes linear Lebesgue measure. A well known lemma of Loomis,
that is often used in proving boundedness of the Hilbert transform between
appropriate spaces (see [1, pp.127-129] and [2, p.402, Lemma 3]) implies that

8 — 8
mgn X; _)\Z|7T 'XQm A > 0.

nl (@jn)
Moreover, there is the trivial bound mg, (A) < 2 (the linear measure of [—1,1] D
K). We now use the representation of an L, norm in terms of distribution
functions [1, p.43]:

0 12, 0= 20 | 3~ mg, ()

oo Qn oo
< 2p/ A?P~ 1 min {2, 8A} d\ = 2in1’/ 5P~ min {2, 8} ds =: CPQP.
0 0 s

Of course C,, is finite if p < 5 , which we now assume. (We note that the last
estimate is essentially an 1nequahty relating the weak L; norm of g,, and its Loy,
norm.) Then (4) gives

SL‘Jn

sup || Ly, [f]v ”L,,(K)S Cp sup | oo ||L2p(K) 2, < o0,

by (2), provided 2p < r. It then follows that for every f € C (K),
sup || Ly [flv [z,c0= el f lzwx),

where c is independent of f. Next, let € > 0. We may find a polynomial P such
that

| f—P HLOO(K)< E.
Indeed, f has a continuous extension from K to [—1,1] and then Weierstrass’
Theorem may be applied. Then for large enough n,

L =LalDo L gy < NE=PYuIE o+ (el = Pllioio)’

e [0 1%, ey +7]
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provided p < ¢, so that || v ||z, (k) is finite. Then the convergence (1) follows.



(D) = (1)
We follow Shi [9, pp.30-31, Lemma 1]. Assume that we have the convergence
(1). Then the uniform boundedness principle gives

| (f = Lo lfD)v e, )< C Il flloe (k)

where C is independent of n and f, and consequently, for some possibly different
C,
I Lo [f]0 1L, ) S C (I f oy + I U llL,x)) - (5)

Of course if p < 1, the space
{h:K —Rwith || hv ||, )< oo}

is not a normed space, but it is a topological vector space, while C (K) is a
Banach space, and there is a version of the uniform boundedness principle that
may be applied. See, for example, [8, p. 44, Thm. 2.6]. Next, choose f
continuous on K such that

f (zrn) = sign (7}, (vn)), 1<k<n

and || f ||z (k)= 1 (for example, we could choose f to be a piecewise linear
function). We may also assume that the support of f is so small that

Il foll,m<1 (6)

Let S,,(x) be given by (3) and let o, (z) := sign (7, (z)). We see that

$,(0) = ou(alma(e) S TN = 0 @) 3 F o) (@ = k) )
k=1 k=1

— Th Ten

= Jn(x) (an [f] (1') — Ly [g} (l’)) )

where g(x) := zf(x). Then (5) and (6) and the fact that |g| < |f] give

IA

Il Snv |z, k) 2Y2 (|| Ly [f10 |2, ) + || Lalglv |2, x))

IN

2!/rC (1 fllewy + 119 low ) +1) < 2!/P3C.

As C is independent of n, we have (2) with r = p. O
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