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Abstract

For n � 1, let fxjngnj=1 be n distinct points in a compact set K � R
and let Ln[�] denote the corresponding Lagrange Interpolation operator.
Let v be a suitably restricted function on K. What conditions on the
array fxjng1�j�n; n�1 ensure the existence of p > 0 such that

lim
n!1

k (f � Ln[f ]) v kLp(K)= 0

for every continuous f :: K ! R ? We show that it is necessary and
su�cient that there exists r > 0 with

sup
n�1

k �nv kLr(K)
nX
j=1

1

j�0nj (xjn)
<1:

Here for n � 1; �n is a polynomial of degree n having fxjngnj=1 as zeros.
The necessity of this condition is due to Ying Guang Shi.

1 The Result

There is a vast literature on mean convergence of Lagrange interpolation, based
primarily at zeros of orthogonal polynomials and their close cousins. See [3 {
10] for recent references. Most of the work dealing with mean convergence of
Lagrange interpolation for general arrays involves necessary conditions [6], [9],
since su�cient conditions are hard to come by. Some su�cient conditions for
convergence of general arrays in Lp; p > 1, have been given in [3].
In a recent paper, the author showed that distribution functions and Loomis'

Lemma may be used to investigate mean convergence of Lagrange interpolation
in Lp; p < 1 [2]. Indeed those techniques show that investigating convergence
of Lagrange interpolation in Lp is inherently easier for p < 1 than for p � 1.
Here we show that similar ideas may be used to solve the problem of whether
there is convergence in weighted Lp spaces for at least one p > 0.
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Throughout, we consider an arrayX of interpolation pointsX = fxjng1�j�n; n�1
in a compact set K � R, with

xnn < xn�1;n < � � � < x2n < x1n:

We denote by Ln[ � ] the associated Lagrange interpolation operator, so that for
f : K ! R, we have

Ln[f ](x) =
nX
j=1

f (xjn) `jn(x);

where the fundamental polynomials f`kngnk=1 satisfy

`kn (xjn) = �jk:

We also let �n denote a polynomial of degree n (without any speci�c normali-
sation) whose zeros are fxjngnj=1. Our result is:

Theorem 1

Let K � R be compact, and let v 2 Lq (K) for some q > 0. Let the array X of
interpolation points lie in K. The following are equivalent:

(I) There exists p > 0 such that for every continuous f : K ! R, we have

lim
n!1

k (f � Ln [f ]) v kLp(K)= 0: (1)

(II) There exists r > 0 such that

sup
n�1

k �nv kLr(K)

0@ nX
j=1

1

j�0nj (xjn)

1A <1: (2)

Remarks

(a) The new feature is the su�ciency; the necessity is essentially due to Ying
Guang Shi [9]. An alternative way to formulate (2) is

sup
n�1

k Snv kLr(K)<1

where

Sn(x) :=
nX
j=1

j(x� xjn) `jn(x)j = j�n(x)j
nX
j=1

1

j�0nj (xjn)
: (3)

Indeed, Shi [9] used this in necessary conditions on [�1; 1] :
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(b) Note that if (2) holds for a given r, it holds for any smaller r. Likewise
if (1) holds for some p > 0, then it holds for all smaller p. Our proof
shows that if (2) holds for a given r, then (1) holds for p < min

�
1
2 ;

r
2 ; q
	
.

Conversely if (1) holds for a given p, then (2) holds with r = p.

(c) Note that K could, for example, consist of �nitely many intervals. What
is somewhat restrictive is the formulation of (2). We may insert a weight
w in (2), so that it becomes

sup
n�1

k �nv kLr(K)

0@ nX
j=1

1

j�0nwj (xjn)

1A <1:

The advantage of this is that the requirement on the fxjng is weakened,
if w (x) approaches 1 as x ! RnK. For the proof to work in this more
general formulation, we need

(i) w to be positive and continuous in a neighbourhood (in K) of each
interpolation point;

(ii) the polynomials to be dense in a weighted Banach space of continuous
functions.

Thus, one could assume, for example, that w is positive and continuous in
the interior K� of K and that each xjn 2 K�. Moreover, one can assume
that the polynomials are dense in

C (w) :=
�
f : K ! R s.t. f is continuous in K� and k fw kL1(K)<1

	
and that

k v=w kLp(K)<1:

(The density is not trivial, and need not be true if w (x)!1 fast enough
as x ! RnK). If one wants only boundedness, and not convergence of
fLng, then one can weaken these requirements on w.

We turn to:

The Proof of Theorem 1

We let C (K) denote the Banach space of continuous f : K ! R with norm

k f k:=k f kL1(K) :

We suppose, as we may, that K � [�1; 1].

(II) ) (I)
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We �rst suppose that k f kL1(K)� 1. Now we can write

Ln[f ](x) = �n(x)
nX
j=1

f (xjn)

�0n (xjn) (x� xjn)
=: �n(x)gn(x):

Let p > 0. Then

k Ln[f ]v kLp(K)�k �nv kL2p(K)k gn kL2p(K) : (4)

To estimate the norm of gn, we use its distribution function

mgn (�) := meas fx 2 K : jgn(x)j > �g ; � > 0:

Here meas denotes linear Lebesgue measure. A well known lemma of Loomis,
that is often used in proving boundedness of the Hilbert transform between
appropriate spaces (see [1, pp.127{129] and [2, p.402, Lemma 3]) implies that

mgn (�) �
8

�

nX
j=1

���� f�0n (xjn)
���� � 8

�

nX
j=1

1

j�0nj (xjn)
=:
8

�

n; � > 0:

Moreover, there is the trivial bound mgn(�) � 2 (the linear measure of [�1; 1] �
K). We now use the representation of an Lp norm in terms of distribution
functions [1, p.43]:

k gn k2pL2p(K)= 2p
Z 1

0

�2p�1mgn (�) d�

� 2p

Z 1

0

�2p�1min

�
2;
8
n
�

�
d� = 2p
2pn

Z 1

0

s2p�1min

�
2;
8

s

�
ds =: Cpp


2p
n :

Of course Cp is �nite if p <
1
2 , which we now assume. (We note that the last

estimate is essentially an inequality relating the weak L1 norm of gn and its L2p
norm.) Then (4) gives

sup
n
k Ln [f ] v kLp(K)� Cp sup

n
k �nv kL2p(K) 
n <1;

by (2), provided 2p � r. It then follows that for every f 2 C (K) ;
sup
n
k Ln [f ] v kLp(K)� c k f kL1(K);

where c is independent of f . Next, let " > 0. We may �nd a polynomial P such
that

k f � P kL1(K)< ":
Indeed, f has a continuous extension from K to [�1; 1] and then Weierstrass'
Theorem may be applied. Then for large enough n,

k (f � Ln [f ]) v kpLp(K) � k (f � P ) v kpLp(K) +
�
c k f � P kL1(K)

�p
� "p

h
k v kpLp(K) +c

p
i
;

provided p � q, so that k v kLp(K) is �nite. Then the convergence (1) follows.
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(I) ) (II)

We follow Shi [9, pp.30{31, Lemma 1]. Assume that we have the convergence
(1). Then the uniform boundedness principle gives

k (f � Ln [f ]) v kLp(K)� C k f kL1(K);

where C is independent of n and f , and consequently, for some possibly di�erent
C,

k Ln [f ] v kLp(K)� C
�
k f kL1(K) + k fv kLp(K)

�
: (5)

Of course if p < 1, the space�
h : K ! R with k hv kLp(K)<1

	
is not a normed space, but it is a topological vector space, while C (K) is a
Banach space, and there is a version of the uniform boundedness principle that
may be applied. See, for example, [8, p. 44, Thm. 2.6]. Next, choose f
continuous on K such that

f (xkn) = sign (�
0
n (xkn)) ; 1 � k � n

and k f kL1(K)= 1 (for example, we could choose f to be a piecewise linear
function). We may also assume that the support of f is so small that

k fv kLp(K)� 1: (6)

Let Sn(x) be given by (3) and let �n(x) := sign (�n(x)). We see that

Sn(x) = �n(x)�n(x)
nX
k=1

f (xkn)

�0n (xkn)
= �n(x)

nX
k=1

f (xkn) (x� xkn) `kn(x)

= �n(x) (xLn [f ] (x)� Ln [g] (x)) ;

where g(x) := xf(x). Then (5) and (6) and the fact that jgj � jf j give

k Snv kLp(K) � 21=p
�
k Ln [f ] v kLp(K) + k Ln[g]v kLp(K)

�
� 21=pC

�
k f kL1(K) + k g kL1(K) +1

�
� 21=p3C:

As C is independent of n, we have (2) with r = p. 2
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