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ABSTRACT. For n > 1, let {xjn}?zl be n distinct points and let Ly [-] denote
the corresponding Lagrange Interpolation operator. Let W : R — [0, 00).
What conditions on the array {xjn}lgjgn,nzl ensure the existence of p > 0
such that
dim | (f ~ Lalf) W |11, =0

for every continuous f : R — Rwith suitably restricted growth, and some
“weighting factor” ¢®? We obtain a necessary and sufficient condition for
such a p to exist. The result is the weighted analogue of our earlier work for
interpolation arrays contained in a compact set.

1. THE RESULT

While there are very many results on mean convergence of Lagrange interpola-
tion, the vast majority of these results deal with interpolation at zeros of orthogonal
polynomials and their close cousins - at least in terms of sufficient conditions for
mean convergence - see [3], [5], [6], [9]. In a recent paper [2], the author used
distribution functions to treat general interpolation arrays contained in a compact
set. Here we consider the non-compact case, and use decreasing rearrangements of
functions, as well as a well known inequality of Hardy and Littlewood.

Throughout, we consider an array X of interpolation points X = {xjn}lgjgn, n>1
where

—00 < Tpp < Tp—1,n < - < Tap < Tip < Q0.

We denote by L, [ - ] the associated Lagrange interpolation operator, so that for
f: R — R, we have

n

Lu[fl(@) =) f (w)n) tin(@),

Jj=1
where the fundamental polynomials {€y, }_, satisfy
ékn (ac]n) = 5jk~

We also let 7,, denote a polynomial of degree n (without any specific normalisation)
whose zeros are {xjn}?zl. In [2] we proved:

Theorem 1
Let K C R be compact, and let v € Ly (K) for some ¢ > 0. Let the array X of
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interpolation points lie in K. The following are equivalent:
(I) There exists p > 0 such that for every continuous f: K — R, we have

1) Tim || (F = Lu [f) v 1, 000= 0.
(IT) There exists r > 0 such that

- 1
2 sup || T, ||, — | <.
2) Sup || 70t 2,10 ;m )

The essential feature is that a single condition, namely (2), is sufficient for mean
convergence of Lagrange interpolation in L, for at least one p > 0. This should be
compared to results surveyed in [3], [5], [6], [9], where amongst other things, the
interpolation points are assumed to be zeros of orthogonal polynomials associated
with weights satisfying a number of conditions. The price one pays for the simplicity
of (2) is that invariably p < 1 or even p < %, and p and r are different in (I) and
(I1).

In extending this results to the case where the array of interpolation points is
unbounded, it is instructive to recall a special result for the Freud weights

1
Wpg (x) := exp (—2 |xﬁ) ,x€R, B> 1.

Theorem 2
For n > 1, let {xjn}?zl denote the zeros of the orthonormal polynomial for the
weight Wg Let 1 <p<oo, A€R, and let
1 0, p<4
T::Tp::—1+{ -
w=s -5, p>4
Then for
. -A
Tim | (f () — L [f) @)Ws (@) (U4 )™ [, =0,
to hold for every continuous function f :R — R satisfying
Jim 1 @] W (@) (1+ la]) =0,
it is necessary and sufficient that
A>T,

The technical nature of the formulation is fairly typical. (It is the case o = 1 of
Theorem 1.1 in [4]). But from the point of view of the present paper, it is the need
to include powers of (1 + |z|) to get anything positive at all that is important.

We shall allow far more general weights W and weighting factors ¢ (z) that
generalize 1 + |z|. We shall use the convention

|9 llo..@:=sup{lg(z)|:zecR},

instead of essential sup.
Our first result concerns boundedness of the Lagrange operators:

Theorem 3
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Let W : R — [0,00) be measurable and such that W (z;,) > 0 Vj,n. Let ¢ : R —

[0,00) be continuous, and such that W ¢ has limit 0 at oo Va € R, and with

(3) ¢(x) 21+ x|,z €R.

Then the following are equivalent:
(I) There exist b,c € R and p,C > 0 such that for every function f: R — R and
n=>1,

(4) | Lo [FIW S I, < C | WO |y -
(II) There exist 8,7 € R and r > 0 such that

- 1
5 sup || 7 W ¢ —_— < 0.
(5) sup || ma W6 |z, e g T

We emphasize that b, ¢, p are not the same as the corresponding parameters 3, , r.
The simplest choice of ¢ would be

¢ () =1+ |xl.

It would typically be a slowly growing function, whereas W would typically be a
rapidly decaying function. The restriction that W (z;,) > 0 Vj,n ensures that we
do not have division by 0 in the sum in (5).

The passage from boundedness of {L,} -, to convergence is not immediate,
as it depends on density of polynomials in an appropriate weighted space. Let
u: R — [0, 00), be measurable, and let supp (u) denote its support. We let C,, denote
the space of all measurable functions f : R — R with the following properties:

(A) f vanishes outside supp (u) .
(B) fu is continuous in R.
(C) If @ = 400 or a is a limit point of R\supp (u),

lim (fu) (x) = 0.

(D)
Il fullz.my< oo

It is not difficult to see that C, is a Banach space. Indeed, if {f,},-; is a Cauchy
sequence in C,, then it is clear that f,u has a continuous limit g as n — co. One
may define the limit of {f,} —, as f := g/u when u # 0 and as 0 in R\supp(u).
The only possible ambiguity is at limit points of R\supp (u), and there we may
define f to be 0.

One difficulty with (A) of this definition, is that polynomials, or even constant
functions, will not belong to C,, if supp (u) # R. So we talk of polynomials restricted
to supp (u), that is, set to 0 outside supp (u) .

Theorem 4

Let W and ¢ be as in Theorem 8. Assume that the polynomials restricted to
supp(W) are dense in Cyge for each a € R. The following are equivalent:

(I) There exist b,c € R and p > 0 such that for every f € Cyge,
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(6) lim || (f = Lo [f) W&" |1, @)= 0-

n—oo

(II) There exist 8,7 € R and r > 0 such that (5) holds.

Of course our hypothesis on the density of the polynomials places restrictions on
wW. If

W (x) = exp (—|x|ﬁ),$€R,

then it is true iff 8 > 1. Additional restrictions on W, such as its behaviour at
limits points of R\supp (W), arise from the way we defined Cy . In particular, if
the polynomials, restricted to supp (W) lie in Cy, then (C) forces W to vanish at
such limit points.

2. PROOF OF THE THEOREMS

We begin by recalling some standard facts about distribution functions and de-
creasing rearrangements. Given measurable g : R — R, its distribution function
is

mg (A) :==meas ({z : |g (z)] > A}),A > 0.
Here meas denotes linear Lebesgue measure. The decreasing rearrangement of g is
g" (t) :==inf {A :my (X) <t} =sup{A:my(N) >1t},t>0.
For 0 < p < o0, we have
(7) (Ig1")" = (g")""
Moreover, if h : R — R is measurable,
(8) 91 < [B] ae. = g* < I,

For all this, see [1, p. 41]. We shall also use an inequality of Hardy and Littlewood,
1, p. 44]

(9) / lgh| < / h*,
—00 0

Theorem 3 will follow from two lemmas, that offer more information about the re-
lationship between the parameters b, ¢,p and 3,~,r. Throughout, we assume that
W and ¢ are as in Theorem 3.

Lemma 2.1
Let b,c € R and p > 0, and assume that
(10) 2p(14¢) > 1> 2p.

Let f: R — R and assume that fW¢° is bounded on R. Then for n > 1 and for
some Cy depending only on c,p,

| Lalf]We" Iz, @) /I fWo° L. (w)

n 1
11 < Cosup || maWeb™e . S—
( ) - 0 np || (b HLQP(R) JE::l ‘W;LW(b | (xjn)
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Proof
We assume that the sup in the right-hand side of (11) is finite. We may also suppose
that || fWW¢° ||L_m)= 1. Now we can write

n

(z;
L, [f)( in) =: 7 (2) gn (2).
; ™, xjn) (T —zjn)
Then
(12) I Lo AW (|2, @ <l T W6 (Lo, @ |l 900 Loy m) -

To estimate the norm involving g,, we use a well known lemma of Loomis (see [1,
pp. 127-129], [2, p. 223]): for A > 0,

8 8
<= <= =: —,.
o ) w7 )| <X 2 e A A
Then for ¢t > 0,
) 8 80,
(13) gn (t) =sup{A:mgy, (A) >t} <supgA: XQn >t = —~

Next, by (9) and (8),

e A

oo P o e\ 2pc
(14 < [ () ey = [ ()"
0 0
Here we have used the fact that ¢ > 0, which follows from (10). Let
¢ (x):=1+]z))" ",z eR.
By (3) and (8), followed by a straightforward calculation,
C1n* * t
e wswo=v(3)e20
Then (14) and (13) give

0o SQn 2p n 2pc ) 0o ¢ —2pc
g9~ ¢ < / <> G () dt = (882, ”/ £ (1 + ) dt.
Lo 12,05 [ (5 ; )™ | ;

Here the integral converges because of our hypothesis (10). Then we obtain from
(12),

" 1
b b+c
| Lo [FIWS" I, )< Co | 7 W™ |1y, (v) ]; o ()

with Cy depending only on ¢,p. B
Next, we turn to the converse:

Lemma 2.2
Let p > 0 and b,c € R. Assume that for every n > 1 and measurable f : R — R,
and some C depending on f,

(15) | Ln [f]We I, < C |l fWo o) -
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Then

(16) sup || T Wo" ™ ||z, ) Z

< 00.
W¢C+1| :L.jn

Proof
We use Shi’s ideas [8] in a modified form. Let Y be the space of all measurable
h: R — R that vanish outside supp (W) with

1o lly=ll R " |11, @< oo
If p > 1, then Y is a Banach space, and if p < 1, it is a topological vector space.
Our hypothesis implies that for each f € Cyyge (which is a Banach space),
sup || Lo [£] lly=sup | Ln [f]W6" ||, )< o0-

Then the uniform boundedness principle shows that there exists Cy > 0 such that
(17) I Lo [FTW " ||, =Il Ln [f] Iy < Co || FW6° |1 @)

where Cj is independent of n and f € Cyyc. Note that there is a suitable version
of the uniform boundedness principle that may be applied even if p < 1. See, for
example, [7, p. 44, Thm. 2.6]. Next, for a given n, choose f : R — R such that

(qu$c+1) (Tpn) = sign (r), (xgn)), 1<k<n
and

| fWo™ | om=1

(for example, we could choose fWeett

g@):=af (z),z e R.
Of course, as ¢ (x) > |z|, and ¢ (x) > 1, also
I gWo @<l fWo ™ llwm=1:
I W <l W™ |l @= 1.

to be a piecewise linear function). Let

Let

8e) = i Y Ty

and let 0, (x) := sign (7,(z)). We see that

n

Sp(z) = )T, (2 Z A xkn = Zf (Tkn) (7 — Trp) lin ()

1‘
kn =1

= ou(x) (L, [f] (z) — L, [g] (z)) .
Then (17) and (3) give

W8 < 27 (I (LalAWE ™) @) iy + 1 Lalol W6 ™ 0
< ol (|| Lo [fIWe" ||, ) + || Lu[g]W 6" ”Lp(R))
< 2Y7Co (I fW lnwm + 1 W6 llrom)
< WPy || fwW et 200 (R) -
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So we have (16). W
We turn to

The Proof of Theorem 3
(I) =(II)
It follows from Lemma 2.2 that (4) holds with

r=p;f:=b—1;y:=c+1.

(ID)=(1)
We claim that we may assume that » < 1 in (5). Indeed, by Holder’s inequality, if
s<r,and a >0,

56 e, <l W ey ([ 677%) 7
R

and the second integral on the right-hand side converges if

ars

> 1.
r—3s

It is also depends only on 7, s, «, ¢. Then it follows that if (5) holds for a given r
and some 3, then it holds for any smaller s, and appropriately smaller 5. Next, as
¢ > 1, it follows that if (5) holds with a given ~, then it holds for any larger ~.
Thus we may assume that

r(l4+v)>1>r.
Let us now choose p :=1/2, ¢ :=, and b € R such that
b+c=0.
Then (10) is satisfied, so (5) and Lemma 2.1 give (4). B

Finally, we give

The Proof of Theorem 4
(I)=(II)
Let f € Cwge, and
en =l (f = La [[HW" |1, @),n > 1.
Our hypothesis implies that
lim &, = 0.

n—oo

Then for n > 1,
| LalfIWe o, @< 2" || fW6’ |1, @) +2"7e,
< 2VP | fwet Lo ®) |l o' Iz, ®) +21/Pe,,.

We may assume that b in (6) is so small that (b — ¢)p < —1, and then (3) and this
last inequality give

sup || Ly, [f] W¢b ||Lp(]R)< 0.
n
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Then (the proof of) Lemma 2.2 gives (5) with r:=p; 8 :=b— 1;y:=c+ 1.
(ID=(I)
Let f € Cwge. For P a polynomial of degree < m and n > m, we have

I (f=LalfH W |, =
27 (Il (f = PYWS @ + | L [P = FIWS 1))

277 (I (f = PYWS |l " I, +Co || (f = PYW 1wy

by Theorem 3, with the appropriate choice of b, ¢, p. Here if (b—c¢)p < —1, as we
may assume (for if (4) holds for a given b, it holds for any smaller b), then we may
continue this as

I (f = La MW" ll,@< Cull (f = PYWE |l w),

with Cy independent of f,n,m,P. The assumed density of the polynomials then
shows that this may be made arbitrarily small if the degree m of P is large enough.
|
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