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Abstract

We establish a �rst order asymptotic for the entropy integralsZ
I

p2n
�
log p2n

�
W 2 and

Z
I

p2n
�
log (pnW )

2�W 2

where fpng1n=0 are the orthonormal polynomials associated with the ex-
ponential weight W 2.

1 The Result

Let I = (c; d) be a real interval, where

�1 � c < 0 < d � 1;

and let Q : I ! [0;1) be convex. Let

W := exp (�Q)

and assume that all power momentsZ
I

xnW 2(x)dx; n = 0; 1; 2; 3; :::

are �nite. Then we may de�ne orthonormal polynomials

pn(x) = pn(W
2; x) = 
nx

n + :::; 
n > 0;
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satisfying Z
I

pnpmW
2 = �mn;m; n = 0; 1; 2; ::: :

In the last twenty years, there has been a remarkable development of quan-
titative analysis around exponential weights W , and in particular around as-
ymptotics for pn (x). See [3], [5], [7], [8], [10], [13], [15], [17] for references and
reviews.
In this paper, we compute �rst order asymptotics for the entropy integrals

E (pn) = �
Z
I

p2n
�
log p2n

�
W 2

and

E� (pn) = �
Z
I

p2n

�
log (pnW )

2
�
W 2;

as n!1, for the most explicit class of weights in [8]. These entropy integrals
arise in a number of contexts, for example quantum mechanics and information
theory. An extensive survey of recent developments is given in [6]. For example,
if � > 1 and one considers the Freud weight

W (x) = exp
�
� jxj�

�
; x 2 R;

it is known that there is the very precise asymptotic

E (pn) = �
2n+ 1

�
+
1

�
ln (2n)� C + o (1) ;

where C is an explicit constant. See [1], [18] and also [2], [16].
In this paper, we treat a far more general class of weights than Freud weights,

but obtain only �rst order asymptotics, with a relative error of order n�c, some
c > 0. To de�ne our classes of weights, we need the notion of a quasi-decreasing/
quasi-increasing function. A function g : (0; b) ! (0;1) is said to be quasi-
increasing if there exists C > 0 such that

g(x) � Cg(y); 0 < x � y < b:

In particular, an increasing function is quasi-increasing. Similarly we may de�ne
the notion of a quasi-decreasing function. The notation

f(x) � g(x)

means that there are positive constants C1; C2 such that for the relevant range
of x,

C1 � f(x)=g(x) � C2:

Similar notation is used for sequences and sequences of functions. Throughout,
C;C1; C2; ::: denote positive constants independent of n; x and polynomials P
of degree at most n.
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De�nition 1
Let W = e�Q where Q : I ! [0;1) satis�es the following properties:
(a) Q0 is continuous and Q(0) = 0;
(b) Q00 exists and is positive in Inf0g;
(c)

lim
t!c+

Q(t) = lim
t!d�

Q(t) =1;

(d) The function

T (t) :=
tQ0(t)

Q(t)
; t 6= 0

is quasi-increasing in (0; d), and quasi-decreasing in (c; 0), with

T (t) � � > 1; t 2 Inf0g;

(e) There exists C1 > 0 such that

Q00(x)

j Q0(x) j � C1
j Q0(x) j
Q(x)

; a.e. x 2 Inf0g:

Then we write W 2 F
�
C2
�
. If in addition, there exists a compact subinterval

J of I such that for some C2 > 0;

Q00(x)

j Q0(x) j � C2
j Q0(x) j
Q(x)

; a.e. x 2 InJ;

then we write W 2 F
�
C2+

�
.

We now motivate this (complicated!) de�nition with some examples. Let

exp0 (x) := x

and for j � 1, recursively de�ne the jth iterated exponential

expj (x) := exp
�
expj�1 (x)

�
:

Let k; ` be nonnegative integers.
(I) Let I = R and for �; � > 1, let

Q(x) = Q`;k;�;�(x) :=

�
exp`(x

�)� exp`(0); x 2 [0;1)
expk(jxj

�
)� expk(0); x 2 (�1; 0) :

In particular,

Q0;0;�;� (x) =

�
x�; x 2 [0;1)
jxj� ; x 2 (�1; 0) :

(II) Let I = (�1; 1) and for �; � > 0, let

Q(x) = Q(`;k;�;�)(x) :=

�
exp`((1� x2)��)� exp`(1); x 2 [0; 1)
expk((1� x2)��)� expk(1); x 2 (�1; 0) :
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In both cases, the subtraction of a constant ensures continuity of Q at 0. It is
fairly straightforward to verify that these examples of exponents correspond to
W = exp (�Q) 2 F

�
C2+

�
. See [8] for further orientation.

In analysis of exponential weights, a crucial role is played by the Mhaskar-
Rakhmanov-Sa¤ numbers at; t 2 R. For t > 0 and W 2 F

�
C2+

�
, c < a�t <

0 < at < d are uniquely de�ned by the equations

t =
1

�

Z at

a�t

xQ0(x)p
(x� a�t)(at � x)

dx;

0 =
1

�

Z at

a�t

Q0(x)p
(x� a�t)(at � x)

dx:

It is a fairly basic result that at is an increasing function of t 2 R, with

lim
t!�1

at = c; lim
t!1

at = d:

One of the properties of a�t is the Mhaskar-Sa¤ identity: for all polynomials P
of degree at most n;

k PW kL1(I)=k PW kL1[a�n;an] :

Moreover, a�n are essentially the smallest numbers for which this is true [10],
[11], [12], [15]. We use the notation

�t =
1

2
(at + ja�tj) ; t > 0:

This is not to be confused with the unit mass at t, or Dirac delta!

Our result is

Theorem 2
Let W 2 F

�
C2+

�
.

(I) Assume that for each " > 0,

T (x) = O (Q (x)
"
) ; x! c+ or x! d� : (1)

Then there exists � > 0 such that

E (pn) = � 2
�

Z an

a�n

Q (x)p
(an � x) (x� a�n)

dx
�
1 +O

�
n��

��
(2)

= �2
Z n

0

log
�n
�t
dt
�
1 +O

�
n��

��
= �2

Z n

0

s

�s
�0s ds

�
1 +O

�
n��

��
: (3)

(II)
E� (pn) = � log �n +O (1) :
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Remarks
(a) For the Freud weight exp

�
� jxj�

�
on I = R, where � > 1, we have

�s = as = C�s
1=�; s > 0;

where C� may be expressed explicitly in terms of the gamma function. In this
case, (2) and (3) become

E (pn) = �2n
�
(1 +O

�
n��

�
);

E� (pn) = � log n
�

+O (1) ;

for some � > 0. This is of course weaker then the result quoted above.
(b) We note that the growth condition (1) on T ensures that for each " > 0, the
integral on the right of (2) grows faster than n1�" as n ! 1. It is needed in
our proofs, but the result should hold without it. It is satis�ed for all regularly
decaying weights on the real line, in particular for Q`;k;�;� for k; ` � 0 and
�; � > 1. It is also true for weights that decay su¢ ciently rapidly near the
endpoints of a �nite interval. For example, if I = (�1; 1) and � > 0 and

Q (x) =
�
1� x2

��� � 1; x 2 (�1; 1) ;
then in I;

T (x) � 1

1� x2 = Q (x)
1=�

and (1) is not true for " < 1
� . But if

Q (x) = exp
��
1� x2

����� exp (1) ; x 2 (�1; 1) ;
then (1) is true. Thus (1) is essentially a lower growth restriction on Q if I
is a �nite interval. More generally, (1) is true for Q(`;k;�;�) for `; k � 1 and
�; � > 0.
(c) In the case of even weights, it follows from (23) below that

E (pn) � �
Z n

0

ds

T (as)
:

When T is unbounded, it may well happen that �E (pn) = o (n), in contrast to
the so-called Freud case where Q is of polynomial growth, and where T � 1.
(d) Our methods permit one also to obtain �rst order asymptotics for the more
general integrals Z

I

jxj
 j(pnW ) (x)jp jlog jpn (x)jjq dx;

as n ! 1, provided 
 � 0; q � 0, and p < 4. For p � 4, the dominant
contribution to the integral comes from the growth of pn near a�n, and our
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methods fail. The necessary asymptotics to handle these integrals are available

only for special weights, such as exp
�
� jxj�

�
; � > 0 [7].

(e) The result actually holds for a larger class of weights than that in De�nition
1, namely it holds for the class F

�
lip 12+

�
in [8]. However, the de�nition of that

class of weights is more implicit, so we spare the reader the details.
We present the main parts of the proof in the next section, deferring technical

details till later. In Section 3, we record some technical estimates, and estimate
some of the integrals for Theorem 2. The remainder are done in Section 4.

2 The Proof of Theorem 2

We begin with (II), which admits a short proof:

The Proof of Theorem 2(II)
We apply Jensen�s inequality with the unit measure d� (x) = (pnW )

2
(x) dx on

I. This gives

�E� (pn) = 2

Z
I

log jpnW j d�

� 2 log

Z
I

jpnW j d�

= 2 log

Z
I

jpnW j3 :

Similarly, Jensen�s inequality gives

�E� (pn) = �2
Z
I

log
1

jpnW j
d�

� �2 log
Z
I

1

jpnW j
d�

= �2 log
Z
I

jpnW j :

We record in Lemma 3.2(iii) below, the estimateZ
I

jpnW jp � �
1� p

2
n ; n � 1;

valid for any �xed p < 4. Applying this with p = 3 and p = 1 in the upper and
lower bounds, gives (remarkably!)

�E� (pn) = � log �n +O (1) :

�
We shall give the main part of the proof of (I) in several steps, and defer all

technical details till later. We shall use a parameter � 2 (0; 1) that is indepen-
dent of n; x; � and may be di¤erent in di¤erent occurrences. However, as it is
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used �nitely many times, and in all uses the statements hold true for smaller �
than the given �; we can simply keep reducing it.

Proof of Theorem 2(I)
Step 1: Reduce to the main part of �E (pn)
We write

�E (pn) =

Z
I

(pnW )
2
log (pnW )

2
+ 2

Z
I

(pnW )
2
Q

= : �E� (pn) + J2:

Here from what we have just proved, and (12) in Lemma 3.1(i),

�E� (pn) = O (log n) :

Next, we split J2 into a main part and a tail:

J2 = 2

Z an

a�n

(pnW )
2
Q+ 2

Z
In[a�n;an]

(pnW )
2
Q

= : J21 + J22:

Despite the rapid growth ofQ near c; d, one may still apply the ideas of restricted
range inequalities (or in�nite-�nite range inequalities) to show that

J22 = O
�
n1��

�
;

some � 2 (0; 1). This will be done in Lemma 4.1(b). Then in summary, we have

�E (pn) = J21 +O
�
n1��

�
: (4)

Step 2: Apply asymptotics of orthonormal polynomials
We let

�n =
1

2
(an + ja�nj) and �n =

1

2
(an + a�n)

and let Ln denote the linear map of [a�n; an] onto [�1; 1], and L[�1]n denote its
inverse, so that

Ln (x) =
x� �n
�n

and L[�1]n (u) = �nu+ �n:

The asymptotic for the orthonormal polynomials fpng in [8] may be cast in the
form

�1=2n (pnW )
�
L[�1]n (cos �)

�p
sin �

=

r
2

�
cos

�
�

2
� �

4
+
n

2
�n (�)

�
+O ("n (�)) ;
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where the order term is uniform in n and � 2 [0; �] and the error function "n
satis�es

sup
n

sup
�2[0;�]

j"n (�)j <1

and for some � 2 (0; 1), and some C > 0;

supfj"n (�)j : � 2 [n��; � � n��]g � Cn��:

The function �n may be expressed in terms of a transformed equilibrium mea-
sure. For the moment we just note that

�n (�) = 2�

Z 1

cos �

��n (t) dt; � 2 [0; �] ; (5)

where ��n is a positive function on (�1; 1), withZ 1

�1
��n = 1:

All this will be made more precise in Lemma 3.2. A little trigonometry then
shows that that uniformly in n and �;

�n (pnW )
2
�
L[�1]n (cos �)

�
sin �

=
1

�
+
1

�
sin (� + n�n (�)) +O ("n (�))

=
1

�
+
1

�
sin � cosn�n (�) +

1

�
cos � sinn�n (�) +O ("n (�)) :

Then the substitution x = L
[�1]
n (cos �) and this last asymptotic shows that

J21 = 2

Z an

a�n

(pnW )
2
Q

= 2

Z �

0

�n (pnW )
2
�
L[�1]n (cos �)

�
sin � Q

�
L[�1]n (cos �)

�
d�

=
2

�

Z �

0

Q
�
L[�1]n (cos �)

�
d� +

2

�

Z �

0

Q
�
L[�1]n (cos �)

�
sin � cosn�n (�) d�

+
2

�

Z �

0

Q
�
L[�1]n (cos �)

�
cos � sinn�n (�) d�

+O

�Z �

0

j"n (�)jQ
�
L[�1]n (cos �)

�
d�

�
= : J21;1 + J21;2 + J21;3 +O (J21;4) : (6)

The main part here is J21;1. In Lemma 3.1(v), we shall estimate J21;1 below,
and show that for each " > 0, there exists C > 0 such that

J21;1 � Cn1�": (7)
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Moreover, in Lemma 3.2(v), we shall use the estimates for "n and upper bounds
for Q to show that for some � 2 (0; 1) ;

J21;4 � Cn1��: (8)

Step 3: Apply Jackson Theorems to estimate J21;2 and J21;3
We shall describe the estimation of J21;2. That for J21;3 is similar. Now by its
de�nition in (5),

�n (0) = 0 and �n (�) = 2�

and
�0n (�) = 2��

�
n (cos �) sin � > 0 in (0; �)

so the substitution � = �n (�) gives

J21;2 =
2

�

Z 2�

0

gn (�) cosn� d�;

where

gn (�) = Q
�
L[�1]n

�
cos�[�1]n (�)

��
sin�[�1]n (�) =�0n

�
�[�1]n (�)

�
and of course, �[�1]n denotes the inverse of �n. Now if gn was independent of n,
the Riemann-Lebesgue Lemma would show that

J21;2 = o (1) ; n!1:

Since gn is not independent of n, we must proceed di¤erently. The orthogonality
of cosn� to trigonometric polynomials S of degree less than n gives

jJ21;2j � inf
deg(S)<n

2

�

Z 2�

0

jgn (�)� S (�)j d�:

Then Jackson type Theorems [4, Theorem 2.3, p. 205] show that

jJ21;2j � C sup
juj�1=n

Z 2�

0

jgn (�+ u)� gn (�)j d�:

Using estimates for Q0;�0n; we shall estimate this sup and show in Lemma 4.3
that for some � 2 (0; 1) ;

J21;2 = O
�
n1��

�
:

As we noted, a similar estimate holds for J21;3. Then (6), (7), (8) and these last
estimates show that for some � 2 (0; 1) ;

J21 =

�
2

�

Z �

0

Q
�
L[�1]n (cos �)

�
d�

��
1 +O

�
n��

��
:

So (4) gives

�E (pn) =
�
2

�

Z �

0

Q
�
L[�1]n (cos �)

�
d�

��
1 +O

�
n��

��
:
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Now the reverse substitution x = L
[�1]
n (cos �) gives the �rst form of the asymp-

totic in Theorem 2.
Step 4: The other forms of the asymptotic
We shall use a little potential theory. Let �n denote the equilibrium measure
of mass n for the external �eld Q. This is a non-negative measure on [a�n; an]
with total mass n, that has a number of extremal properties. The one that we
shall use involves the potential

V �n (x) =

Z
log

1

jx� yjd�n (y) :

It is known that
V �n (x) +Q (x) = cn; x 2 [a�n; an] ; (9)

where

cn =

Z n

0

log
2

�t
dt:

For a statement of this, with this representation of the constant cn, see [8,
Theorem 2.7, p. 46] or [3]. For a detailed discussion of the potential theory, see
[15]. Then

1

�

Z an

a�n

Q (x)p
(an � x) (x� a�n)

dx

=
1

�

Z an

a�n

(cn � V �n) (x)p
(an � x) (x� a�n)

dx

= cn +

Z an

a�n

"
1

�

Z an

a�n

log jx� yjp
(an � x) (x� a�n)

dx

#
d�n (y)

= cn +

Z an

a�n

log
�n
2
d�n (y)

= cn + n log
�n
2
=

Z n

0

log
�n
�t
dt:

In the third last line we used the fact that logjx� yj is bounded above in the
integral, to allow interchange of the integrals (Fubini�s Theorem). Moreover, in
the second last line, we used the classical equilibrium potential for an interval
[a; b] [15, pp. 45-46]. So we have the second form of the asymptotic. Finally,
it was proved in [8, Lemma 2.12, p. 52] that a�t are absolutely continuous
functions of t, and so the same is true of �t. ThenZ n

0

log
�n
�t
dt =

Z n

0

�Z n

t

�0s
�s
ds

�
dt =

Z n

0

�0s
�s

�Z s

0

dt

�
ds:

So we have the last form in (3). Of course �0s exists a.e. and is non-negative, so
the interchange is justi�ed. �
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3 Technical Estimates

In this section, we record a number of estimates for orthogonal polynomials
and related quantities, and also establish some simple consequences of them.
Throughout, we assume that W = exp (�Q) 2 F

�
C2+

�
and that (1) holds.

Moreover, we denote the zeros of the nth orthonormal polynomial pn by

xnn < xn�1;n < xn�2;n < ::: < x2n < x1n:

Note that for large enough n,

a�n < xnn < x1n < an;

as follows from Lemma 3.2(ii) below.
First some estimates involving Q :

Lemma 3.1
(i) For n � 1;

Q
�
a�n=2

�
� Q (a�n) � n

s
ja�nj

�nT (a�n)
� Cn; (10)

Q0 (a�n) � n

s
T (a�n)

ja�nj �n
; (11)

and for some � > 0;
�n = O

�
n1��

�
: (12)

(ii) From (1) follows that for each " > 0;

T (a�n) = O (n") ; n!1: (13)

(iii) Uniformly for n � 1 and s 2 [�1; 1] ;

�n

���Q0 �L[�1]n (s)
����p1� s2 � Cn:

(iv) For n � 1;
1�

a�n=2

a�n
� 1

T (a�n)
: (14)

(v) Given " > 0, there exists C > 0 such that

J21;1 =

Z an

a�n

Q (x)p
(an � x) (x� a�n)

dx � Cn1�":

Proof
(i) The �rst two estimates are (3.17) and (3.18) of Lemma 3.4 in [8, p. 69] and
part of (3.28) of Lemma 3.5 in [8, p. 72]. The third follows from Lemma 3.5(c)
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in [8, p. 72].
(ii) We have from (1) and (i) above,

T (a�n) = O (Q (a�n)
"
) = O (n") ; n!1:

(iii) After the substitution s = Ln (x), the desired inequality becomes

jQ0 (x)j
p
(an � x) (x� a�n) � Cn; x 2 [a�n; an] :

This is a weaker form of (3.40) of Lemma 3.8 in [8, p. 77].
(iv) This is (3.52) of Lemma 3.11 in [8, p. 81].
(v) Now as T is quasi-increasing in (0; d) and quasi-decreasing in (c; 0) ;Z an

a�n

Q (x)p
(an � x) (x� a�n)

dx

=

Z an

a�n

xQ0 (x)

T (x)
p
(an � x) (x� a�n)

dx

� C

max fT (an) ; T (a�n)g

Z an

a�n

xQ0 (x)p
(an � x) (x� a�n)

dx

= C
n

max fT (an) ; T (a�n)g
;

by de�nition of a�n. Then (ii) gives the result. �
Next, we record estimates involving the orthonormal polynomials and their

asymptotics. Some of this was already discussed in the previous section, though
here we shall give more details. Recall that there is an equilibrium measure
�n with total mass n and support on [a�n; an] and satisfying (9). Now �n is
absolutely continuous and has density �n, so that for E � [a�n; an] ;

�n (E) =
Z
E
�n (t) dt

where �n > 0 in (a�n; an) andZ an

a�n

�n (t) dt = n:

It is often preferable to work on the �xed interval [�1; 1], rather than on
[a�n; an], which varies with n. Accordingly, we de�ne

��n (x) =
�n
n
�n

�
L[�1]n (x)

�
; x 2 (�1; 1) ;

so that ��n > 0 in (�1; 1) and Z 1

�1
��n (x) dx = 1:

12



As in the proof of Theorem 2, we let �n be the function de�ned by (5). More-
over, we use the same �J�notation for some integrals as in the proof of Theorem
2.

Lemma 3.2
(i) For each " > 0;

k pnW kL1(I)� n1=6��1=3n max

�
T (an)

an
;
T (a�n)

ja�nj

�1=6
= O

�
n1=6+"

�
: (15)

(ii) There exists n0 such that for n � n0;

1� x1n
an

� �n and 1�
xnn
a�n

� ��n; (16)

where

��n =

8<:nT (a�n)
s
ja�nj
�n

9=;
�2=3

: (17)

(iii) Let 0 < p < 4. Without assuming (1), we have for n � 1;

k pnW kLp(I)� �
1
p�

1
2

n :

(iv) Uniformly for n � 1 and � 2 [0; �] ;

�1=2n (pnW )
�
L[�1]n (cos �)

�p
sin �

=

r
2

�
cos

�
�

2
� �

4
+
n

2
�n (�)

�
+ "n (�) ; (18)

where the error function "n satis�es

sup
n

sup
�2[0;�]

j"n (�)j <1 (19)

and for some � 2 (0; 1), and some C > 0;

supfj"n (�)j : � 2 [n��; � � n��]g � Cn��: (20)

(v) For some � > 0;

J21;4 =

Z �

0

j"n (�)jQ
�
L[�1]n (cos �)

�
d� � Cn1��:

Proof
(i) The � relation is Theorem 1.18 in [8, p. 22]. The upper bound follows
because of our bound on T (a�n) in the previous lemma.
(ii) See [8, Theorem 1.19(f), p. 23].
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(iii) This is part of Theorem 13.6 in [8, p. 362].
(iv) The asymptotic (18) with the estimate (20) on the error term "n is Theorem
1.24 in [8, p. 26]. The uniform bound (19) follows from the estimate [8, Theorem
1.17, p. 22]

sup
x2I

jpnW j (x) j(x� a�n) (x� an)j1=4 � C:

Then the substitution x = Ln (cos �) gives uniformly for n � 1 and � 2 [0; �] ;

�1=2n jpnW j
�
L[�1]n (cos �)

�p
sin � � C:

Thus the left-hand side of (18) is bounded uniformly in n � 1 and � 2 [0; �], and
the �rst term on the right-hand side of (18) is also uniformly bounded. Then
the same is true of "n.
(v) From (20) and (10),Z ��n��

n��
j"n (�)jQ

�
L[�1]n (cos �)

�
d�

� Cn��max fQ (an) ; Q (a�n)g � Cn1��:

Next, the bound (19) on "n and the bound (10) on Q (a�n) give Z n��

0

+

Z �

��n��

!
j"n (�)jQ

�
L[�1]n (cos �)

�
d�

� Cn � n��:

Now add these last two estimates. �

4 Estimation of the Integrals

In this section, we �nish the estimation of the �J�integrals de�ned in the proof
of Theorem 2(I). We use the same notation as there. We �rst bound some �tail�
integrals.

Lemma 4.1
There exists � > 0 such that the following hold:
(a)

1�
Z an

a�n

(pnW )
2
= O

�
n��

�
:

(b)

J22 =

Z
In[a�n;an]

(pnW )
2
Q = O

�
n1��

�
:

Proof

14



(a) This is really contained in Theorem 8.4(b) of [8, p. 238]. Now

1 =

Z
I

(pnW )
2

�
Z an

a�n

(pnW )
2

� 
2n inf
deg(S)<n

Z an

a�n

(xn � S (x))2W (x)
2
dx

= inf
deg(S)<n

Z an

a�n

(xn � S (x))2W (x)
2
dx= inf

deg(S)<n

Z
I

(xn � S (x))2W (x)
2
dx

= 1 +O
�
n��

�
;

by (8.30) in Theorem 8.4(b) [8, p. 238]. Here we are using the extremal proper-
ties of leading coe¢ cients of orthogonal polynomials, and the fact that our class
of weights is contained in the class F

�
s1=2

�
considered there.

(b) Now Z a3n

an

(pnW )
2
Q

� Q (a3n)

Z a3n

an

(pnW )
2

� Cn1��; (21)

by (10) and (a) of this lemma. To handle the integral over [a3n; d), we use a
restricted range inequality from [8, (4.12), Lemma 4.4, p. 99]. Choosing p =1
and 
 = t = n there, gives

jpnW j (x) � exp (Un (x)) k pnW kL1(I)

where Un is an explicitly given function. We shall not need this explicit form;
instead we need the estimate (4.18) from Lemma 4.5 there. It yields

Un (ar) � �C1rC ; r � 3n; (22)

where C;C1 > 0 are independent of n and r. ThenZ d

a3n

(pnW )
2
Q =

Z 1

3n

(pnW )
2
(ar)Q (a3r) a

0
r dr

� C k pnW k2L1(I)
Z 1

3n

exp
�
�C1rC

�
r a0r dr:

Here we have used our bound (10) on Q (ar). Next, we note the relation [8,
(3.47), Theorem 3.10(b), p. 79]

a0r �
ar

rT (ar)
� C2; r > 0: (23)
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This and our bound from Lemma 3.2(i) on k pnW kL1(I) giveZ d

a3n

(pnW )
2
Q � C3 exp(�C4nC):

In summary, this inequality, and (21) giveZ d

an

(pnW )
2
Q � Cn1��;

and a similar relation holds over (c; a�n). �
In the estimation of J21;2, we shall need smoothness properties of the function

�n (�) = 2�

Z 1

cos �

��n (t) dt; � 2 [0; �] :

Lemma 4.2
(a) For n � 1 and � 2 [0; �] ;

C1 � �0n (�) � C2 (sin �)
2
: (24)

(b) For n � 1 and �; � 2 (0; �),

j�0n (�)� �0n (�)j � C

 
j� � �j
jsin �j2

!1=4
: (25)

(c) For n � 1 and u; v 2 [0; 2�] ;

C1 ju� vj �
����[�1]n (u)� �[�1]n (v)

��� � C2 ju� vj1=3 : (26)

(d) Let � > 0. For n � 1 and u; v 2 [n��; 2� � n��] ;������ 1

�0n

�
�
[�1]
n (u)

� � 1

�0n

�
�
[�1]
n (v)

�
������ � C ju� vj1=12 n5�: (27)

Proof
(a) Theorem 6.1(b) in [8, p. 146] asserts that for n � 1 and u 2 [�1; 1] ;

C1

p
1� u2
h�n (u)

� ��n (u) �
C2p
h�n (u)

where
h�n (u) = (1� u+ �n)

�
1 + u+ ��n

�
and

��n =
ja�nj

�nT (a�n)
:
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Then we deduce that

C1
p
1� u2 � ��n (u) �

C2p
1� u2

:

Then
�0n (�) = 2��

�
n (cos �) sin �

satis�es (24).
(b) By Theorem 6.3(a) in [8, p. 148], with  (s) = s1=2, and by this last identity,

j�0n (�)� �0n (�)j � C

�
jcos � � cos�j
h�n (cos �)

�1=4
� C

�
j� � �j
sin2 �

�1=4
:

(c) It follows from (a) that for n � 1 and � 2 [0; �] ;

C1 � �0n (�) � C2min f�; � � �g2 :

On integrating this inequality, we see that for �; � 2 [0; �] ;

C1 j� � �j � j�n (�)� �n (�)j � C2 j� � �j3 :

Setting � = �[�1]n (u) and � = �[�1]n (v) gives for all n and u; v 2 [0; 2�] ;

C1

����[�1]n (u)� �[�1]n (v)
��� � ju� vj � C2

����[�1]n (u)� �[�1]n (v)
���3 :

(d) Now the left-hand side of (27) equals������
�0n

�
�
[�1]
n (v)

�
� �0n

�
�
[�1]
n (u)

�
�0n

�
�
[�1]
n (u)

�
�0n

�
�
[�1]
n (v)

�
������

� C

264
����[�1]n (v)� �[�1]n (u)

����
sin�

[�1]
n (v)

�2
375
1=4

1�
sin�

[�1]
n (u)

�2 �
sin�

[�1]
n (v)

�2 ;
by (24) and (25). We continue this using (26) as

� jv � uj1=12min
n
sin�[�1]n (u) ; sin�[�1]n (v)

o�5
:

Now assume that u; v 2 [n��; 2� � n��]. Then as �[�1]n (0) = 0 and �[�1]n (2�) =
�, we see from (26) that

�[�1]n (u) ;�[�1]n (v) 2
�
C3n

��; � � C4n��
�
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and so
min

n
sin�[�1]n (u) ; sin�[�1]n (v)

o
� C5n

��:

Then (27) follows. �
Now we turn to estimation of J21;2 :

Lemma 4.3
For some � > 0;

J21;2 =
1

�

Z �

0

Q
�
L[�1]n (cos �)

�
sin � cosn�n (�) d� = O

�
n1��

�
:

Proof
As in the proof of Theorem 2, Jackson type theorems yield the estimate

jJ21;2j � C sup
juj�1=n

Z 2�

0

jgn (�+ u)� gn (�)j d�;

where

gn (�) = Q
�
L[�1]n

�
cos�[�1]n (�)

��
sin�[�1]n (�) =�0n

�
�[�1]n (�)

�
:

(We take the di¤erence gn (�+ u)� gn (�) as 0 if �+u lies outside [0; 2�]). Let
� = 1

100 . From (10), for juj � 1=n;Z 2�

2��n��
jgn (�+ u)� gn (�)j d�

� Cn

Z 2�

2��2n��
d�=�0n

�
�[�1]n (�)

�
= Cn

h
�[�1]n (2�)� �[�1]n

�
2� � 2n��

�i
� Cn1��=3; (28)

by (26). A similar estimate holds for the integral over [0; n��]. Now consider
� 2 [n��; 2� � n��] and juj � 1=n. For some � between �+ u and �;���Q�L[�1]n

�
cos�[�1]n (�+ u)

��
�Q

�
L[�1]n

�
cos�[�1]n (�)

�����
=

���Q0 �L[�1]n

�
cos�[�1]n (�)

��
�n sin�

[�1]
n (�) =�0n

�
�[�1]n (�)

���� juj
� C=

�
sin�[�1]n (�)

�2
;

by (24) and Lemma 3.1(iii). Here the lower bound in (26) and the fact that
�n (0) = 0;�n (�) = 2� show that

�[�1]n (�) 2
�
C1n

��; � � C2n��
�
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and hence,���Q�L[�1]n

�
cos�[�1]n (�+ u)

��
�Q

�
L[�1]n

�
cos�[�1]n (�)

����� � Cn2�:

Also, from (27),������ 1

�0n

�
�
[�1]
n (�+ u)

� � 1

�0n

�
�
[�1]
n (�)

�
������ � Cn�1=12+5�;

and from the upper bound in (26),���sin�[�1]n (�+ u)� sin�[�1]n (�)
��� � Cn�1=3:

Combining these estimates in the obvious way and using our bound (10) for Q
gives

jgn (�+ u)� gn (�)j

� Cn2�=�0n

�
�[�1]n (�+ u)

�
+ Cn � n�1=3=�0n

�
�[�1]n (�+ u)

�
+ Cn � n�1=12+5�:

Integrating and making the obvious substitution givesZ 2��n��

n��
jgn (�+ u)� gn (�)j d� � Cnmaxf2�;11=12+5�g = Cn11=12+5�;

recall that � = 1=100. Together with (28), this shows that for some � > 0;

jJ21;2j � Cn1��:

�

Finally, we note that a similar estimate holds for J21;3.
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