ORTHOGONAL POLYNOMIALS FOR EXPONENTIAL
WEIGHTS g2 ON [0,d)

ELI LEVIN! AND DORON LUBINSKY?

ABSTRACT. Let I = [0, d), where d is finite or infinite. Let W, (z) =
* exp (—Q (z)), where p > —3 and Q is continuous and increasing

on I, with limit oo at d. We study the orthonormal polynomials

associated with the weight W;f, obtaining bounds on the orthonor-

mal polynomials, zeros, and Christoffel functions. In addition, we

obtain restricted range inequalities.

1. INTRODUCTION AND RESULTS

Let
(1.1 I=10,d),
where 0 < d < co. Let Q : I — [0,00), and
(1.2) W =exp(—Q).

We call W an exponential weight on I. Typical examples would be
W (z) := exp (—2%) ,z € {0, 00),
where & > 1 or
W (@) = exp (~ (1—2)) ,w € 0,1),
where & > 0. For p > —1, we set
W, (z) :=zW (z) ,z € I.

The orthonormal polynomial of degree n for W? is denoted by p,, (W2, z)
or just p, (z). That for W2 is denoted by p, (W2,z) or just p,, ().
Thus

(1.3) f, Prp (2) P (&) TPW? (&) d =

and

Pap (T) = Vp 8" + ooy
where 7, , = 71, (W2) > 0.
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There is a very substantial body of research dealing with exponen-
tial weights on a subset of the real line, especially as regards the as-
sociated potential theory, weighted approximation, and orthonormal
polynomials. For some recent references on orthogonal polynomials for
exponential weights, and especially their asymptotics and quantitative
estimates, the reader may consult [2], [3], [5], [6], [7], [9], [20], [21], [23].

In our recent monograph [7], we dealt with exponential weights on a
real interval (c, d) containing 0 in its interior. A typical example would
be the weight

exp(—|z|%), =z € (~00,0)
Wi = { e (~lal’), @€ [0,00)

)

where o, > 1. In all cases, the exponent ) grows to oo at both
endpoints of the interval.

In this paper, we look at the “one-sided” case where () increases
from 0 at 0 to co at d. This may be thought of as a limiting case
of the two-sided case, in which the exponent to the left of 0 grows
to co. However, the results of [7] cannot be applied through such a
limit, as the constants in the estimates there are not known to be
uniform in the weight. Moreover, there are significant differences in
even the formulation of the results - just as there are for the Laguerre
and Hermite weights. Nevertheless, we can use the results from [7] by
defining an even weight corresponding to the one-sided weight.

Given I and W as in (1.1) and (1.2), we define

(L4) I = (-vd,Vd)

and for z € I,

(1.5) Q* (z) : =Q(a*);

(L.6) W*(z) : =exp(—Q*(z)).

In the special case

I =[0,00) and Q (z) = z,
this substitution gives the Hermite polynomials from Laguerre polyno-
mials. In our case, if pa, (W*2, ) denotes the orthonormal polynomial
of degree 2n for W*2, this substitution yields the identity
(17) Pp -1 (1172) =Pn (Wfiﬁ'ﬂ) = Pon (W*2,.’E) .

kl

Our main focus is bounds on py, , () and associated quantities. These
include the zeros of p, ,, which we denote by

Zonp < Tap-1p < oo < Zon,p < Tinp,




ORTHOGONAL POLYNOMIALS FOR EXPONENTIAL WEIGHTS 3
and the Christoffel functions
. (PW,)*
A (W2, 3) = S (PWo)”

deg(Ili’r)ljg:‘n—l P2 (.’I))

Before stating some of our results, we need more notation. We say
that f : I — (0,00) is quasi-increasing if there exists C > 0 such that

fl@)<Cf(y),0<z<y<d
Of course, any increasing function is quasi-increasing. The notation
f(=@) ~ g(z)

means that there are positive constants Ci, C; such that for the relevant
range of z,

C1 < f(z)/g(z) < C,.

Similar notation is used for seqences and sequences of functions.
Throughout, C,C;,C,, ... denote positive constants independent of
n, z,t and polynomials P of degree at most n. We write C = C()),C #
C(X) to indicate dependence on, or independence of, a parameter A.
The same symbol does not necessarily denote the same constant in
different occurrences.
Following is our class of weights:

Definition 1.1

Let W = €@ where Q : I — [0, 00) satisfies the following properties:
(a) \/zQ' (z) is continuous in I, with limit 0 at 0 and Q(0) = 0;

(b) Q" exists in (0,d), while Q*" is positive in (0, \/c_i) ;

(c)

(1.8) lim Q(z) = oo;
(d) The function
_ Q' (=)
(1.9) T(z) := e ,z € (0,d)

is quasi-increasing in (0,d), with
(1.10) T(@) > A > %:1: € (0,d).

(e) There exists C1 > 0 such that

1Q"(=)| _ , €(=)

a.e. € (0,d).
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Then we write W € L(C?). If also there ezists a compact subinterval
J of I*, and Cy > 0 such that

Q*"(z) | Q"() |
FEOCIRCAOR
then we write W € L(C*+).

(1.12) a.e. ¢ € I"\J,

Remarks
(a) The simplest case of the above definition is when I = [0, 00) and

C>T>A>in (0,0).
Thus,
T ~1in (0,00).

This is the one-sided version of the Freud case, for T' = O(1) forces @
to be of at most polynomial growth. Moreover, T is then automatically
quasi-increasing in (0, d). Typical examples then would be

Q(z) = Qu(z) = z%, z€[0,00)
where o > % For this choice, we see that
T(z)= o, z€(0,00) .

Note that for the case o = %, which forms the boundary in the one-
sided case between determinate and indeterminate weights, there are
added complications in the behaviour of the orthonormal polynomials
and related quantities. For this phenomenon in the case of even Freud
weights, see, [4], [17] for example. This explains our restriction (1.6),
namely T > A > 1, which forces Q to grow at least as fast as * >>
x*/2 if T is unbounded. For such @, most of our results for Dn,p follow
from results of Kasuga and Sakai [5]. They considered generalized
Freud weights || exp (—2Q* (z)) on R.

(b) A more general example satisfying the above conditions is

Q(z) = Qre(z) = expi(z®) — exp,(0), z € [0,00)
where a > 3 and k > 0. Here we set

expy (z) ==z
and for £ > 1,

expy (¢) = explexp(exp .cxp (2))))

k times
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is the kth iterated exponential. In particular,
expy, (z) = exp (eXPk—l (:c)) .

(¢) An example on the finite interval I = [0,1) is
Q(z) = Q™) (z) = exp((1 — 2)™*) — expy(1), 2 € [0,1),

where > 0 and £ > 0.

(d) The class £ (C%+) was formulated in such a way that W* € F (C?+),
the most explicit class of weights from [7]. We use the letter £ to in-
dicate that, analogous to the Laguerre weights, we are working on (a
subset of) the positive real axis.

Potential theory plays a key role in analysis of exponential weights,

and one of the important quantities there is the Mhaskar-Rakhmanov-

~ Saff number a;, [13], [19], [11], [20] defined for ¢ > O as the positive
root of the equation

(1.13) =L [ o) )

T Jo vu(l—u)
If Q' (z) is strictly increasing and continuous, with limits 0 and oo at 0

and d respectively, a; is uniquely defined. Moreover, a; is an increasing
function of ¢ € (0, 00), with

tlim a; =d.
The interval
(1.14) Ay =10,0a;),t >0,

plays a key role in analysis of weighted polynomials. For example,
[12], [13], the Mhaskar-Saff identity asserts that if P is a polynomial of
degree < m, then

(L.15) | Pe™ llzewny=ll Pe™ [l1ean)=ll P2 ||Louian)
and a, is, as n — 00, the “smallest” number for which this holds.
One of our main results is:

Theorem 1.2
Let p > —1 and let W € L(C?). Let p,,(z) be the nth orthonormal
polynomial for the weight Wg. Then uniformly for n > 1,

(1.16) ‘ilé}l) | Prp(x) | W(z) (a: + %)” | (4 ann?) (an — 2) [V~ 1.
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We shall prove this in Section 8. Let
(117) me = (tT (a:)) ™, ¢ > 0,

and

ty/ar—z+aem,

pi(ay), T > ay;
(pt (0) I < 0.

For the Christoffel functions, we shall prove:

Yotad o) 4 [0 g,];
(1.18) py(T) =

Theorem 1.3

Let p> —1% and let W € L(C?).

(a) Let L > 0. Then uniformly for n > ng and = € [a,n"?/L,a, (1 + Ln,)],
we have

a,\ 2
(1.19) M(W2,2) ~ 0, (@) W(z) (o + ﬁ)
(b) Moreover, there exist C,ng > 0 such that uniformly for n > ny and
z€el, '
an\ %
(1.20) M(WE,2) > Con(@)W(z) (2 + ?-%3)

We shall prove this in Section 6 for generalized L, Christoffel functions
involving exponentials of potentials. For the zeros, we prove:

Theorem 1.4
Let p> —1 and let W € L(C?).
(a) There exists C > 0 such that forn>1and 1 <j<n—1,

(1.21) Zitinp = Linp < C(pn (mjn) . K
(b) For each fixed j and n, x;n, is a non-decreasing function of p. :
(c)
(122) Tnn,p ™~ a'n'n"2’
and
(1.23) an (1 —Cn,) < 14 < Gy pid-
If in addition W € L (C*+), then for large enough n,
(1.24) 1 e gy
an

We shall prove this in section 7. Finally, we note a restricted range
inequality, which will be proved in Section 5. In the sequel, we let P,



ORTHOGONAL POLYNOMIALS FOR EXPONENTIAL WEIGHTS 7

denote the polynomials of degree< n.

Theorem 1.5

Let p> —3 and let W € L(C?). Let 0 <p < o0 and L, A > 0. Let
B>—2if p<ocoand 20 if p=oo.

(a) There exist Cy,ng such that for n > ny and P € Py,

(1.25) || (PW) () 2® |l,y< Co | (PW) () 2° || 1, (Lann2,an(1-20,)] -
(b) Given r > 1, there exist C2,n9, o such that for n > ng and P € Py,

(1.26) || (PW) (2)2” |1, (ormar< €xp (—=Con®) || (PW) (2) 2” |ILy(a0) -

We note that all the above results are valid under weaker conditions
on W. All we need is that W* satisfies the conditions for the corre-
sponding result in [7]. However, for simplicity, we use just one class of
weights in this paper.

This paper is organised as follows. In the next section, we relate
L(C?) to a class of weights from [7]. In Section 3, we state some
technical estimates, most following from results in [7]. In Section 4 we
formulate some potential theoretic estimates. In Section 5, we shall
state and prove restricted range inequalities. In Section 6, we state
and prove estimates for Christoffel functions. In Section 7, we state
and prove estimates for zeros of orthogonal polynomials. Finally in
Section 8, we state and prove our bounds for orthogonal polynomials.

2. CLASSES OF WEIGHTS W AND W*

The class £ (C?) was defined in such a way that W* becomes part of
the corresponding class in [7, p. 7], namely the class F (C?): In its for-
mulation, there are some simplifications due to the fact that W* is even.

Definition 2.1

Let W* = e~ where Q* : I* — [0,00) satisfies the following proper-
ties:

(a) Q¥ is continuous in I* and Q*(0) = 0;

(b) Q*" exists and is positive in I*\{0};

(c)

lim Q*(t) = oc;
lim Q)
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(d) The function '

zQ"(z)

2.1) T(a) = ey

is quasi-increasing in (0,/d), with
(2.2) T*(z) > A* > 1,z € I"\{0}.
(e) There exists Cy > 0 such that

Q'@ _ ., 1Q"@]
FROIBRGEED

Then we write W* € F (C?). If also there exists a compact subinterval
J of the open interval I*, and Cy > 0 such that

Q@) _ ., 1Q"@]
FROIENEE)

then we write W* € F (C*+).

(2.3)

, a.e. z € I"\{0}.

(2.4)

, a.e. € I*\J,

Lemma 2.2
@
WeLl(CHeWeF(CY.
(ID)
W e L(C?+) & W* e F(C*+).
Proof

(I) We first show that
WeL(C?)=Ww"eF(C?.

Now Q¥ (z) = 2Q' (2%) z is continuous in I*\ {0} and by hypothesis
(a) in Definition 1.1 has limit 0 at 0, so is continuous in I*. So (a)
in Definition 2.1 is satisfied. We see that (b), (c), (d) in Definition
2.1 follow directly from those in Definition 1.1, if we set A* = 2A and
observe that

(2.5) T* (z) = 2T (¢*) > 2A =: A*,z € I*\ {0}.
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Finally, for z € (0, Vd), (110) and (1.11) give
Q*"(SL') _ 1 + Q" (.’122)

Q@) = Q)"
T (x) Q'(=?)
Ax +2C——= 0l 2)
_ Q=) 1
- &0
s0 (2.3) in Definition 2.1 is satisfied. Thus W* € F (C?).

0 <

<

Conversely, suppose that W* € F(C?). We shall check that (e) of
Definition 1.1 holds for W. The remaining properties follow directly.
Using (2.2) and (2.3) of Definition 2.1,

Q@) [2QV(@)
27 Q") 1'
0, Q@) T (@)
S O T

Q' (z%)
- 2(0+ ) G
Then (1.11) of Definition 1.1 follows.
(IT) This follows from (I) as (1.12) in Definition 1.1 is the same as (2.4)
in Definition 2.1. B

In the sequel, we shall denote the positive Mhaskar-Rakhmanov-Saff
for the weight w* by a;,t > 0. Thus a;‘ is defined by

xQ¥ (a:) 2 Y aru@* (atu)
—ay \/a} ~m2 0o V1—u?

In terms of Q, we see that thls becomes

du.

t_1 [ e (@)
2 m

so that uniqueness of the deﬁmtlon of a; gives

(26) Qg9 = a?.

We shall also use the quantity

(2.7) me = (T (a:))™°,

and its analogue for Q*
(2.8) n; = {47 (a)} %,
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We see that
(2'9) Mot = {4T (%)}_2/3 = 4—2/3"71:-

3. TECHNICAL ESTIMATES

In this section, we record a number of technical estimates for ¢) and
a;. Throughout we assume that W € £ (C?).

Lemma 3.1
(a) Uniformly for t > 0, we have
3 Q@) ~ /T
(32) Qar) ~ —m—s.
T (at)
(b) For t > r >0,
(33) 1<% <oy
In particular for fired L > 1 and uniformly for t > 0,
(3.4) ar; ~ Q.
(¢) Fiz L > 0. Then uniformly for t > 0,
(3.5) Q% (aze) ~ Q9 (ar),j =0,1.
Moreover,
(3:6) T(ars) ~ T(as) and g, ~ 7.
(d) For some € > 0, and for large enough t,
(3.7) T(a;) < Ct*—*
and
(3.8) 0T (ar) < Ct™° = o(1).
Proof
(2) Recall that Q* is even, and that a; = (a%)®. Lemma 3.4 in [7, p.
69] gives

Q" (a3,) ~ é\/fr* (a3).
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(Note that in the notation of [7], 6; = af because Q* is even). Then the
relationship between @ and Q* and T and T™ give (3.1). The relation
(3.2) now follows from the identity

Q(z) = zQ' (z) /T (z).
(b) From Lemma 3.5(c) in [7, p. 72], we have as 63, = a}, in the even

case,
1/A*
as t
as, r

fort > r > 0. As A* = 2A, the result follows.

(c) This follows similarly from Lemma 3.5(b) in [7, p. 72] and the re-
lations between @, Q*, T, T*.

(d) These follow similarly from Lemma 3.7 in [7, p. 76] and from (2.9).
]

Some further estimates involving a; :

Lemma 3.2
(a) We have for t > 0,
as 1 t, 1 s

9 1—-—|~v —— —_— =< =<2,
39) 1= s 1= b5 < 5 <2
(b) Given fized L > 1, we have uniformly for t > 0,

ar: 1

3.10 1——|~ —.
(3.10) 1= s
Proof

These follow from Lemma 3.11 in [7, pp. 81-82] and the identities re-
lating T, T*, a;,a;. B

Lemma 3.3
(a) For z € [0, a:),
, Ct

(b) Fiz L > 0. Then for t > 0 and z € [La;t ™2, a4),

(3.12) “Q @ (1 - gg) < 0//T(a) < C.
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Proof
(a) From Lemma 3.8(a) in [7, p. 77|,

o Ct
T s a3, (a3, — y) 7
for y € [0,a%,) = [0, /ar). Setting y = +/x gives
Q@)VE < i
V@ (v - va)

cx(u )

Vv (a; — z)
Ct

at—'il?'

<
(b) By Lemma 3.8(b) in [7, p. 77],
g ) (1- L) <oV,
Setting y = /T gives

Q@) (1-\/2) < oVTTe.

Multiplying by ti}_% (1 + \/;T;) gives

a; ., z C ay C
—=Q ) {l1——) < — < ,
| 7? ( )( a¢> —tVaT(a) = /T (ar)
provided z > La;t~2, some fixed L > 0. B

4. POTENTIAL THEORY

Let us assume that the function 1/z@’ (z) is increasing in I, with
limit 0 at 0 and limit oo at d. This is essentially equivalent to Q* being
convex on I*. We recall [7], [20] that, given ¢ > 0, there is a unique
positive measure u, of total mass ¢, and a unique constant c¢;, such that

an  vee+e@{Ie R

where S (11,) denotes the support of the measure p,, and

Vi (z) = / log - (9
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is the corresponding potential. This measure p; is the equilibrium
measure for the external field Q. In this section, we relate u; to the
corresponding measure y; for Q*, and hence establish some basic results
about p,.

Given t > 0, we let i} denote the equilibrium measure for Q* so that

wy  vieree{IE TN

We let 0; and o} denote the densities for p, and p respectively. Under
mild conditions on @ or Q*, there is a simple relationship between the
supports S (u}), S (p.), the densities o}, 0%, and the associated poten-
tials:

Theorem 4.1
Let \/zQ)' (x) be increasing in I, with limit O at 0 and limit oo at d.
Assume moreover, that

(4.3) 0=Q(0)<Q(z),ze(0,d).

Let t > 0.
(a) p, is absolutely continuous with respect to Lebesque measure and
its density oy is given by

(4.4) o (z) = ﬁa (Va) 2 € (0,(a3)?) ,

where 0%, is the density of the equilibrium measure p3, for Q.
(b) Moreover,

(4.5) VHe (22) = VP (2),2 € C;
(4.6) as = (a3,)*;
¢ 4
4.7) Ct=Cyy = / log —ds.
0 as
Proof

Let v denote the measure with density given by (4.4). We shall show
that v has mass t and satisfies (4.1) with some constant ¢;. Uniqueness
of the equilibrium measure then gives the result. First recall that Q*
is even, so that its equilibrium density is also even. Moreover the hy-
potheses above on @) imply that Q* satisfies the hypotheses of Theorem
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2.4 in [7, pp. 40—41]. Now

*2

ady a3
———a% (Vz)dz = / o, (s)ds
| smmvaeE = [T
1 ady .
= 5/ o5 (s)ds =t.

—_—n¥
ot

Next,
Vi (2) = / log P ! Ia% (s)ds = / log P Ia% (s)ds
=03, —03¢
by evenness of 03,. Therefore,
V¥ (2) = E / N log ———l——a* (s)ds
2 —a}, !Zz - 32| *
/aé‘? (
= log ———
0 l l 2t \/_) \/—

- (@),
where v denotes the measure on [O, (a;t)2] , with density given by the
right-hand side of (4.4). Next, let = € [0, (a%,)’] and write z = 32,
where y € [0, a3,]. Then
VY (") +Q (v)

V¥ (2) +Q(2)
Vi (y) + Q" (v)

C;t:
by the equilibrium relation (4.2) for @*. Uniqueness of the equilibrium
measure shows that

I

V=l
and that (4.1) holds. We proved (4.6) at the end of Section 2. Finally,
from uniqueness of c; followed by (2.34) in [7, p. 46],

G = Cy
%

log —dr
0 ga:

2t )
= / log dr
\/a"r/2

= /log —ds.

f
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Next, we state a formula for, and an estimate of, the density oy (z) :

Theorem 4.2
Let W € L(C?).
(a) For z € [0, a),

1) )=y [ =20 e

(b) Uniformly for t > 0,

el

(4.9) oi(z) ~ (o — )’ .z € (0,as).

Proof
(a) From (5.23) in [7, p. 116]

vay —y° GE? 5 Q*’(S) Q*’(y) ds

*2 __ 2
—a3, Aoy s

o3 (y) =

Using (4.4), Q¥ (s) = 2sQ) (32) and some elementary manipulations, we
obtain (4.11).
(b) Recall from Lemma 2.2 that

WeL(C?)eW eF(CY.
Then we may apply Theorem 5.3 in [7, p.111]: uniformly in ¢ and y,

N

— o,y €A
G2t (y) a4t y2 'Y i»

Then (4.4) gives the result.

Recall that we defined ¢, at (1.18). Theorem 4.2 shows that ¢, is
basically the reciprocal of o;. More precisely, if 3, > 0 are fixed then
for t > 0,

(4.10) @ (x) ~ 07 (z) 7 € [Bat™2,a: (1 ~ emy)]
The following lemma involving ¢, will be useful:

Lemma 4.3
Let W € L(C?). Given A,B € R with A < B, there exists M >
0,t9 > 0 such that

(411) oy (z+ X077’ (2) ~oe(x),2 € [Mat 2,0, (1 — Mn,)],
and
(412) @y (T + A, (2) ~ @y (z), 7 €1,
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uniformly for A € [A,B], t > to, and for x in the above intervals.
Conversely, given M > 0, there exist to,€ > 0 such that (4.11) and
(4.12) hold provided || < € and t > 1.

Proof

() We prove the second statement (4.12). Then (4.11) follows from
Theorem 4.2. In view of the definition (1.18) of ¢,, we need to show
that for the given A, B and X € [A, B|, there exists M > 0 such that
for z € [Mait™2,a; (1 — Mn,)],

(4.13) z+a™? ~ (z 4+ Ap, (2)) + ast ™
(4.14) Qg — T ~ A ~ (T + Ay () 5
(4.15) a; ~ T+ agmy ~ 6 — (T + Ap, (2)) + agn,.

We do the first and third of these; the second is easier than the third,
because ay; is larger than a; + a.n, for large ¢. Let

D =max {|4],|B[}.

Proof of (4.13)
If first z € [Matt‘2, a.t/g], then from (1.18),

T+ait™? Ttz + ait—2\/a; — T + a1,
C (ag — a;) + (as — z)

S Y Vava-s

C 1 QAo — O ]
—_ + / —_ .
t vV Mast2 [\/at — @2 e ™ Gy
We continue this using (3.10), (3.4) and (3.6) as
C a; a; C
< + < —=.
asM [\/T (a) \/T (at)J vM
Next, if z € [ay/2, a; (1 — M1,)], (4.16) becomes
M (@) _ D(az—ays)
z+ad? T 1/Gy/ 0T,
=Cn, =0 (t724),

G __

tT (ar) /0
by (3.10) again. Together the above estimates show that if ¢ is large
enough and M is large enough, we have

Mei@ 1

T4aid™2 ~ 2
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for the specified range of z,t, A. So we have (4.13).
Proof of (4.15)
Now for z € [Ma;t~2,a: (1 — Mn,)],
o~ (z+ A, (7)) + am,
a; — T + a7,
Al @ (2)
ay — T + Oy
Dv/zx + ait=2 (ag — x)
t(a: — 2+ agm,)

C\/a_ta2t"at+at—37
)3/2

1

IA

IA

t (-

o )
t \T(ar) [Mam,]” Magn,

by (3.10) and as = > a; (1 — M7n,). We continue this, using the defini-
tion of 7,, as

1 1 (T(a)\"? C
< ¢ (M3/2 + M1/2 ( 12 ) < M2’

by (3.7). Since C is independent of M, we obtain, if M is large enough,
_ = (@A (2) o 1

ay — & + a1, —2
for the specified range of z,¢, A. So we have (4.15).

1

The converse part of the lemma follows similarly. B

Lemma 4.4
Let M > 0. There exists ty such that for t >ty and z € I,

(4.17) Prrn (T) ~ 0 () -

Proof
This follows easily from (3.9) and the definition of ¢,. B

5. RESTRICTED RANGE INEQUALITIES
For t > 0, we denote by P, the set of all functions of the form

(5.1) P(z) = cexp / log | 2~ £ | dv(e)),



18 ELI LEVIN® AND DORON LUBINSKY?

where v > 0, || v ||< £,¢ > 0, and the support of v is compact. These
are the exponentials of potentials of mass < ¢. In particular if £ > n,
then P, C P;. Note too that for P € P, we have P (2?) € Py;. Recall
also the notation

At = [0, a,t]

In this section, we present L, analogues of the Mhaskar-Saff inequality
for the class P;.

Theorem 5.1

Let W = ™9 where Q : I — [0,00) is such that Q* (z) = Q (2?) is
convex in I*. Assume moreover that Q(d—) = oo and Q(z) > 0 =
Q(0),z € I\{0}. Let 0 <p<ooand f>—2. Let P € P, 5 s\{0}.
Then

(5.2) | (PW) () 2° |\ <]l (PW) (2) 2 |1 (803
and
63) | (PW) (2)2” lL,m< 27 || (PW) (2) 2 ||, -

In particular this holds for not-identically vanishing polynomials P of
degree <t—f — . For p= oo, (5.2) and (5.3) remain valid with <
replaced by <, provided 3 > 0.

Under additional assumptions, we can improve the above result, and
“go back” into the interval A;, giving a Schur type inequality. Recall
the numbers

n; = {tT(ar)}*3,¢ > 0,
which are small for large £.
Theorem 5.2
Let W e L(C?). Let 0<p< oo and L,A>0. Letﬂ>~% if p<oo

and 3> 0 if p=oo.
(a) There exist Ci,ty such that for t >ty and P € P,

(54) | (PW) (@) ||L,n< Co Il (PW) (2) 2° || 1, (zact—2 as1-30,)) -
(b) For t,k > 0, define
min{x, T'(a;)"*}

s .

(5.5) H(k,t) :=
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There exist Cy,Cs independent of t, k, P with the following properties:
fort>0and PeP,

(5.6)

| (PW) (2) 2 || Ly(ac1+m @y < Coexp(—CsH (k,8)*?) || (PW) (2)2” |l a0 -

Furthermore, given v > 1, we have for some t5,a > 0 and t > t,
6.7 | (PW)(#)2” |Lyea< exp (=Ct) || (PW) (2) 2" ||z a0 -

We note that the conditions on W may be relaxed; all we need is
that W* satisfy the hypotheses of Theorem 4.2 in [7, p. 96]. We begin
with a Lemma which is similar to Lemma 4.4 in [7, p. 99ff.]. Recall
that the Green’s function for C\ [a,b] with pole at oo is

b_z_a(z—a;b)+b2 V(z —a) (z - b)|.

- a

oty (2) = log

It is harmonic in C\ [a,b], equal to 0 on [a,b], and behaves like log
|z] +0(1) as z — .

Lemma 5.3

Let A=[a,b]30and 0<p<occ. Let B> ~1 if p< oo and B> 0 if
p=00.Let 22>0,t>0,c€C, and v be a non-negative Borel measure
with compact support and total mass < 2. Let

P(z) = cexp( / log | 2~y | di(y)).

Let o € R and U be a function harmonic in C\A with
(5.8) U(z) =calog|z]+0(1),z — .

Assume moreover, that on A, U has boundary values Uy from the
upper and lower half plane that satisfy

U+ = U = U._.
where U € L, (A). Let ga denote the Green’s function for C\A. Then
(5.9)
| P (z) 7@ty tmaxi®oa) 31 || < C || (PeY) (2) |21 Ilzyca) -
Here C = C () only. If B > 0, we can take C = 1.
Proof
We assume p < 0o. (The case p = oo follows by letting p — 00). The

proof is similar to Lemma 4.4 in [7, p. 99 f.]. We note that it suffices
to prove this with v having total mass 2. For, ga > 0, so the left-hand




20 ELI LEVIN' AND DORON LUBINSKY?

side of (5.9) decreases as we increase (2. Hence if we have (5.9) with Q
replaced by || v ||, then it holds as stated. Thus we assume v has total
mass {2. We may also clearly assume ¢ = 1.

Let ga (2, =) denote the Green’s function for the exterior of an interval
A with pole at z. In the special case z = oo, we have already used the
notation ga(z) = ga(z, 00). In the case z € A, we just set ga(z,z) = 0.
Now assume z ¢ A. The Green’s function ga(2,z) has the following
properties:
(i) ga(z,z) +log | z — z | is harmonic (as a function of z) in C\A;
(ii) ga(z,z) =0,z € A and ga(z,z) >0 on C.

Define the function
g(z) : = %—/{log | z—z | +9a(z, %)} dv(z)
+1U() = 200(2) + £ (0g el + 94 (2,0) ~ 9 ()
= 1(2) + ;U() ~ 2 ga(e) + £ (loglel +9a (2,0) ~ 9a ()

Now (as in [7, pp. 99-100]) ¢; is harmonic in C\A and
Q 1
9 (z) = —t—log |z| + 7 /gA(oo,m)du(:z:) +0(1),z — oo.

Next, 1U — =g, is harmonic in C\A, and behaves like

1 Q
-t~(a —Q — o) log |2] + Constant+o (1) = -3 log |2| + Constant+o (1) ,z — oo.

Finally, 8 (log |z| + ga (2,0) — ga (2)) is harmonic in C\A and has a
finite limit at co. It follows that g is harmonic in C\A, for it has a
finite limit at co. Hence it has a single-valued harmonic conjugate g(z)
there. Then the function

f(2) = exp(g(2) +1g(2))

is analytic and single-valued in C\A and has no zeros there, so we may
define a single-valued branch of f”/ 2(z) in C\A. Let ga(z) denote the
harmonic conjugate of ga(z) in C\A so that

A(z) := exp(ga(z) +iga(2))

is analytic there except for a simple pole at oo.
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Now let us look at the boundary values (f?), of f*. In A, we have

(510)  |(f)). ()] = exp (tgs (@) = [Pl @) " [of .
Moreover in R\A,

(5.11) £ (@)] = Pl @) " ol e,

where

(5.12)

h(z) = / 98 (@,9) dv (¥) — (2 + ) ga (2) + B {ga (2,0) — ga (2)} .

Now we consider two subcases.

CaseI: >0
Since 8 > 0 and ga > 0, we see that
(5.13) hi(z) > —(Q+a+B)ga(z).

Next, we apply Lemma 4.3 in {7, p. 98] (with p = 2) to the analytic
function f%/2/A, obtaining

(5.14)
1
| 772/ A lmas 5 {|| FEP A oy + I 22 /A- HLZ(A)}‘

Then (5.10-5.13) and the fact that |A| = 1 in A while |A} = exp (ga)
in the rest of the real line give (5.9) with C' = 1.

Case II: —2 <3 <0

We use g above, but with § = 0, so that in A,

615) (1), @)] = e (g (@) = Pl (2) ",
Moreover in R\A, (5.11) holds with 8 = 0 and with
616) @)= [9a(z0)dr(o) - @+a)ga(a).

As above, we may choose a single-valued branch of f#/2/A in C\A.
Since this function vanishes at oo, Cauchy’s integral formula gives

b (£ip/2]A) (z) — (F1P/2/A
(ftp/2/A)(z)=i/ (f /)-{-(z-.z(f /)_(x)dt,

2ri J,

z ¢ A. We may rewrite this as

(72214) () = 5 (5 [(£2274),] () - B[ (7714) ] ),
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where H denotes the Hilbert transform. Then we may apply the
weighted inequality for the Hilbert transform [14, p. 440,

| H[F](z) |2]" o< C || F (@) 2] || o),

valid if y € (—%,3) and provided the right-hand side is finite. Choosing
F = (ftp/2/A):!: and v = EZE € (_%,0) gives

L VAL @) et da
< e[ [ |uma)] @ a [ |(7na)_[ @) lopras]

< 2 / P[P () |o|” da,
FAN

by (5.15). Finally (5.11), (5.16) and the fact that in this case
h(z) 2 - (Q+a)ga(z),z ¢ A,
give the result. B

Proof of Theorem 5.1

We do this in 2 steps.

Step 1: Apply Lemma 5.3 to the weight W*

We apply Lemma 5.3 with § = 0 there, with A = A}, = [—a};, a%;],
and with

U (z) = V¥ (2) + 2Blog |2] .
Then
U (z) = (26— 2t)log|z| + 0 (1) ,z — o0,
s0 (5.8) holds with « = 28 — 2¢. Also, by (4.2),
U(z) = —Q"(z)+cg +2Bloglz|,z € Aj;
U(z) > —Q(z)+c5 +2Bloglx|,z € I'\A.
Then (5.9) implies (recall that C' = 1 as we use Lemma 5.3 with g = 0),

— B 2 * (& *
| (RW*) (z) |2 & @222 D985, ) |1 1 agy <N (BW) () |2 Hiz,a3,)»
provided R € Py. In particular, as gaz, > 0 outside A, we obtain
6.17) || (BW*) (2) [21% |,mas) <l (BW*) (@) |21% |z,

provided

2
Q<2A-28-=.
< B p
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Step 2: Transfer estimates to W
Let P € Pt*ﬁ~2—‘j,\ {0}, and

R(y) =P (4*) lyl"” € Py_pp_2.
Since RW* is even, (5.17) gives
vd a3,
2 [y @ty <2 [ R )Ry
a3, 0
The substitution z = y® and the fact that a3, = \/a; gives (5.2). ®
We begin the proof of Theorem 5.2 with

Lemma 5.4
Let W e L(C?). Let 0<p<ooand A20. Let > —2 if p < oo
and 8> 0 if p=o0. There exist Cy,ty such that for P € P;,

(5.18) || (PW)(z)2” l1,n< Cu || (PW) (%) 2° |1, 0.0e(1-2m,)] -

Proof
Case: >0
Let
T=t+03+ -
= %
and

R(y) =P (3?) 47 € Py,
so we can apply Theorem 4.2(a) in [7, p. 96 ] to deduce that

FRW™ Ny < C I BW Nl (g, (1-305, )5, (1-303,))

Here we need ¢ large enough and C is independent of R, ¢, 7. On making

the substitutions z = y? in the integrals in the norms, and using a3, =
\/@r, we obtain

| (PW) (z) 2° ||L,n< C || (PW) (z) 2" ”L,,[o,af(1—)m;,)2] '

Here in view of (2.9),
(1 - '\7737)2 =1- 2~1/3A77’r + 0(771') :
Moreover, by (3.9),

a,/at=1+0(%—f%a—5) =1+4o0(n,),
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while by (3.6), , ~ n;,. Then (5.18) follows for large enough ¢, if we
change A a little. W

Lemma 5.5
Let W e L(C?). Let 0 <p< oo and A 20. Let > — if p< o0
and B> 0 if p=oco. There exist Cy,ty such that for P € P,

(5.19)
| (PW) (2) 2° ||, j0,0a-21< C1 | (PW) (2) 2° |1, (Last-2,0001-2m,)) -

Proof
Let us write for large enough ¢,

a: (1~ An,) = a, and J = [Lagt™2,a,] .
In view of (3.9), we see that

whence

(5.20) t—7 ~dT (as) = (T (&) 2 =0 (2).

Let £ denote the linear map of J onto A, = [0, a,] so that

1—An,
]. e Ant - Lt-’z'

£(z) = (z — Lag™?)
Let
v(z) :=V# (£(2)),z € C.
Then the equilibrium condition (4.1) for V#r yields

(5:21) v(z)+QU(z)) =cr,z € J
We claim that
(5:22) 0<Q@z)-QU(z)<Cizel

Indeed the left inequality follows as @ is increasing, and as £ (z) < z.
We proceed to prove the right-hand one. For z € J, we have for some
£ between z and £ (z),

Q)-QU() = Q&) (z—L£(x)
vz @ (L= An) —x
= QL 21-Ant-Lt—2'
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Here z > £ > £(z), so we can continue this as

Q') (a: —¢) Lt~
1—An, — Lt—2 <6

by (3.12). Here we need t large enough, and C is independent of z,¢.
So we have (5.22). Then we may recast (5.21) as

(5.23) (@) +Q(z) ~e| <Oz € J.

Next, v is harmonic outside J, and

Q) -Q((x) <

v (2) = —log|z| + Constant + o (1) , 2z — oc.

We apply Lemma 5.3 to U = v—Constant, 2 =t,a = —7,A = J. We
obtain

I P@ew{v@) -~ (1=7+ 2+ max(0.0}) 0 @} * o sae

< Cll (Pexp(v—c,)) ()2 ||, < G || (PW) (2) 27 ||,
by (5.23). Then we obtain (5.19) provided

v(z) —cr — (t——7’+§+max{0,ﬁ}) gs(z) > —-Q—C on [0,Lait™?].

Since @ is bounded on [0, La;t~%], we can establish the right-hand
side without Q. Now for any [a,b], gj4 is positive and decreasing
on (—oo,a]. Moreover, v is increasing on (—oo, La;t~2%]. Therefore it
suffices to show that

(5.24) v(0) — ¢, > —C;

(5.25) (t - T+ % + max {0, ,B}) g9s(0) <C.

To prove (5.24), we observe that as Q (0) = 0, (4.1) gives
v(0) —cr = V¥ (£(0)) - V* (0)

= [T du, (3).
0

s | kO]
s —£(0) s

S

s —£(0)

Since for s > |£(0)],
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and since a, ~ agz; ~ a;, we can use the estimate for p, in (4.9) to
obtain

v(0) — ¢,
() 7 O T

v

o [ /(;ww)l log
- 8]

since |£ (0)] ~ a;t~%; a, ~ agr ~ a;; and 7 ~ t. So we have (5.24). Also

__a,+Latt + . m

ar — Lait~2  a,— La;t™2
= log |—1 +0 (t"1)| =0 (t“l) ,

so from (5.20),

log

i

95 (0)

(t —_T + —; +max{0,,8}) g7 (0)
< C(T (a))?t 1 =0(1),
recall (3.7). B

Proof of Theorem 5.2(a)
This follows directly from Lemmas 5.4 and 5.5. l

Proof of Theorem 5.2(b) for >0
Let P € P;. We derive this from Theorem 4.2(b) in {7, p. 96], applied
to W* and P*, defined by

P*(y)=P () ly# 17 e P2t+2ﬂ+‘1£'

Since P*,W* are even, Theorem 4.2(b) there gives

| P*W™ || < Cyexp(=CaH" (i1, t)*%) || P*W* ||

LP(“2t+2ﬁ+1/ (1+r1), \f) St+28+1/p)?

where
H* (k1,t) = min {I’q, T (a'2t+2ﬂ+1/p) —1} / Mat+26+1/p
~ min {th T (at)—l} /M

s T ds
s+|€(0)|| saT /mml s \/_ la, 8 \/'—\/aTTs]
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in view of (2.6), (2.9) and (3.6). On making the substitution z = ¢ in
the norms and using (5.4), we obtain

I (PW) () 2” < Cyexp(=CyH(k1,0)*?) || (PW) (2) 2° ||, (a0 -

”L,,(at+p+1,(2p)(1+n1)2,d)
Now, given k > 0, let us write

a (1 + K) = @prpiryiep) (1 + 51)°
Then by (3.9),

(14 5;)? a ( 1 )
= =140 (=) =1+0(n),
1+« Gty 8+1/(2p) tT (az) ()

S0
261 —k=o0(1n),
and hence if k1 > 7y,
H (k1,t) ~ H (k,t).

Then (5.6) follows. If instead k; < 7, then both H (k,,t) and H (x,t)
are bounded, and Theorem 5.2(a) gives the result.

We turn to the proof of (5.7). Let r > 1, and write

Apg = a’t (1 + K’) ]
so that

O

a T (as)
and hence
1
H(k,t) ~ ———— > Ct%,
( ) r (at) yr

some a > 0, by (3.8). Then (5.7) follows from (5.6). B

Proof of Theorem 5.2(b) for 5 <0
This follows from the decreasing property of z? in (0, d) :
| (PW) (@) 2 lzpein 0 < Caf | PW llLy@an.
< Cdf exp(—C3H(k,8)*?) || PW ||, (a0
< Cexp(~CsH(k, t)*%) || (PW) (2) 2 ||z, -
Here we have used the case § = 0 of Theorem 5.2(b). W
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6. CHRISTOFFEL FUNCTIONS

Christoffel functions are crucially important in analysis of orthogonal
polynomials and weighted approximation theory [16]. In this section
we shall estimate generalized and classical L, Christoflel functions for
0 < p < co. As in the previous section, we denote the exponentials of
potentials with mass <t by IP;, so

(6.1)
]P’t={cexp(/ log|z—¢&|dv(€)):e>0,v >0,|| v ||<t,S9(v) is compact}.

Our L, Christoffel functions are defined as follows: for 0 < p < oo,
(6.2) A p(W, 2) = zilel%t (Il PW |,y /P(2))7,z € C.

The polynomial analogues of A, are for n > 1,

(6.3) Anp(W, 2) = Piggn (II PW |l / | P(2) I)zlJ ,2€C.

It is clear that
(6.4) Anp(W; 2) € A p(W, 2).

The A, ,(W,-) are weighted analogues of the L, Christoffel functions
introduced by P. Nevai [15]. However, the classical Christoffel function
is

6.5) MW, 2) = inf ( /I (PW)2) /P().
We see that
(6.6) (W2, 2) = Aoy 2(W, ).

In describing our result, we shall need the auxiliary function ¢, intro-
duced in (1.18).

Theorem 6.1
Let 0 < p < o0;p > -—i;L >0 and let W € L(C?).
(a) Then uniformly for t > ty and z € J, = [0, a(1 + Ln,)], we have

az\ PP
(6.7) Aep(Wp,2) ~ (2 WP(a) (2 + 3 )
(b) Moreover, there exist C,ty > 0 such that uniformly for t > ty and
zel,
PP
(6.9) Aep(Wy,) 2 Coo(@)WP(a) (z+ 33) "
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For the polynomial analogues Ay, of A, we prove:

Theorem 6.2
Let 0 <p<oo;p>—2;L>0andlet W€ L(C?).
(a) Then uniformly for n > ny and = € J, = [0, a,(1+Ln,)], we have

An\ PP
(6.9) Mg (Wi 2) ~ @ (@WP(a) (2 4+ 73)" .
(b) Moreover, there exist C,ng > 0 such that uniformly for n > ng and
zel,
Qn \ PP
(6.10) Mg (Wi ) 2 Cip, ()W () (2 + 22)

Note that Theorem 1.3 follows directly from Theorem 6.2 and (6.6).
We begin with a lemma:

Lemma 6.3
Let p € R and L € (0,1). For n > 1, there exist polynomials R, of
degree < n such that,

-\
(6.11) Ra(z) ~ (w%) @ € [0, agn];
(6.12) |R;, ()] < Czf 'z € [Laan?, a0,].
Proof

Suppose first that |p| < % Consider the Jacobi weight
w(z)=(1-2)"(1-23)"" ze(-1,1).
It is known [18, p. 36] that their Christoffel functions satisfy
A (w,z) ~ (1 -2+ 072,

uniformly for n > 1 and z € (—1,1). Moreover, for any fixed £ > 0, in
[-14+en%1—-en"?,

n|X, (w,z)] <CQ-2z)* (1-2%)7".

Let k be a positive integer and [%] denote the largest integer < 7. We
set
R.(z)=n""X} (w1~ L)
[%] ’ Qg e
It is straightforward to check that (6.11) and (6.12) follow. The degree
of R, is at most 2n/k < n, if k > 2. For general p, we choose a positive
integer £ such that |p/¢| < 1 and form the polynomial R, for p/¢, and
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then raise it to the power £. If £ > 2¢, the resulting polynomial will
have degree at most n. l

The Proof of the Lower Bounds for the Christoffel Functions
in Theorem 6.1

Let us set 7 = —-. We do this in three steps:

Step 1: Thecase p=17

Recall that we define

W* (z) = exp (@ (2)) = exp (-Q (27)) ,z € I' = (—vd,Va)
and that then W* € F (C?). From [7, Theorem 1.13, p. 20|, we have
for v/ € [0,Vd),

o o |PW*P (u) du
PW*P (V=)

= Aa,p (W",vz) /W* (V)
> Cyy, (\/5),

PePa;

where in [—a},;, a3,],
|u? — az?|
t\/(lu + a‘;t‘ + a&nét) (l'u, — agy| + aém’ét)

and %, is defined to be constant in (—oo, a%,] and [a},, 00). We see that
in [0, at] 3
" ~ ay — T ~ / )
(6‘13) Pat (\/E) tm Pt (ﬂ))/ z+ att .
In (a:,d), we obtain instead ¢}, (v/z) ~ @, (a;). We make the substi-

tutions u = /v and P (1/v) = P, (v) in the integral, and note that if
Py (v) € Py, then P (u) = Py (v?) € Py;. We deduce that

. S 1RWP (v) Jodv
it e, 2 Oa (@) [Vt o

PyeP:

P (u) =

and hence
Mo (W,2) | [W (2) (& +a™) ]" 2 Co (0),

provided +/Z € [0,/d), which is equivalent to z € [0, d).
Step 2: The case p> 7
Assume that = € [0, d). Note that if P (v) € P;, then P (v) (v +ait™2)" " €
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IPt-{-p..T- Theﬂ

Ay (Wp,) [ [W (2) (@ + at™)"]”
> inf ::t-z (I1PW| (v) v*~7) dv
T Pel (|PW|(z) (x +at~2)" " (z+ ait=2)")"
> Ci faa:t—2 (!P W (v) (v + att_2)p~r) dv
Z PEP, (IPWI @) (z+at2) " (z+ att—z)r)p
) S |PW.| (v)? dv
= CPe}%ﬂ?fp_T (IPW{| (z) (z + ait~2)")"’

by our restricted range inequalities. Using the result from Step 1, we
continue this as

= CAt+p—-1‘,p (WT7 JJ) / [W ($) (m + a‘tt—a)’r]p
> C(pt-{-p—-'r (x) ~ Py ("B) ?
by Lemma 4.4. ,
Step 3: Thecasep< T
We consider two ranges of z.
Range A: z € [0, a4
Let n = [t] + 1. We use the polynomials R, from Lemma 6.3 that
satisfy
Ra(v) ~ (v+at™)"" v € [0, azn].
Then as above
Aoy (W) / [W () (2 + et ™))"
e (PW @) o+ a ) o
i
per. (|PW|(z) (z + ait=2)"" (z + at=2)")"
C inf fai?:z |PR,W;| (v)° d’”T .
PeP:. (|PR,W|(z) (z + att2)")
2 Chiyny (Wr,2)/ W (@) (& +at )],

by our restricted range inequalities. Using Step 1 above, we continue
this as

v

2 Copin (2) ~ ¢, (2),

TE [07a‘t/4] = Ay — T~ O,




32 ELI LEVIN' AND DORON LUBINSKY?

SO
Ptin () ~ Qg (T) ~ @, (z).

Range B: z € [a;/4,d)
Hereas p < 7,
Ao (W,,3) [ [W (@) (z+at™2)")"
S o (|PW,| (v) v*~") dv
= Y re (|PW](2) (z + ait 2 ( +at2))’
a (p—m)p | PW,| (v)f dv

¢ (;L- + att—2) fl'g%t (IPW(}] (z) (z + at=2)")?
> Chip(W,z)/ [W (z) (z+at™2))" = Cp, (z) .

v

The Proof of the Upper Bounds for the Christoffel Functions
implicit in Theorem 6.2(a)

Let us set 7 = —5.. We do this in three steps:

Step 1: Thecase p=1T

Let

W# (z) = W* (2)"* = exp <-—;—Q* (a:)) , L € I" = (——\/;l, \/c-i) .

Then W# € F(C?). Let L > 0. Denote by a¥, %, and so on, the
analogues of ay,, ¢, for W#. From [7, Theorem 9.3(c), p. 257], we have
fory/z € [0,af (1 + Ln#)],

inf fI*

PePy

PWH|” (u) du
PW#|™ (/)

= Az (W#,v3) | (W# (V)

Cot (va) = 0% ()]
Ji- 2

Let P € P, denote a minimizing polynomial, achieving the inf in the
left-hand side (a compactness argument shows that it exists). Since
af = a}, = \Jap and nFf ~ 0}, ~ N}, ~ 1,, we can reformulate the

IA

+nf
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above as

T

[APWP W ya [Im
PwreE S0 n

+ 7

z

Now let us define a polynomial 5, of degree < n by
Sa (u?) = P (u)? + P (—u)®.
Then S, is a nonnegative polynomial with
S (@) 2 P (V).

As W* is even, we deduce that for z € [0, a, (1+ Ln,)],

[ 18 @)W @) du _ a1 e
(S @)W (Vo) =7 m

+ 7

=z
'1 an

A substitution u = /v gives

mqvp<.BK&Wﬂwwﬁ®

el (W) (a4 5) ) < GWF @) ()

provided z € [0,a, (1+ Ln,)].

Step 3: The case p > 7

We consider two ranges of z.

Range A: z € [0, @n/4]

We use the polynomials R,/ from Lemma 6.3 of degree < n/2 that
satisfy

Rppjg (0) ~ (v+a,n72) """ ,v € [0, a,).



34 ELI LEVIN® AND DORON LUBINSKY?

Then as above, our restricted range inequality gives

Anp (Wp,2) [ [W (2) (z + ann2)*)?
3 e (1P (0) (0 + a2 ™) o
= " Pep. ([PW} (z) (z + ann=2)"" (z + a,n-2)" )
a /n2 |PW1/R,,/2 | (v)? dv
PePn (|PW/Rppsy| (2) (2 + ann2)")"

] J; |PAW,| (v)? dv
C inf 7
Pi&Po ([PW] (@) (z + aan2) )
= Cujap(Wr,2)/ (W (2) (x+ ann2)")"
< C’(P[n/2] (33) ~ On (:l?) )

AN

by the result of Step 1 above, and as
€ [0,an/s] = Qg — T~ 0 — T ~ ag, — 7,
80

Pin/2) (z) ~ pn (2).

Range B: z € [a,/4,d)
We use our restricted range inequalities and p > 7 to deduce that

Angp (W, z) / [W (z) (g; + ann—z)p]p
I an /n2 (IP W (v) (v+ ann‘“z)”"T)
Per. ('PWl (@) (z + a,n2)""" (z+ a,n2)" )
C( a " )p . f,,/nz | PW.| (v)° dv
(z + a,n=2)"") Pepu (|[PW|(z)(z+ ann—2) Y

. Jowya |\PW:| (v) dv :
C i TPWI @) @+ a2y = Cen (@)

IA

IA

by the Results of Step 1.
Step 3: The case p< T
We let £ be a fixed integer > 7 — p. We use the fact that if P, € P,,_,,



ORTHOGONAL POLYNOMIALS FOR EXPONENTIAL WEIGHTS 35
then P (u) = P (u) (u + a,n"2)* € P,. Then
Mg Wy, )/ [ (z) (z + aun™)"]"

C inf a /nz |PW,| (v)F dv
pep, (|PW|(z) (z + ann=2)")?

L (1P ) 6+ )
P1EPpy (| PW|(z)(z + a, n‘2)p+£)
2 |PAW 0l (v)P dv
Cndh (.P{vé&l) (c . liz))”*)
< Ot Wps,2) [ (W (@) (o4 aun™?)"HY’
<

Copy () ~ @ (T),
by the results of Step 2, since £+ p > 7, and by Lemma 4.4. W

IA

IA

C

IA

Proof of the Rest of Theorems 6.1 and 6.2
If we combine the lower bounds for A;, and the upper bounds for A, ,,
we obtain, for the relevant range of z,

Crp; () Aipy(W,, )/ (W (z) (x + att_z)p p
Ao (W, z) / (W (=) (g; + att-2)/1)p
Copy () ~ ¢, (7).

With n = [t], this then gives the ~ relations in both Theorems 6.1(a)
and 6.2(a). @

IA A TA

7. ZEROS OF ORTHOGONAL POLYNOMIALS
The nth orthonormal polynomial py, ,(z) has zeros {0}, Where
O < xnn’p < xn_l’n’p <..< 3327,,”0 < m]_n’p < d.

In our estimation of p,,(z), we shall need bounds on the zeros and
on the spacing between the zeros. In this section, we establish these,
thereby also obtaining Theorem 1.4.

We begin by showing that all the zeros of p,(W?,z) liein A, , +1
as a simple consequence of our restricted range mequahty Theorem 5.1.

Theorem 7.1
Let W := e % where Q : I — [0,00) is such that Q* (z) = Q (z?) is
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convez in I*. Assume moreover, that Q(d—) = oo and Q(x) > 0 =
Q(0),z € I\{0}. Let p> —3. Then for n>1,

(7.1) Linp < Opipid-

It is interesting that for p = 0 and for weights on the whole real line,
a1 has to be replaced by a,,, 1 {7]. The reason for the better estimate
here comes from the slightly different restricted range inequalities we
obtain for subintervals of (0,00). We note that it is possible to prove
a generalisation of Theorem 7.1 for L, extremal polynomials, as in [7].

There are a number of simple monotonicity and interlacing proper-
ties for the zeros of the orthogonal polynomials:

Theorem 7.2

Let W be a continuous function on I such that W? has all finite power
moments. Let p > -—% and let £ be a positive integer.

(a) For each n > j > 1, x;n, s a non-decreasing function of p.

(v)

Tin,p S mln,p—}-t S T1n+L,p-

(c) For each j € {1,2,3,....,n — 20}, pney, has at least one zero in
[Ti420n,p) Tinp|- Moreover, for each j € {20 +2,2+3,...,n},

(7.2) Tinprt S Tj-20-1m,p S Bj-20-1mpte-

We note that in the special case of Laguerre weights ze™?, the
monotonicity of the zeros in p is classical [22, pp. 122-123]. On the
more quantitative side, we prove:

Theorem 7.3
Let W € L(C?) and p > —3.
(a) Uniformly for n > 1,
2

(7.3) Tppp ~ Gul .
(b) For n large enough,

1 —_ mln:p ~

ay, n

(c) For some C >0,
(74:) Tj1mp ™ Ljn,p < C(ran(mjn)72 <jsn.
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We begin with

The Proof of Theorem 7.1
We use the well known formula,

(7.5) [; £(PW,)*(z)dz

Tine = pebecy [(PW,)2(@)dz
This is an easy consequence of the Gauss quadrature formula for Wp2,
see for example [22, p.188]. In turn this implies that for r > 0,

Tinp . Jil = Z)(PW,)*(z)dz
(7.6) - 4 PePas : J;(PW,)?(z)dx

Now we proceed as in the proof of Theorem 11.1 in [7, p. 315]. Let
t=n+p+1 p=2 and r =t. We note first that for P € Pn-1\{0}

x
1= Z 2| P(s) [€ P y=Prpp.

Then Theorem 5.1 with the above choices of ¢, p and with 8 = p gives
[ on=Ziewpee< [ 11- 21w e
\A @t Ay @

Since 1 — Z > 0 in the right-hand integral except when = a;, we
deduce that

/I (1- a%)(PW,,)?(m)dm > 0.
Then (7.6) gives

1=3n 0
a;

||

Proof of Theorem 7.2

(a) If w; and w, are positive continuous weights on a compact interval
[@,b] and w,/w; is a strictly increasing function in [a, b}, then a classical
result [22, Thm. 6.12.2, p. 116] asserts that

Tjn (w1) < Tjn (we)

where z;, (w;) denotes the jth zero of p, (wi). In our situation, if A >
p, Wa/W, is a strictly increasing function in I. However, the classical
result cannot be applied directly to Wa and W, since I is not compact.

(However Szego applies the result to Laguerre weights without further
explanation). We can replace I by I. = [¢,inf {d —¢,1}], wheree > 0
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is small, and apply the result to the weights W, and W restricted to I..
If we fix n, and let ¢ — 0+, and use continuity in €, of the orthogonal
polynomial of degree n with respect to the weight Wf restricted to I,
we then obtain the result.

(b) By (a),
Lin,p _<_ Lin,p4£-
Moreover, the extremal formula (7.5) gives
f; 2P? (z) 2*W? (x) dz
mln,p+£ = Sup 2 2¢ 2 .
acs(Prsn-1 J; P2 (@) 2*W} (z) do

J;zP? () W} (z)dz
= sup 5 2 = Tintl,p-
deg(P)<nt+e-1 f; P2 (x) W2 (z) dz
(c) By the Gauss quadrature formula, if P is a polynomial of degree
<mn-—2{—1, we have

Z An (W;? ’ mjn,p) m?ﬁ,ppn,pw (Tjnp) P (Tjn,p)

=1

= /I m”pn,ﬁg {(z) P (z) Wg (z)dz

= [Prre @ P@ W (0)da =0
That is, setting

Wip = }Vn (Wga xj’n,p) x?fz,p Ipn,P-i-l (wjn,p)‘ = 0’

we have for P € Pp_9s-1,

k13
Z’wjn-‘)‘ign (Pr.p+t (Tjnp)) P (Tjn,p) = 0.
j=1

It then follows that for k = 1,2, ..., n—2¢, the sequence {py p+¢ (T, p)};::e

contains a sign change or zero. Indeed if there is a k for which this is
not true, on setting

7

P@)=o I1 (@ = Zjn,p)

j=1,j¢{k,k+1,...,k+2€}

where

0 = Sign (Pn pie (Tinyp)) 5
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we obtain

k+2¢

Z Win | P (Zjn,p)]

= Z Win8ign (Pn,p+¢ (Tjn,p)) P (Tjn,p) = 0.
J=1

This is not possible as P (zjn,) # 0,k < j < k+ 2£ and all of
Win, k < j < k+ 2¢ are of one sign. So {pn e (mjn,p)}fzze has a
zero or sign change for each k, and then the first part follows. Sim-
ilarly, {Pn,p+e (Tjn,p)};—, has at least n — 2¢ sign changes or zeros in
the sequence {%jn,};_,- (If not, we choose P to be a polynomial of
degree m < n — 2¢ — 1 with sign changes to match the m sign changes
in {Pa,p+e (Tjn,p)}joy, but not vanishing at any of jn,,, leading to a
contradiction as above).

Next, the above shows that for the smallest zeros of p,, and p, p1e,
we have

Tan,p < Lon,ptt < Tn—28n,p-

Let us now generalize this. If for some k,
Zkn,pit > Th—20—1,n,p)

then in the interval [Tpp, p, Th—2—1,n,p]5 Pr,p+e has at most n — k zeros,
and hence in {Zjn,p};_s_g¢_1> Pn,o+e has at most n—k+1 sign changes.

In the remaining {mjn,,,};:fe 1
changes, giving a total of at most n — 2¢ — 1 sign changes in {z;,,}

a contradiction. So

y Pnp+e has at most k — 2¢ — 2 sign
n
=10

Tkn, o+t < Tr-26—1,n,p+

The right-hand inequality in (7.2) follows from (a). B
Next we record the desired inequalities for the zeros of py, —1/4, which
follow from results in {7].

Lemma 7.4
Let W e L(C?) and 7= ~1.
(a) Uniformly for n > 1,

(7.7 Tnmr ~ Gy 2.
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(b) For n large enough
ZTinr
(7.8) 1- =25~ g,

an
(c) For some C >0,
(79) Zingr — Titimr ™~ ()on(mjn)a 1 _<.. ] S n— 1.

Proof
(b) Recall from (1.7) that

P (W7, %) = pon (W,1)
SO
(7.10) T P
By Theorem 1.19(f) in [7, p. 23],

*

T
1,211 K
1 - * ~ 7’21‘&7
2n
SO
* 2
Tinr xl 2n
1——=1-{—==] ~ns ~n,.
an a;n 77211 Mn
(a) Next, as W* is even, the spacing in [7, Theorem 1.19(e), p. 23]
gives
* — * * * *
2wn,2n = Tpon — $n+1,2n ~ Oon (mn,2n)
Thi1on
a* '1 e a— a
~ 2n i L ~ V ’n,
7 z* n
— Imi4l2n 4
\/ll at |t en
whence
e [k 2 apn
Tnr = (T gn) " ~ 2
(c) By (7.10),
— * * * *
Lingr = Lj+ipr = (xj,2n + Z’j+1,2n) (37 jon -’Bj+1,2n)

~ x;,2n(p;n (117;,2”) ~ Pp (mjn,f) )

by (6.13). W

Proof of Theorem 7.3(a), (b)
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(a) By the classical extremal property for smallest zeros, and our re-
stricted range inequalities,

J;zP? (z) W2 (z) dz

oo = sPizn-1 [, P? () W2 (z) dz

ay, . f::/n2 P2 (z) WE (z)dz

n? deg(Psn-1 [, P2 (2) W? (2) da
> ¢,

=

Next, choose a positive integer £ such that £ 4+ 7 > p. By Theorem
7.2(a),

Tnn,p < Tonn, b4
and by Theorem 7.2(b),

Lon, i+ < Tpnte,r-

Using Lemma 7.4(b) and the spacing in Lemma 7.4(c), we obtain (as
{ is fixed),

Ay,
Tonter < C 2
and hence
Gy,
A < C—:.
nmp = U

(b) Case I: p> 7.
Choose a positive integer £ such that £ + 7 > p. By Theorem 7.2(a)

Tin,r S T1in,p S Tinbtr

and by Theorem 7.2(b),
Tin+r < L1 n4-L,7+
Then
1— Zin,p > 1-— T1,nte,T
an Ay
—- 11— T1nte,r + Z1n+e,r ( An 1) .
Qpte an Ot
Here from (3.9),

22 120 () = o),
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while from Lemma 7.4(b),

1 - zl,n—f‘l,f
Qntt
So at least for large enough n,
z
1-=22 >0

n

In the other direction, Lemma 7.4(b) gives

~ Mot ™ T

z z
-2 < 2T <o

ar, A,
CaseIl: p< 7
Choose a positive integer £ such that £+ p > 7. Here Theorem 7.2 (a),
(b) give

Tin,p S Tin,r S Lin,t+p S T1,n+L,p0
Then

T T
Cﬂn 2 1— in,7 2 1-— 1,n+€,p'

n a’n
Much as above this yields, for large enough n,
1— T < Oy,
Qg
and hence for large enough n,
1 — Tiinwe < Cn,.

n

In the other direction,

x T
1-— in,p 2 1— in,7 Z Cnn

Gn an

Our proof of Theorem 7.3 (c) is based on an extension of a classi-

cal inequality of Erdos and Turan for sums of successive fundamental

polynomials. One such extension was presented in [8], and reproduced

in [7, p. 320 ff.]. That required @ to be convex, which is not always

true for the weights in this work. So we present another extension, £

which allows z@' (z) to be increasing, but holds only on subintervals E

of (0, 00). Yet another extension was given in [24]. :
We note that it is possible to give another proof of Theorem 7.3(c)

based on the estimates in Lemma 7.4, and the inequalities in Theorem

7.2. But we feel the following lemma is of independent interest.
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Lemma 7.5
Let
0<as<y1 <Y <..<Yn <D

and {£;(z)}72; C Pm_1 denote the corresponding fundamental polyno-
mials of Lagrange interpolation, so that

e(yk) Jk1<.77k<m
Let w : (a,b) — (0,00) and assume that q = log L is such that ¢

exists and such that xq (x) is non-decreasing in [y;,ym). Then for
1 S .7 .<_ m — 1;

(711) i(@)w ™ (g w(z) + L (@w™ (Ya)w(z) 2 1,2 € [y;, Y]

We first need a zero counting lemma:

Lemma 7.6

Under the hypotheses of Lemma 7.5, if P € P,, has only real zeros,
all lying in [s,t] C (0,00), and s,t are zeros, then (Pw)' has at most
m — 1 distinct zeros lying in [s,t] N (a,b).

Proof

Let

O<s=m<z<..<zp=t

denote the distinct zeros of P, with multiplicities ny,ns,...n; respec-
tively. Since

(Pw) =0=>P' —¢P =0,

we see that zeros of (Pw)’ occur where P has a multiple zero or where

P k n;

has g(z) = ¢'(z). Now we count the zeros of g — ¢’. Since we are
working on a subinterval of (0,00), this is the same as counting the
zeros of the function zg (z) — zq¢' (z). Here

ey (@) = - Z(”ﬁ{’;’)

so zg (z) — zq' (z) is strictly decreasing in (z;,2;4+1) N (a,b), so has
at most one zero there. (There will be exactly one zero if (z;,2;41) C
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(a,b)). Thus (Pw)' has at most one zero in (z;,2;11)N(a,b),1 < j <k,
and zeros at z; iff n; > 2. Then in [s,] N (a,b), (Pw)’ has at most

k k
k——1+Zma,x{0,nj——1}g——l—l—an:m—l

distinct zeros. W

We turn to the

Proof of Lemma 7.5

Now that we have Lemma 7.6, this is identical to that of Lemma 11.8
in [7, p. 322], but we include the details for the reader’s convenience.
Fix j and let

P(z) := £j(z)/w(y;) + Lis1(2)/w(yj1)-
Then P € Py,_1 has m — 2 zeros at {y1, %2, ---Yj_, Yj+2, --Ym } and
(Pw)(y;) = 1 = (Pw)(yj.1)-

Its remaining zero must also be real. By Rolle’s theorem, (Pw)’ has a
zero in (Yx, Ye+1) for

ke{l,2,..m—1\{j—1,j+1}

a total of m — 3 distinct zeros. From the lemma, it can have at most
m — 2 distinct zeros in [y1, Ym]- We claim that

(7.12) (Pw) (y;) 2 0 > (Pw)'(y.1)-

Once we have proved this, it follows that (Pw)’ has exactly one zero in
(¥4, Yj+1) at its local maximum in this interval (otherwise it would have
to have > 3 distinct zeros in this interval, giving > m — 1 zeros in all,
which is impossible: a sketch of the situation will assist the reader).
Then Pw increases from 1 at y; to its maximum and then decreases
again to 1 at y;1, giving (7.11).

We proceed to prove (7.12). Suppose first that 2 < j < m —2
and suppose for example (Pw)'(y;j+1) > 0. Then we see that (Pw)
must have at least one zero in (y;41,¥j42) (recall that (Pw)(yj1) =
1; (Pw)(yj+2) = 0, again a sketch will help). Then we already have
counted m — 2 distinct zeros of (Pw)’, so there are no more. But
then (Pw)(y;) < O (for else, (Pw) has at least one local maximum
and minimum in [y;,y;4+1) so (Pw)’ has 2 zeros there, and this is im-
possible: consider separately the cases (Pw)'(y;) = 0 or > 0). Since
(Pw)(y;) =1 > 0 = (Pw)(yj-1), (Pw)’ has one more zero in (y;—_1,Y;)
giving > m — 1 zeros, which is impossible. So in this case we have
the right-hand side of (7.12) and the other half of (7.12) is similar (or
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can be deduced by considering (Pw)(—z) with points —y;,1 < j < m).
For j = 1,2 or m—1,m, this argument requires minor modifications. i

Finally, we turn to:

Proof of Theorem 7.3(c)

Let {¢;n}}, denote the fundamental polynomials of Lagrange interpo-
lation at the zeros {Zjn,}7—; of the orthogonal polynomials pn,, (%), so
that

ejn(xlm) = 6jlc1 1<, k<mn.

A classical formula for the weights in the Gauss quadrature formula is
Ajn = )\n(Wg,mjn,p) = /anW,?
I

Then applying Lemma 7.5 with w = W2,

AinW (& jn,p) + Xjo1aW (T j1,0,0) = /1 (B W (@jnp) + 6y W (2j_10,0) )W)

Ti-1,mp
> [ G W ) + Baa W i n )W

I, p

1 Lj—1,n,p _ _
23 / LW (T jnp) + Lic1aW H (&jo1,m0))* W)

Zjn,p

1 [%i~lme
(7,13) > 2 /; ’ xPdz > C’(a:?f’f;,ln — ;1;?5;1).

In.p

(We used the inequality s?+2 > 1(s-t)? in the second last line). The
inequality

Yt — 22 > Gy (y — z) max {9, 2%} ,y > = > 0,
where Cj is independent of z and y, enables us to reformulate the above

as

Ajnwuz (wjn,p) + Aj_l)nW~2 (mj““l)'nwp) Z C (a:j"lvnvp - mj"”p) max {mﬁil,n,p’ mj’rpl,p *
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Using our estimates for Christoffel functions in Theorem 6.2 (recall also
(6.6)), we obtain for some C # C(j,n)

(wj—-l,n,p = Tjn, P) max {xg—p—l,n,m jn,p}

C(Qon(xjn,p)wjn,p + (Pn(wj-l n,P)mj—l n,p)

O(‘pn(m]n,l’) + Son(mJ-l,n,P)) max {.’L‘ —1,n,p? Jn,p}

IA A

SO

Tj-1n,0 — Tjn,p = C(Son(xjnm) + ‘aon(xj-—l n,P))

But if, for example, ¢, (Zjn,p) < Pn(Zj—1,n,p) this gives
mj"lvn!p - zjn’p S C(pn(mj“:l,nyp)

and then Lemma 4.3 shows that

(7.14) (T jn, p) ~ 0p(Zi—1mp)

So the desired inequality follows. The case @,(Zjnp) > Pp(Tj-1,n,) I8
similar. W

8. BOUNDS ON ORTHOGONAL POLYNOMIALS

We prove Theorem 1.2, which we reformulate as:

Theorem 8.1
Let W € L(C?),p > ~1 and let pn, (x) be the nth orthonormal poly-
nomial for the weight W2. Then uniformly for n > 1,

(8.1)
sup | pug(a) | W(a) (24 5)" | (o + 15) (on ~al + auny) V4~ 1

The proof of Theorem 8.1 is similar in spirit - and easier - than
its analogue for weights on two-sided intervals, Theorem 12.1 in [7, p.
326]. The broad outlines of the method were introduced by Bonan [1]
and extended by Mhaskar [10], and the authors. The method has also
recently been used by Kasuga and Sakai in [5].

We shall first prove the upper bound for = € [ea,,a,], any 0 < £ < 1,
and then treat the rest of the range of z. Before proceeding to the first
step, let us recall some notation: the zeros of p, () = p.(W?2,z) are
denoted by

0 < Zpnp < Tpeipp < oo < Topp < Tinp < d
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and v, , denotes the (positive) leading coefficient of p,,(z). The nth
reproducing kernel function is

n—1
(8’2) Kn;P(:B? t) = Kn(Wg’ x’ t) = ij,p(m)p],p(t)-
—
The Christoffel-Darboux formula provides an alternative representation
for K,, :
n— (3 n— t - Mn t n—
(8'3) Kn,p(mj t) — ’)/ 17pp 1p(w)p I,P( ) p ;P( )p I,P(a’.) .
n,p r—t
Letting t — z gives
(84)
- - Yn-1,
An,})(w) = ’\nl(Wgaz) = K, p(z,7) = “ﬁ@;,p(m)pn—l,p(x) - p:'z—l,p(m)pn,l)(m)]
and in particular for z = x;, , we obtain
- Yn-1,
(8.5) }‘n,:(“’jn,p) = ~ 1pp;z,p(mjn,p)Pm—l,p(xjn,p)-
: n,p
Lemma 8.2
Let p> -2 and 0 < e < 1. Let W € L(C?). Then uniformly for
n>1,
(8.6) sup | pn,(z) | W(z)2? | z (an —z) |V4< C.
z€[ean,a2n
Proof
Let 7 = —7. First recall that a2 = a, and a substitution in the

integral defining orthogonality of ps,, (W*2,t) gives
Pur (8) = Pn-1/a (t*) = pan (W™, 1) .

Then the bounds for the latter polynomials in [7, Theorem 1.17, p. 22}
give for t € I*

[P ()| W (£2) = |pan (W2, 1) W* (8)] < C |ag2 — 2|72,

Then for n > 1 and any fixed j, our restricted range inequalities and
(3.9) give

(8.7) SUD [P 13- W] (2) |a, — 2|* < C.
xcl

Now choose non-negative integers k, £ such that

1
(8.8) k+p>———2~and€—~p>0.
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Also let

1
(8.9) ﬂ:32p~€+k+§.
For a fixed z € [ea,, ag,], let

(8.10) S (t) := t'zP.

We may write
PuoS @) = [ Kusersr (5,0) @n,S) Q) W2 (0 1
= [ Kuseray @t)ong O [ = ] W2 ()
+ /I Konseri (2,8) pap (8) W2 (8) di

(811) = I Il + .[2.

Estimation of I,
By choice of 3, orthogonality, and then Cauchy-Schwarz,

n+¢
l (tk Z Djr (CU) Pjr (t)) Pnp (t) W3 (t) dt

j=n—k

n+4-£ 2
< [ /I (tk Z Pir (T) Pjir (t)) W2(t) dt:|

j=n—k

|| =

1/2

Now we use our restricted range inequality Theorem 5.2(c), and then
(8.7) to obtain, for z < agy,

LW (z) lan — o*/*

2k-+2p

1/2
025 t : c
< e ~n
< C[/(; |an——t|1/2dt+0(e )}

1/2
Co 2p+2k
< Caﬁ+k+1/4 / __i_,_ﬁ_z_ds_’_O (e—-nc) :
0o |1-—3s|

provided Cj is so large that ag,/a, < Cpy. Here the integral converges
as 2p+ 2k > —1. Since z € [ga,, az,), we obtain

(8.12) || W (z) |an — z|** < CxPth+l/4,

Estimation of I
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By the Christoffel-Darboux identity,

fY
I1 = nthT {pn+£+1,‘r (ﬂ?) I 1,1 ™ Pnygr ("7) I 1,2} ’
Yott+1,7
where
ha = [puer Opaa¢ (55 ) W2 @)
Nis 2

Lo = | Prperiyr () Prp(t)t pr— W2 (t) dt.

. —

Now our restricted range inequality Theorem 5.2(a), applied to Wf
gives for any m and p,

Y
Tocte / By (@) Ponctp (2) W2 () do
m,p

am
(8.13) < Conm /0 P (@) Prosp (2)] W2 (2) d < Clt.

Using this, our bound (8.7), Theorem 5.2(c), and Cauchy-Schwarz gives
LW () |an — 2| *

1/2
gn  420—2p—1 8 — 48 2 c

< —n .
< oa,,(/o L (B2E) wro ()

Let x = z/a,. The substitution t = a,s gives for some C},
|| W (=) |a — ="/

C1 20-2p-1 B _ B\ 2 1/2
< Catrts-ia / s - (X 8 ) ds+0 (e~nc) .
o |1—s| X—s

2
We claim that the term (x}”;_«:ﬁ is bounded independently of n,z, z.
Indeed as x € [, C], we see that for s € [0,£/2],

B gP\2 p-1\ 2
(5=5) =() =
X— S 2
and for s € [¢/2,C], the mean value theorem gives for some £ between
s and ¥,

2
(5=5) =@eyse
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So, using our choice of G,
LW () |an — a|'/*

Cy 824—*2p-—1 o
< Caz+k+1/4 / _l______ds+0 (e—n ) < C’ag+k+1/4,
0

since £ — p > 0. As € [gan, azn), this leads to the estimate
|L| W (2) |an — z|* < CaftiHi/a,

Finally, combining this last estimate, (8.11) and (8.12), and since
S (.7:) = P+t = $2p+k+1/2,

we obtain,
lpn,p (x) W ()| z* |z (an — m)ll/‘l <C.
|
The method for the rest of the range involves the function
9 N
(8.14) At (@) = 2 [ o W) (00, Dt
where
= _ 2Q'(z) —tQ'(t)
Q(m’ t) - T — t M
The first step involves an identity for pf, ,(Zjn,0):
Lemma 8.3
Vn-1,
(8.15) P(@ing) = =P AL (@ o)Puso ().
n,p
Proof

Let K, ,(z,t) denote the reproducing kernel for the weight Wg. Since
), , has degree <n —1,

wjn,pp:z,p(a’jn,p) = /; Kn+1,p($jn,p7t)tp:z,p(t)wz (t)dt

- /I Koo (@ 0 (WE(E)dt,

since Pr, (Tjn,p) = 0. We integrate this last relation by parts. Using
the fact that the integrand vanishes at 0 (recall that 14 2p > 0) and
d, as well as orthogonality, we obtain

wjn,pp;,p(mjn,p) = ‘/ijn,p(t)Kn,p($jn’p7 t)2th(t)W3 (t)dt'
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Next, the Christoffel-Darboux formulagives
(8.16)

/ n— pn, t) .,
T jn,pPn,p(Tjnp) = 77 2 D1, (Tjm,p) [2 / Q) (1) W2 (t) dt]

n,p J ™p

Then orthogonality gives

Tn-1, 2 tQ' (t) — Tjn p@ (Zjn,p)
P :‘:P(a;j"ap) = = ppn—l,P (Zjn,p) T o /I p?z,p (t) [ . =
Jn.p

Vn.p t— Tjnp

Yn—
= = 1’pAn p(man,p)pn— o(Tjnp)-
n,p

|
The next step is to use this identity to bound p,(z) in terms of A¥
and A,:

Lemma 8.4
For 1 <j<n,

(8.17) | (@) |<] @ = Timp | Papl@) 2 AE (@50,0)] 2.

Proof
Applying the Cauchy-Schwartz inequality to Ky, ,(z, Zjn,) gives

| Ko, Tjn,p) |S ’\—1/2(55)’\~1/2(‘17jn,p)
while (8.5) and Lemma 8.3 give

2
- VYn-1,
M (Ejnp) = [ ” : ”Pn—l,p(wjn,p)] AT (@ jn,p)-
n,p

Applying this identity and the last inequality to the Christoffel-Darboux
formula (8.3) in the form

Yn-1,
p‘n.,p(m) = Kn,p(xa izj'ra,p) (z - z:i’nnﬂ)/ [-};—ppn—l,ﬂ(mjﬂ,/’)]
n,p

gives the result. B

For a given z, we can choose z;j,, to be the closest zero of p,, to
x, and use our bounds for £ — z;,, from Theorem 7.3 together with
our bounds for A,, from Theorem 1.3 to obtain a bound involving
A% (jn,p). Choose M > 1 such that for large enough n,

an
(8.18) Tpnp > 3 Ak

] W2 (t)dt
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(This is possible by Theorem 7.3). We fix ¢ € (0,1) and set

Ay,
(819) .77,, = [W,ean].
In the sequel, we also need the notation
an\ 2¢
(820) @)= (pu,W)(@) (a+3) " |a(e— an) 2
and
(8.21) O, (z) := A#,p(m)gon(m) | z(z — a,) |1/2 .

The next step is to bound ¥,, in terms of 6,,.

Lemma 8.5
Let x € T, = [3323, €00} and xj,, denote the closest zero on the left or
right to x, restricted to lie in J,. Then for some C; # Cy(n,¢,z),

(822) \I’n(QI) S C]_@n(a?jn’p).
Proof

From Theorem 7.3

(8.23) | 2= zjn |< Copp(Thn)

where k is either j + 1 or j. As in (7.14), Lemma 4.3 gives
PrlThn,p) ~ PulTinp) ~ Pu(T)-
Next, from Theorem 1.3,
- A\ 2P
Mp@W;2(0) (24 25) 7 ~ 0u@) ~ GulBing)-
Combining this, (8.17) and (8.23) gives

U, (z) < CA¥ (%jn,p)Pn(Zjnp) | 2(x — ay) |12
It remains to show that

| T~ an |~ Tjnp —an | and T~ i,

This is easily established:
Ay, — T T — X T4 — T;
n = 1 + n,p S 1 + J l,n)P J+1,n,P
Op = Tjn,p Un — Tjn,p Un = Tjn,p

, . . -2

<1+ Cn(Tjnp) <1+ C‘Pn(“"yn,p) <1+C Tijnp + Gt ™02 <1+ c <C
Oy, — mjn,p Qan n\/a_na‘n n

by Theorem 7.3(c) and (1.18). Similarly we derive a lower bound. The

proof that & ~ z;, , is similar.

Now we prove:
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Lemma 8.6
Let 1> 0. There exist € € (0,1),C(e), and ng such that for n > ny,

(8.24) | ©n | Lee( )< C(&) + 71 || ¥ llzeairy -
Proof
We split
% 9 can an d J—
a,@ = 2 [T+ [T+ [ ] na oG
€an Qr,
= L+ 1+ 1.
Note that as z € Z,, = [{223,€0,], and € < 1, (1.18) shows
(325) 0ale) | @ ar) [Vn 222,

We shall fix 9, > 0 (to be chosen small enough later, depending on 7).
We can choose € so small that

2ea, < Ay, ny
in view of (3.3). Then

o Qz,t)
V't (a ,,—t

2 Gmyn xz,t Ap.p— 1t
< =1 ¥ lzem / CIEX) ————=dt sup \/ —HE—
T 0 [t a”q — t t€f0,az, ] an, —1

C || Un | pa(t) Tayn () Sy

z (a,,ln — ) n

1 Oy
Can (2) /2 (g0 — ) ¥

by (4.8) and (4.9). Here z < €a, = z < 1a,. Using (8.25), we
deduce that

Lgn(z) | z(e—an) |2

n n QnT
< Cll Y o T \/%
a,hn:L‘ n

o
< C |l Y ) Ty /2 < CAap) ™™,

2
L < o | Yo |lzeotr

IA

< C ¥ || 2w

N
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by (3.3). Since 2A > 1 and C is independent of z € Z,, and n and 7,
we may choose 7); so small that for all n and z € Z,,,

(8.26) Lpn(x) | 2(z ~ az) 120 || W ||zt -
Next, by the bounds on p,, that we already have for z > €a,,
. A/t (an —t)

on () C
= \/x(an—m %(x)\/m(an"m)’
by (4.8) and (4.9), so

(8.27) Ley(2)Vz(a, —z) < C.

Finally,

s [0 wy o

< ET'Z——_x) Ol AROLE

Here an integration by parts, and orthonormality, give
1
/tQ, ®) (pn,pr)2 )dt=n+p+ 2
1
Then

L. (2)V/7 (@ —2) < Z-n2 ¢

xa, n
Putting the estimates together gives

Oup(z) = Af,(z)pu(z) V2 (a0~ 2)
< C+n| ¥ llzwm
uniformly for n large enoughand z € Z,. B

We turn to the

Proof of Theorem 8.1
Let 0 < 7 < 1. By the results of Lemma 8.5 and 8.6 we have for some
€ > 0 and C; independent of n,e

sup | U,.(2) |Gy sup 0, (z)

z€[an/Mn2,ca,] z€[Man, [n?,can}

< G (CE)+1 1l Ya llzwm) -
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Lemma 8.2 gives
sup | ¥n(z) |<Co.

z€[ean,a2n]

Next, our restricted range inequality Theorem 5.2(a) gives for some C3
independent of n,e,n

“ ‘I’n,p ”Loc(-l)s C3 “ ‘I"n,P ”Loo(an/(Mn2)1an)
< Cymax {Cy, CiC () + Cin || Yayp Loy } -

Since €y and C; are independent of 77, we may choose 1 = (C3Cy) ™" /2,
to obtain

| Yo o< Ca
Then it also follows that for z € [a,/Mn?,a, (1 —n,)],

oW1 @) (24 22)" | (2 + ) (@~ an)? + (@) | < 0

Our restricted range inequality Theorem 5.2(a) shows that this holds
for all z € I, and then Theorem 8.1 follows as stated.
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