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Abstract

We obtain the rate of decay of the smallest eigenvalue of the Hankel
matrices ( I; R 2 (1) dt)? o for a general class of even exponential

weights W2 = exp (—2Q) on an interval I. More precise asymptotics
for more special weights have been obtained by many authors.

Remark 1 Running Title: Smallest Eigenvalues of Hankel Matrices



1 The Result

Let I = (—d,d) where 0 < d < co. Let @ : I — [0,00) be continuous and
W? = exp (—2Q) be such that all the moments

/HW2 (t)dt,j =0,1,2, ...,
I

exist. Form the positive definite Hankel matrix

H, = (/tj+kW2 (t) dt)
I J,k=0

and denote its smallest eigenvalue by A,. The focus of this paper is the rate
of decay of the smallest eigenvalue A, of H,.

Many authors have investigated the asymptotic behaviour of A\, as n —
0o. For example, Widom, and Wilf investigated the behaviour of A, for
weights on a finite interval satisfying the Szegd condition [13]|. For the Her-
mite weight W (z) = exp (—12?), Szegd [11] established the asymptotic

Ap = 2% m2enid exp <—2 (2n)1/2> (14+0(1)),
with similar results for Laguerre weights. The first author, Berg and Ismail
[2] showed that \,, remains bounded away from 0 iff the moment problem for
W? is indeterminate. Moreover, the first author and Lawrence [3] established
asymptotic behaviour of A, for weights on (0, c0) such as exp (—xﬁ ) , 8> 0.
Beckermann has explored condition numbers for Hankel matrices [1].
It is well known that A, is given by the Rayleigh quotient:

7T
X H,X
>‘n :mln{_—n X € Cn+1\{g}} .

T

X X

Corresponding to any of these vectors X = (zg, z1, T2, ...xn)T, we can define
a polynomial

P(z) = ijzj.
=0

Using the definition of H,,, we see that we can recast the Rayleigh quotient

in the form

PI* W2

Ap = min{ — ‘£I| | ——— :deg(P)<n,. (1)
Ef—w |P (e)]” do
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This extremum property, very similar to the extremal property of Christoffel
functions, is the basis for the analysis in this paper.

Before we define our class of weights, which is the even case of the weights
in [7], we need the notion of a quasi-increasing function. A function ¢ :
(0,d) — (0,00) is said to be quasi-increasing if there exists C' > 0 such that

g(x) < Cg(y),0 <z <y <d.

Of course, any increasing function is quasi-increasing.

Definition 1.1 General Exponential Weights

Let W = e~ where Q : I — [0,00) is even and satisfies the following prop-
erties:

(a) Q' is continuous in I and Q(0) = 0;

(b) Q" exists and is positive in 1\{0};

(c)

lim Q(t) = oo;
(d) The function
_tQ'(t)
T(t) := D) gt #0

is quasi-increasing in (0,d), with
T(t)>A>1,te(0,d);
(e) There exists Cy; > 0 such that

Q) QW
Q@] =9 oW

Then we write W € F (C?).

, a.e. ¢ € (0,d).

The simplest case of the above definition is when [ = R and 7" is bounded.
This is the so called Freud case, for the boundedness of T" forces ) to be of
at most polynomial growth. A typical example is

Qz) = |z|",z € R,

where a > 1. A more general example satisfying the requirements of Defini-
tion 1.1 is

Q(z) = expy(|z|”) — exp,(0),
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where o > 1 and ¢ > 0. Here we set exp, () := x and for ¢ > 1,

expy (z) = exp(exp(exp ... exp (z))))

~
£ times

is the (th iterated exponential.
An example on the finite interval [ = (—1,1) is

Q(z) = expy((1 = 2%) ™) —exp,(1),z € (—1,1),

where v > 0 and ¢ > 0.

In analysis of exponential weights, an important role is played by the
Mhaskar-Rakhmanov-Saff number a, € (0,d),u > 0, which is the unique
root of the equation

_ 2 ! ausQ’(aus)dS
mJo VI-s
One of the features that motivates their importance is the Mhaskar-Saff iden-
tity [9]
I PW Nl ootn=1l PW || [=an.an;

valid for all polynomials P of degree < n. Throughout, C,C}, Cs, ... denote
positive constants independent of n, z, ¢t and polynomials P of degree at most
n. We write C' = C(\), C' # C()) to indicate dependence on, or independence
of, a parameter \. The same symbol does not necessarily denote the same
constant in different occurrences. Given sequences of real numbers (¢,,) and
(d,,) we write

Cn ~ dp,

if there exist positive constants C; and C5 such that
C'1 S Cn/dn S C2

for the relevant range of n. Similar notation is used for functions and se-
quences of functions. We shall prove:

Theorem 1.2
Let W be even and W € F (C?). Then for n > 1,
" 1 1
An ~ ﬁe:x;p <—2/ log | —+4/1+— ds) . (2)
V an, 0 as a?
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One may recast this estimate in a number of other ways: for example,

/ " 1
Ap ~ o exp (—2/ arc sinh (—> ds) .
Qp, 0 Qs

An integration by parts shows that

n 1 1 an bt
A~/ —exp | —24¢nlo —+,/1+— +/ ——dty ], (3
an p( { s apn a? o tV1+t2 }) )

where b, is the inverse function of a;, that is

bat :b(at):t,t>0

(For this, one also needs lim,_,o, slog i = 0, which follows from the conver-

gence of fol log a%ds, see below). Another form, which is the initial form in

our proof, is
n .
Ap ~ 4 /—a exp (2[V" (i) — ¢al), (4)

where V7" is an equilibrium potential, and ¢, is an equilibrium constant -
we shall define these at the end of this section.

Example
Let « > 1 and
Q@) = |o|",z € R.

Here
ay = Cou®, u > 0,

_— 9 1/a
o (2 T (0/2) ) |

where [9]

I ()

Using (2), the Maclaurin series expansion [5, p. 51]

= 2k)!
log (z+V1+22) = —1)F ( o2z < 1,
J ) ;%< Vet S



and some straightforward estimations, we obtain

(2k)! a; 1
22k (k1) (2k 4+ 1) 1 — 2EH

2
Ap ~ n2(1-3) exp | —2n Z (1)
k=0

provided « is not an odd integer. If a is an odd integer, we obtain instead

@

ozt k 2k)l gl
—2n 21[9:20 | (=1) 22k(k(!)2()2k+1) 1- 261

—2(logn) (—=1)7 = o-a

2“*1(%_1!)2a @

Ap ~ n2(1-%) exp

In both estimates, [z] denotes the greatest integer < x. In particular, for the
Hermite weight o = 2, this gives

Ap ~ ni exp (—4\/5) ,

which accords with Szegd’s result, if we recall that @ (z) = %xQ in his formu-
lation.

This paper is organised as follows: in Section 2, we establish a general
lower bound for A, using the same methods that were used in [7] to establish
lower bounds for Christoffel functions. In Section 3, we establish upper
bounds for A\, by discretizing a potential. Then in Section 4, we complete
the proof.

Throughout the paper, we assume that W € F (C?). (In fact, with more
work, our results hold for the class F(Dini) in [7], but in terms of weights
defined by explicit formulas, the difference is insubstantial). For each ¢ > 0,
it is known that there is a non-negative density function o; on [—ay, a;] with
total mass t,

at
/ o (s)ds =t, (5)
“a

satisfying the equilibrium condition

/_at log 1 O (S) ds + @ (SL‘) =, T € [—at, at] ) (6)

at |.T - S|

We call o, the equilibrium density of mass ¢, ¢; the equilibrium constant for
t, and

at 1
V7ot(z) = / log ——0; (s) ds

Car |z — s|



the corresponding equilibrium potential. One representation for oy is

V CL% — z? o Ql (S) — Q/ (ZL‘) ds (7)

3 T € (—ay,ay).

)
T —a 5= Va? — s?

t
2
ct:/ log —ds.
0 Qs

oy (z) =

and one for ¢ is

See [7, Chapter 2].

2 Lower Bounds for )\,

The result of this section is:

Lemma 2.1
Let 0 <np < 3. Then

A< Oy {% /_:rr exp (—2 [V”” (ew) — cn}) de + 021;)% exp (—2 [V”” (ew) — cn])} .
(8)

Here Cy depends on n, not on n.

Throughout we fix n and set
A =[—ay,ay].

Given x ¢ A, we use ga(z,7) to denote the Green’s function for C\A with
pole at z, so that ga(z, ) +log | z—x | is harmonic as a function of z in C\A
and vanishes on A. When = € A, we set ga(z,z) = 0, and when x = oo, the
Green’s function is denoted by ga(z). We also let

¢(z)=z2z+Vz2—-1,2€ C\[-1,1]

denote the conformal map of C\ [-1, 1] onto the exterior {w : |w| > 1} of the
unit ball. Then the Green’s function for C\A with pole at oo admits the

representation
z
ga (2) = log |¢ (a—) ’ :




For further orientation on the potential theory we use, see [10] or [7]. We
also use H [f] to denote the Hilbert transform of a function f € L; (R), so
that

1= f(t)
H = — —14
1) i /_OO —z
where the integral must be taken in a Cauchy principal value sense if z is real.

Proof of Lemma 2.1
We use the extremal property (1), in the form

A= sup — |P(ei9)|2d0//|PW|2,
g 1

" 27 |

where the sup is taken over all monic polynomials P of degree < n. Acord-
ingly let P be a monic polynomial of degree m < n. If v denotes a measure
of total mass m that places unit mass at each zero of P, then log |P| admits
the representation

log|P (2)| = /log |z —t|dv (t).
Form
G(2) = /(10g|2 —tl+9a(z0)dv(t) + V7 (2) = cn + (n—m) ga (2).

Since log |z — t|4+ga (2, t) is bounded and has finite limit as z — ¢, we see that
G is harmonic in C\A. Moreover, since as z — oo, V7" (2) = —nlog|z|+o (1)
and ga (2) = log 2 +log |2| + o (1),

lim G(z):/gA(oo,t)du(t)—cn—i—(n—m)log;::G(oo).

|z| =00 n

Thus G is harmonic in C\A, and hence has a single valued harmonic conju-
gate there, G(z) say. Hence the function

= z
f(z) == exp(G(z) +iG(2))/¢ (a_)
is analytic in C\A, with a simple zero at co. Cauchy’s integral formula for
the exterior of a segment gives for z ¢ A,

m””:§§Afmiiﬁmu$:

8
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where fi denote boundary values of f on A from the upper and lower half
planes. Note that we set fi = 0 outside A. Next,

[f+ (2)] = exp (G () = |[PW|(2) ,x € (—an, an) , (10)

by (6). Moreover, as the Green’s function ga is non-negative,

F@l e @@/ |o(Z)|2IPEler 7 @) -a) /o (2]

z ¢ A.

(11)
The representation (9) of f gives for z ¢ A,

rer s 2([owm-rwre) ([ wd_—|)/
(L) ()

Combining this and (11) gives

L [ e
(/ 7 ) () 2o Lo [ et o (5)

Wsmn </|PW|) /exp(—2 [Vor () — ¢,]) db.
(12)

The rest of the integral is more difficult. First, note that since (11) holds
and Vo (2) =V (2) = VI (=2),

1 {/Ti /‘7?+77:| ‘P( ,9)‘2(19
R _'_ 67’
2m -n T

< sup exp (=2[V7 () — e]) () [/ / }}f e[ o

0€[0,n]

IA

IN

2
do

IA

IN

< sup exp (=2 [V (¢¥) — ¢,]) @ /7r <’H fil (eze){ + ‘H [f-] (eia)f) de,

0€(0,n]



by (9). Now since f. are continuous on A, and are 0 off A, they are trivially
in Ly (R), and then H [f1] belong to the Hardy 2—space of the upper-half
plane [6, p. 128]. Next, normalized Lebesgue measure on the semi-circular
arc of the unit circle in the upper-half plane is a Carleson measure with
respect to that upper-half plane. So we can use Carleson’s inequality to
replace the integral over the upper and lower halves of the unit circle, by an
integral along the real axis:

/W\H[ “’\d9<0/ z)|* dz

with C independent of f. For a discussion of Carleson’s inequality and Car-
leson measures, see [4] or [6]. Then

27T|:/ / }\P Mde
< C{éﬁexp(_z (Vo (&) _C”D}/_Z (IH [f] @) + | H [f] (2)[) da,

with C' independent of f, P (and n). As the Hilbert transform is an isometry
of Ly (R), we obtain from (

=1 / Jirenra

< 20{ sup exp (—2 [V (") —cn])}/I]PWF.

0€(0,n]

Adding this and (12) gives, for all monic polynomials of degree< n,

1 10
o \P y dé’//|PW|

1

< {2— /7T exp (—2 [V”” (ew) — cn}) df + sup exp (—2 [VU" (eie) — cn])} .

T J—x 0€[0,n]

Now the extremal property (1) gives the lemma. B

We note that this lemma holds more generally than for our class of
weights: () does not need to be even or satisfy any smoothness restrictions.
With minor modifications, the lemma holds for any exponential weight W
for which the equilibrium measure is supported on a single interval.

10



3 Upper Bounds for )\,

In this section, we use Totik’s method of discretisation of a potential [12] to
obtain a polynomial that gives an upper bound to match the lower bound in
the previous section. The details are similar to those in [7, Chapter 7].

Theorem 3.1
There exist Cy and Csy and for large enough n, a polynomial P, of degree
< n such that for |z| =1 with arg (2) € [%, 2],

|Pn ()] = Crexp (= [V (2) — cal) (13)
and
/|PW!2 < O, (14)

Moreover for such n,

3m

N er / " exp (—2 [V () — c.]) do, (15)

4

with C3 independent of n.
Throughout, we let o denote the density o, contracted to [—1, 1] so that

or(s) = (;—nan (anps),s e (—1,1),

/_110;;: | (16)

For a fixed n, we determine points

and

—l=ti<thi<ta<..<t,=1
and intervals
I = [tj,tj41),0 < j <n—1L|L| =t —t

with )
/UZ:—,OSan—l.
I n

J

11



Moreover, we use Totik’s idea [12] of the “weight point” or “centre of mass”

tit+1 tit1
£ = / 5o (s) ds// oy (s)ds € (t;,tj41),
t tj

J

so that .
/‘] (s —¢&;) 05 (s)ds =0. (17)
We define B
Rn(z) = H(z_gj)a
j=0

and will prove:

Lemma 3.2
There exists a positive integer L such that for large enough n, and % >

lu| > i with arg (u) € [5, 2],

Ry, (u)| exp (nV (u)) > C, (18)
and
R, ()] exp (nV7 () < Cy (1 —2%) " |z € (=1,1). (19)

Later on, if I is unbounded, we shall “damp down” R,, on [ by multiplying
with another polynomial so that we obtain (14). For the proof of Lemma
3.2, we need properties of the discretisation points:

Lemma 3.3
(a) Uniformly in n and 1 < j <n — 2,

1 1

~Y 78
n|l] n|l

oy, (t5) ~ 0y, (5) ~ 0, (tj1) ~ € [tj,tja].  (20)

(b) Moreover, if j =0,

1 1
~ ’S
n|ll n|lal

o, (s) < Coj, (i) ~ € [tj, 1] (21)

with an analogous assertion if j =n — 1.
(c) There exists C > 0 such that for n > 1, and u,v € (—1,1) with

lu —v| < (1—u2)5, (22)

12



we have
oy, (u) [oy, (v) < C.

Proof

(a), (b) These are Lemma 7.16 in [7, p. 194].

(c) Note that the class of weights F (C?) we treat here lies in the class
F (Lz’p%) in [7] (see [7, p. 13]) and hence we may apply Theorem 6.3(b) in
[7, pp. 147-148] with 1 (u) = u*/2. We obtain for n > 1 and u,v € (—1,1),

o o = ] 1/4
‘On( ) n( )’ < m (1—max{\u],]v|}> '

Moreover, from Theorem 6.1(b) in [7, p. 146],
or(v) > CvV1—0v2

Then subject to (22), we obtain

1—|ul ~1—|v| ~1—u?

S0)
o (u) c 1/4
‘1‘ @ = g T =
n ul)

|
Proof of (19) of Lemma 3.2
We see that

n—1 n—1

log | Ry, (u)| +nVr (u) = — Z/ log i (no’ (s))ds =: — ZF]-.
7=0 I; U= 5] =0

Now we proceed in five steps:

Step 1: An inequality for I';

Fix u € [-1,1] and choose jy such that u € I;. Since |I;| ~ |[;11] (by
Lemma 3.3), we claim that there exists 7 € (0, 1), independent of u, j and n,
such that for |j — jo| > 2,

fj_s

sel; = > —7. (24)

J
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To see this, suppose for example that j < jo — 2, so that I; is to the left of
Ij,—1. Then u —§; > 0 and

G & —tm ti—tin o |
u=& =& T o=t G+ Ll
(In the third inequality, we use the fact that the ratio decreases as we decrease

§;). So (24) holds in this case. The case where j > jo + 2 is similar. Next, a
Taylor series expansion gives

_ log(1+£j_8>

U=,
B §j—s_1 1 (fj—s>2
Cou=§ 204 \u—¢§)

—S

where r is between 0 and ij_ =
J
u—8

JGms 1 ( || )2.
u—E&;i| T u—4¢; 2(1—7)2 dist (u, I;)
Then the definition (17) of {; gives

1 L] 2
r.>— J )
TTo2(1 =) (dz’st(u,fj))

Step 2: I'; with [; far from [;,
Consider those j with |j — jo| > 2 and

u—=s

u—E;

log

Asr > —r,

log ‘

dist (u,I;) > (1 - u2)5.

Let S denote the set of all such indices j. Here the first restriction on j
ensures that
dist (’LL, ]j) 2 C |Ij|

and then using the bound on I'; from Step 1,
|7
r. > -C -4
Z 7= Z dist (u, I;)
JES jES
C / _ds
{s€l0,1):]s—u[>C1 (1-u2)°} |s — ul

2

v

1—u
2

v

—C'log

14



Step 3: I'; with I; close, but not too close, to ;,
Consider those j with |j — jo| > 2 and

dist (u, I;) < (1 — u2)5.

Let 7 denote the set of all such indices j. Note that from Lemma 3.3(a),
(b), and then (c), uniformly for such j, and some k € {j,j + 1},

| SCO’n(U) <C
L5 oy, (tr)
Then
ST, > —C“"ZL
J - Jo . 2
e e dist (u, I;)
ds
> —C|I,] —1
{s:|sfu|ZC’1|Ij0|} |S — u|
> —C.

Step 4: I'; with [; very close to [;,

Now we deal with the at most 3 remaining terms I'; with [j — jo| < 1.
Here we can apply Lemma 3.3 to obtain, for some constants C7,Cy and Cj
(independent of j, jo, u and n),

u—s
r, = /log no, (s))ds
j P Py (nay, (5))
u—3s
> log no, (s))ds
| |Gy 90
02 u —
> —= log ds
111 Jr 7 1G]
Cs
> 02/ log | —|dv > —C4
—C4 1

Thus

Step 5: Finish the Proof of (19)
Combining (23) and all the estimates above gives for u € (—1,1),

log |R,, (u)| +nV (u) < C — Clog (1 —u?).
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Proof of (18) of Lemma 3.2
We use the I'; defined above. For s € [; and u € C,

2

u—s| 1 £ —s
1ogu_€j = §log H#gj
1 £j—32 §;—s
1&—s|? 1
5| +Re(u_§j)(§j—s),

so integrating over I; and using (17) gives

2
|15

r. _
2]u—¢,[°

j / no (s)ds+0
I
< ! L7
= 2 |dist(u,I;)]
Suppose now that for some C' > 0,

1
X (u) := sup {][j| s dist (u, ;) < é} < C|Imu. (25)

Then

> L

Jidist(u,I;)<%

X (u) 1]
2 Z dist (u, I;)?

Jidist(u,l;)<

IN

1
8

Crx (u) Z ;i

Sdistnt )< (Imu)? + dist (Rew, I;)?

IN

1
8

< ds
C. < (s, 26
A0 [ e <O 26

IN

16



by (25). Moreover,

> L
Jidist(u,l;) >§

Cy Z |I;] < Cs.

Jidist(u,l;)>

IN

1
8
Combining this, (23) and (26) gives

B ()] exp (V5 () = Ci,

provided (25) holds. Now we show that (25) does hold if

2 1 3
> lul > o and arg (u) € Eﬂ . (27)
We consider two subcases:
(I) I is a finite interval
In this case a,, — d < o0 as n — oo. Then the condition (27) ensures that
Imu| > C, with C' independent of u and n. Hence (25) is immediate.
(IT) I = (—o0, 00)
In this case a, — co0,n — oo, and (27) implies that |u| < £ for large enough
n. Then for n > ny,
1 11
dist (u, ;) < — = I; ——=,= .
ZS(U’J)_S ]C(3,3)
(The threshhold ng does not depend on u, j, jo,n). Since (see (7.89) and
(7.84) in [7, pp. 187-188]),

11 1
Lc(—=2)=]~>
]C( 373) |.7’ n’

(with constants in the ~ relation independent of n), and since |Imu| ~ =+,
we see that (25) reduces to

1 C
<=
n - ap
which is true as
a, =o(n).

17



(See (3.30) in [7, p. 72] and note that in the even case §,, = a,,). B
From this we deduce:
Lemma 3.4

Let L be as in Lemma 3.2. There exist polynomials R} of degree < n + 2L
such that for § < |z] <2 with arg (z) € %, 3%],

40 4
|R), ()] exp (V7" (2) — ) 2 C4 (28)
and
|REW| < Cyin 1. (29)
Proof

Observe that

an 1
Vo (anu) = / log — o, (£) dt

—an

1
1
= n/ log ——— 07 (s)ds
1 la,u — aps|

1 x
= nlog— +nV (u).
a

n

We set

1
R (z):=(1- (a;lz)Q)LRn (ay,'z) exp (cn — nlog —) :
where L is as in Lemma 3.2. We see that
| R, (anu)|exp (V" (anu) — cn)
= |1 - UQ‘L |R,, (u)] exp (V": (u))

and (28) follows from (18), on setting z = a,u. (Note that |1 — u?| is bounded
below). Next, for € [—1, 1], from (6)

|, W] (an)
= |R! (apx)|exp (V" (anz) — ¢p)
= (1=2%)"|R, (2)] exp (nV" (2)) < C.

18



by (19). Then
I BW L=l BaW [l -an.an < C-

[

Although the sup-norm of R;W is bounded, all we can deduce from
this last lemma is that the L, norm over I is O (a,). This is a problem
it a, — oo,n — oo. To fix this, we multiply R} by a polynomial of de-
gree O (a,) that behaves like (14 22)™" on [—ay, a,]. But that would give a
polynomial of degree n + O (a,), rather than n. To avoid this, we show that
the polynomials R’ with m =n — O (a,) still satisfy the conclusions of the
previous lemma, and for this we need:

Lemma 3.5
Let K > 0. Assume that
lim a, = oo.

Assume that for n > 1, we are given an integer m = m (n) < n with
n—m =0 (a,),n — oo.
Then for |u|] < K,
(Vo (u) = cn) = (V7 (u) — cm) 2 =C.

Proof
We use [7, p. 46, eqn. (2.34)]

" 2
Cn = / log —ds
0 Qs
and [7, p. 46, eqn. (2.35)]
7 ()= [ s, s
0

where v, _ is the equilibrium density for the interval A, = [—as, ay], so that

;7 te —as, 0s) ,
Va, (1) :{ my/ai -t ( ) .

0, otherwise



The Green’s function for C\A; with pole at oo has the representations

2
9a. (W) = [loglu—tl,, (0t +1og -

s

Then we see that

Vo (u) + ¢,

n n 2
= /log|u — 1 </ Ya, (1) ds) dt+/ log —ds
0 0 s

_ /0 " g, (u) ds. (30)

So,

n

W“wwww—wwwwwmz—/g&st

m

Here for s € [m,n],

2
u [ u
ga, (u) = log|— + (—) -1
Ag ag
u |2
/=] +1
as

< log<1—i—2 4

Qs

u

Qs

< log

<o
am,

Thus

—/ ga, (u)ds > _Cn—m > —Ca—n > ().
m am am

The last relation follows as m ~ n = a,, ~ a, (see (3.27) in [7, p. 72]). A
We turn to the

Proof of Theorem 3.1
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If (a,) is bounded, then we can just choose P, = R} and the assertions (13)
and (14) of Theorem 3.1 follow from the corresponding ones in Lemma 3.4.
Now we consider the case where (a,) is unbounded. For n > 1, let £ = ¢ (n)
denote the greatest integer < a,, — 2L. By Corollary 2 in [8], there exist for
large enough n, polynomials Sy of degree < ¢ with

1
14 22’

Se () T € [—2ay, 2a,)

and i
Se(2)] 2 C el = 5.

Then we set .
Pu(z) =R (2)5:(3).

a polynomial of degree < n. Then in [—ay, a,], (29) gives

C
[P ()| W (z) < W7

SO

/ |P,W|* < C.

Restricted range inequalities (see Theorem 4.2 in [7, p. 96]) then give (14).
Moreover, (28) and Lemma 3.5 with m = n — ¢ give for |z| = 1 with arg () €
5]

P 2 ClRL|(2) > Coxp(= [V (2) — o)

>
> Crexp (= [V7" (2) — i) -

So we have (13). Finally, the extremal property (1) of A, gives (15). B

4 Proof of Theorem 1.2

If we combine Lemma 2.1 and Theorem 3.1, we see that the following three
assertions together give Theorem 1.2:

(D

3

1 4

oy exp (=2 [V (€) — ¢,]) df ~ \/%exp (=2[Vo" (i) —¢u)) . (31)

Jus
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(II) Given 0 < 1 < 7, there exists C' > 0 such that

exp (=2 [V () — ca]) /exp (=2 [V7" (i) — ca]) < exp (—03) . (32)

uniformly for n > 1 and 0 € [—n,n] U [7 —n, 7+ 1] .

(I11)
Vo (i) /nl Y O (33)
" —Cp = — og | — — s.
() Cn ; g o 22

(Recall that n/a, — 0o as n — o).
Proof of (I), (IT)

Observe that as o, is even,
on 0 on (- o t2 + 1
Vo (e?) =V (i) = log 12 _ 20
0

1 [ At? cos? 0
= 5/0 IOg (1+m> On (t)dt.

4t? cos® 0 4t? cos? 0
12 — e2i0] (2 1 1)

o, (t)dt

Here for all # and ¢,

(<1)

while for 0 € [%, ‘%”], we have ~ uniformly in 6, ¢, instead of just >. Then

we obtain for all € [—7, 7],

Vo () — V7 (i) > C (cos? 6) /0 " (ﬂi—lfan Wd (34)
and for 6 € E, %],
Vor (&) — Vo (i) ~ (cos0) /0 (152‘1—1)20” (t) dt. (35)

In all cases, the constants are independent of n, . Now we need the estimates

Cn

22

o (1) < t € (—an,ay,)



and
n

n ‘e 1 1
——~ — — S n, 500 | -
\/ (I% — t2 a/n7 2 2
These estimates follow from Theorem 1.11 in [7, pp. 17-18]. Let us substitute

these bounds in (34) and (35). Some straightforward estimation gives for all
6 €[—m, |,

On <t> ~

Ve () — Vo (i) > C’aﬁ (cos®) . (36)
and for 0 € E, ?jf],
Vor () — Vo (i) ~ aﬂ (cos®0) (37)

n

(For § = 7, we interpret 0/0 as 1). Now (36) directly gives (32). Moreover,
this last relation gives for some C1, Cs, Cs,

1 [F . .
%[r exp (=2 [V (") — ¢n]) d8/ exp (=2 [V (i) — c,))
1 (7 n 9
> —/ exp (| —C1—cos“ 0 | df
2m z (7%

3
1 4 n T 2 p,
> —O,— (9= = > Oy 2.
> 27T/1r exp( C2an (6 2> )d@_C’g -

Similarly (37) gives a matching upper bound, and so we have (I) also. B

Proof of (IIT)
From (30),

o=V (i) = [ "ga. (i) ds.

Since ga, admits the representation

2
. () =tos| =4 (2) -1,

we obtain (33). W
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