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Abstract

We obtain the rate of decay of the smallest eigenvalue of the Hankel
matrices

�R
I t
j+kW 2 (t) dt

�n
j;k=0

for a general class of even exponential

weights W 2 = exp (�2Q) on an interval I. More precise asymptotics
for more special weights have been obtained by many authors.

Remark 1 Running Title: Smallest Eigenvalues of Hankel Matrices
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1 The Result

Let I = (�d; d) where 0 < d � 1. Let Q : I ! [0;1) be continuous and
W 2 = exp (�2Q) be such that all the momentsZ

I

tjW 2 (t) dt; j = 0; 1; 2; :::;

exist. Form the positive de�nite Hankel matrix

Hn =

�Z
I

tj+kW 2 (t) dt

�n
j;k=0

and denote its smallest eigenvalue by �n. The focus of this paper is the rate
of decay of the smallest eigenvalue �n of Hn.
Many authors have investigated the asymptotic behaviour of �n as n !

1. For example, Widom, and Wilf investigated the behaviour of �n for
weights on a �nite interval satisfying the Szegö condition [13]. For the Her-
mite weight W (x) = exp

�
�1
2
x2
�
, Szegö [11] established the asymptotic

�n = 2
13
4 �

3
2 en

1
4 exp

�
�2 (2n)1=2

�
(1 + o (1)) ;

with similar results for Laguerre weights. The �rst author, Berg and Ismail
[2] showed that �n remains bounded away from 0 i¤ the moment problem for
W 2 is indeterminate. Moreover, the �rst author and Lawrence [3] established
asymptotic behaviour of �n for weights on (0;1) such as exp

�
�x�

�
; � > 0.

Beckermann has explored condition numbers for Hankel matrices [1].
It is well known that �n is given by the Rayleigh quotient:

�n = min

(
X
T
HnX

X
T
X

: X 2 Cn+1n f0g
)
:

Corresponding to any of these vectors X = (x0; x1; x2; :::xn)
T , we can de�ne

a polynomial

P (z) =
nX
j=0

xjz
j:

Using the de�nition of Hn, we see that we can recast the Rayleigh quotient
in the form

�n = min

( R
I
jP j2W 2

1
2�

R �
�� jP (ei�)j

2 d�
: deg (P ) � n

)
: (1)
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This extremum property, very similar to the extremal property of Christo¤el
functions, is the basis for the analysis in this paper.
Before we de�ne our class of weights, which is the even case of the weights

in [7], we need the notion of a quasi-increasing function. A function g :
(0; d)! (0;1) is said to be quasi-increasing if there exists C > 0 such that

g(x) � Cg(y); 0 < x � y < d:

Of course, any increasing function is quasi-increasing.

De�nition 1.1 General Exponential Weights
Let W = e�Q where Q : I ! [0;1) is even and satis�es the following prop-
erties:
(a) Q0 is continuous in I and Q(0) = 0;
(b) Q00 exists and is positive in Inf0g;
(c)

lim
t!d�

Q(t) =1;

(d) The function

T (t) :=
tQ0(t)

Q(t)
; t 6= 0

is quasi-increasing in (0; d), with

T (t) � � > 1; t 2 (0; d) ;

(e) There exists C1 > 0 such that

Q00(x)

j Q0(x) j � C1
j Q0(x) j
Q(x)

; a.e. x 2 (0; d) :

Then we write W 2 F (C2).

The simplest case of the above de�nition is when I = R and T is bounded.
This is the so called Freud case, for the boundedness of T forces Q to be of
at most polynomial growth. A typical example is

Q(x) = jxj� ; x 2 R;

where � > 1. A more general example satisfying the requirements of De�ni-
tion 1.1 is

Q(x) = exp`(jxj
�)� exp`(0);
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where � > 1 and ` � 0. Here we set exp0 (x) := x and for ` � 1,

exp` (x) = exp(exp(exp ::: exp (x))))| {z }
` times

is the `th iterated exponential.
An example on the �nite interval I = (�1; 1) is

Q(x) = exp`((1� x2)��)� exp`(1); x 2 (�1; 1) ;

where � > 0 and ` � 0.
In analysis of exponential weights, an important role is played by the

Mhaskar-Rakhmanov-Sa¤ number au 2 (0; d) ; u > 0, which is the unique
root of the equation

u =
2

�

Z 1

0

ausQ
0(aus)p

1� s2
ds:

One of the features that motivates their importance is the Mhaskar-Sa¤ iden-
tity [9]

k PW kL1(I)=k PW kL1[�an;an];
valid for all polynomials P of degree � n. Throughout, C;C1; C2; ::: denote
positive constants independent of n; x; t and polynomials P of degree at most
n. We write C = C(�); C 6= C(�) to indicate dependence on, or independence
of, a parameter �. The same symbol does not necessarily denote the same
constant in di¤erent occurrences. Given sequences of real numbers (cn) and
(dn) we write

cn � dn

if there exist positive constants C1 and C2 such that

C1 � cn=dn � C2

for the relevant range of n. Similar notation is used for functions and se-
quences of functions. We shall prove:

Theorem 1.2
Let W be even and W 2 F (C2). Then for n � 1;

�n �
r

n

an
exp

 
�2
Z n

0

log

"
1

as
+

s
1 +

1

a2s

#
ds

!
: (2)
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One may recast this estimate in a number of other ways: for example,

�n �
r

n

an
exp

�
�2
Z n

0

arc sinh
�
1

as

�
ds

�
:

An integration by parts shows that

�n �
r

n

an
exp

 
�2
(
n log

"
1

an
+

s
1 +

1

a2n

#
+

Z an

0

bt

t
p
1 + t2

dt

)!
; (3)

where bt is the inverse function of at, that is

bat = b (at) = t; t > 0:

(For this, one also needs lims!0+ s log
1
as
= 0, which follows from the conver-

gence of
R 1
0
log 2

as
ds, see below). Another form, which is the initial form in

our proof, is

�n �
r

n

an
exp (2 [V �n (i)� cn]) ; (4)

where V �n is an equilibrium potential, and cn is an equilibrium constant -
we shall de�ne these at the end of this section.

Example
Let � > 1 and

Q (x) = jxj� ; x 2 R:
Here

au = C�u
1=�; u > 0;

where [9]

C� =

 
2��2� (�=2)2

� (�)

!1=�
:

Using (2), the Maclaurin series expansion [5, p. 51]

log
�
x+

p
1 + x2

�
=

1X
k=0

(�1)k (2k)!

22k (k!)2 (2k + 1)
x2k+1; jxj � 1;
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and some straightforward estimations, we obtain

�n � n
1
2(1�

1
�) exp

0B@�2n [
��1
2 ]X
k=0

(�1)k (2k)!

22k (k!)2 (2k + 1)

a�2k�1n

1� 2k+1
�

1CA ;

provided � is not an odd integer. If � is an odd integer, we obtain instead

�n � n
1
2(1�

1
�) exp

0B@ �2n
P[��32 ]

k=0 (�1)k (2k)!

22k(k!)2(2k+1)

a�2k�1n

1� 2k+1
�

�2 (log n) (�1)
��1
2

(��1)!
2��1(��12 !)

2
�
C���

1CA :

In both estimates, [x] denotes the greatest integer � x. In particular, for the
Hermite weight � = 2, this gives

�n � n
1
4 exp

�
�4
p
n
�
;

which accords with Szegö�s result, if we recall that Q (x) = 1
2
x2 in his formu-

lation.
This paper is organised as follows: in Section 2, we establish a general

lower bound for �n, using the same methods that were used in [7] to establish
lower bounds for Christo¤el functions. In Section 3, we establish upper
bounds for �n by discretizing a potential. Then in Section 4, we complete
the proof.
Throughout the paper, we assume that W 2 F (C2). (In fact, with more

work, our results hold for the class F(Dini) in [7], but in terms of weights
de�ned by explicit formulas, the di¤erence is insubstantial). For each t > 0,
it is known that there is a non-negative density function �t on [�at; at] with
total mass t, Z at

�at
�t (s) ds = t; (5)

satisfying the equilibrium conditionZ at

�at
log

1

jx� sj�t (s) ds+Q (x) = ct; x 2 [�at; at] : (6)

We call �t the equilibrium density of mass t, ct the equilibrium constant for
t, and

V �t (z) =

Z at

�at
log

1

jz � sj�t (s) ds

6



the corresponding equilibrium potential. One representation for �t is

�t (x) =

p
a2t � x2

�2

Z at

�at

Q0 (s)�Q0 (x)

s� x

dsp
a2t � s2

; x 2 (�at; at) : (7)

and one for ct is

ct =

Z t

0

log
2

as
ds:

See [7, Chapter 2].

2 Lower Bounds for �n
The result of this section is:

Lemma 2.1
Let 0 < � < �

2
. Then

��1n � C1

(
1

2�

Z �

��
exp

�
�2
�
V �n

�
ei�
�
� cn

��
d� + sup

�2[0;�]
exp

�
�2
�
V �n

�
ei�
�
� cn

��)
:

(8)
Here C1 depends on �, not on n.

Throughout we �x n and set

� = [�an; an] :

Given x =2 �, we use g�(z; x) to denote the Green�s function for Cn� with
pole at x, so that g�(z; x)+log j z�x j is harmonic as a function of z in Cn�
and vanishes on �. When x 2 �, we set g�(z; x) � 0, and when x =1, the
Green�s function is denoted by g�(z). We also let

� (z) = z +
p
z2 � 1; z 2 Cn [�1; 1]

denote the conformal map of Cn [�1; 1] onto the exterior fw : jwj > 1g of the
unit ball. Then the Green�s function for Cn� with pole at 1 admits the
representation

g� (z) = log

������ z

an

����� :
7



For further orientation on the potential theory we use, see [10] or [7]. We
also use H [f ] to denote the Hilbert transform of a function f 2 L1 (R), so
that

H [f ] (z) =
1

�i

Z 1

�1

f (t)

t� z
dt;

where the integral must be taken in a Cauchy principal value sense if z is real.

Proof of Lemma 2.1
We use the extremal property (1), in the form

��1n = sup
1

2�

Z �

��

��P �ei����2 d�=Z
I

jPW j2 ;

where the sup is taken over all monic polynomials P of degree � n. Acord-
ingly let P be a monic polynomial of degree m � n. If � denotes a measure
of total mass m that places unit mass at each zero of P , then log jP j admits
the representation

log jP (z)j =
Z
log jz � tj d� (t) :

Form

G (z) =

Z
(log jz � tj+ g� (z; t)) d� (t) + V �n (z)� cn + (n�m) g� (z) :

Since log jz � tj+g� (z; t) is bounded and has �nite limit as z ! t, we see that
G is harmonic in Cn�. Moreover, since as z !1, V �n (z) = �n log jzj+o (1)
and g� (z) = log 2

an
+ log jzj+ o (1),

lim
jzj!1

G (z) =

Z
g� (1; t) d� (t)� cn + (n�m) log

2

an
=: G (1) :

Thus G is harmonic in Cn�, and hence has a single valued harmonic conju-
gate there, eG(z) say. Hence the function

f(z) := exp(G(z) + i eG(z))=�� z

an

�
is analytic in Cn�, with a simple zero at 1. Cauchy�s integral formula for
the exterior of a segment gives for z =2 �,

f (z) =
1

2�i

Z
�

f+(x)� f�(x)

x� z
dx =

1

2
[H [f+]�H [f�] (z)] ; (9)
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where f� denote boundary values of f on � from the upper and lower half
planes. Note that we set f� = 0 outside �. Next,

jf� (x)j = exp (G (x)) = jPW j (x) ; x 2 (�an; an) ; (10)

by (6). Moreover, as the Green�s function g� is non-negative,

jf (z)j = exp (G (z)) =
������ z

an

����� � jP (z)j exp (V �n (z)� cn) =

������ z

an

����� ; z =2 �:
(11)

The representation (9) of f gives for z =2 �,

jf (z)j � 1

2�

�Z
�

(f+(x)� f�(x))
2 dx

�1=2�Z
�

dx

jx� zj2
�1=2

� 1

�

�Z
�

jPW j2
�1=2�

�

jIm zj

�1=2
:

Combining this and (11) gives

1

2�

�Z ��

��+�
+

Z ���

�

� ��P �ei����2 d�
�

�Z
�

jPW j2
��

1

� sin �

�
1

2�

�Z ��

��+�
+

Z ���

�

�
exp

�
�2
�
V �n

�
ei�
�
� cn

�� ������ei�an
�����2 d�

�

�
1 + 2

an

�2
� sin �

�Z
I

jPW j2
�
1

2�

Z �

��
exp

�
�2
�
V �n

�
ei�
�
� cn

��
d�:

(12)

The rest of the integral is more di¢ cult. First, note that since (11) holds
and V �n (z) = V �n (z) = V �n (�z) ;

1

2�

�Z �

��
+

Z �+�

���

� ��P �ei����2 d�
� sup

�2[0;�]
exp

�
�2
�
V �n

�
ei�
�
� cn

�� �1 + 2
an

�2
2�

�Z �

��
+

Z �+�

���

� ��f �ei����2 d�
� sup

�2[0;�]
exp

�
�2
�
V �n

�
ei�
�
� cn

�� �1 + 2
an

�2
4�

Z �

��

���H [f+] �ei����2 + ��H [f�] �ei����2� d�;
9



by (9). Now since f� are continuous on �, and are 0 o¤�, they are trivially
in L2 (R), and then H [f�] belong to the Hardy 2�space of the upper-half
plane [6, p. 128]. Next, normalized Lebesgue measure on the semi-circular
arc of the unit circle in the upper-half plane is a Carleson measure with
respect to that upper-half plane. So we can use Carleson�s inequality to
replace the integral over the upper and lower halves of the unit circle, by an
integral along the real axis:Z �

��

��H [f�] �ei����2 d� � C

Z 1

�1
jH [f�] (x)j2 dx

with C independent of f . For a discussion of Carleson�s inequality and Car-
leson measures, see [4] or [6]. Then

1

2�

�Z �

��
+

Z �+�

���

� ��P �ei����2 d�
� C

(
sup
�2[0;�]

exp
�
�2
�
V �n

�
ei�
�
� cn

��)Z 1

�1

�
jH [f+] (x)j2 + jH [f�] (x)j2

�
dx;

with C independent of f; P (and n). As the Hilbert transform is an isometry
of L2 (R), we obtain from (10)

1

2�

�Z �

��
+

Z �+�

���

� ��P �ei����2 d�
� 2C

(
sup
�2[0;�]

exp
�
�2
�
V �n

�
ei�
�
� cn

��)Z
I

jPW j2 :

Adding this and (12) gives, for all monic polynomials of degree� n;

1

2�

Z �

��

��P �ei����2 d�=Z
I

jPW j2

� C1

(
1

2�

Z �

��
exp

�
�2
�
V �n

�
ei�
�
� cn

��
d� + sup

�2[0;�]
exp

�
�2
�
V �n

�
ei�
�
� cn

��)
:

Now the extremal property (1) gives the lemma. �
We note that this lemma holds more generally than for our class of

weights: Q does not need to be even or satisfy any smoothness restrictions.
With minor modi�cations, the lemma holds for any exponential weight W
for which the equilibrium measure is supported on a single interval.

10



3 Upper Bounds for �n
In this section, we use Totik�s method of discretisation of a potential [12] to
obtain a polynomial that gives an upper bound to match the lower bound in
the previous section. The details are similar to those in [7, Chapter 7].

Theorem 3.1
There exist C1 and C2 and for large enough n, a polynomial Pn of degree
� n such that for jzj = 1 with arg (z) 2

�
�
4
; 3�
4

�
;

jPn (z)j � C1 exp (� [V �n (z)� cn]) (13)

and Z
I

jPW j2 � C2: (14)

Moreover for such n,

��1n � C3

Z 3�
4

�
4

exp
�
�2
�
V �n

�
ei�
�
� cn

��
d�; (15)

with C3 independent of n.
Throughout, we let ��n denote the density �n contracted to [�1; 1] so that

��n (s) =
an
n
�n (ans) ; s 2 (�1; 1) ;

and Z 1

�1
��n = 1: (16)

For a �xed n, we determine points

�1 = t0 < t1 < t2 < ::: < tn = 1

and intervals

Ij = [tj; tj+1); 0 � j � n� 1; jIjj = tj+1 � tj

with Z
Ij

��n =
1

n
; 0 � j � n� 1:

11



Moreover, we use Totik�s idea [12] of the �weight point�or �centre of mass�

�j =

Z tj+1

tj

s��n (s) ds=

Z tj+1

tj

��n (s) ds 2 (tj; tj+1) ;

so that Z tj+1

tj

�
s� �j

�
��n (s) ds = 0: (17)

We de�ne

Rn (z) =
n�1Y
j=0

�
z � �j

�
;

and will prove:

Lemma 3.2
There exists a positive integer L such that for large enough n, and 2

an
�

juj � 1
2an

with arg (u) 2
�
�
4
; 3�
4

�
,

jRn (u)j exp
�
nV ��n (u)

�
� C1; (18)

and
jRn (x)j exp

�
nV ��n (x)

�
� C2

�
1� x2

��L
; x 2 (�1; 1) : (19)

Later on, if I is unbounded, we shall �damp down�Rn on I by multiplying
with another polynomial so that we obtain (14). For the proof of Lemma
3.2, we need properties of the discretisation points:

Lemma 3.3
(a) Uniformly in n and 1 � j � n� 2;

��n (tj) � ��n (s) � ��n (tj+1) �
1

n jIjj
� 1

n jIj+1j
; s 2 [tj; tj+1] : (20)

(b) Moreover, if j = 0,

��n (s) � C��n (tj+1) �
1

n jIjj
� 1

n jIj+1j
; s 2 [tj; tj+1] (21)

with an analogous assertion if j = n� 1:
(c) There exists C > 0 such that for n � 1, and u; v 2 (�1; 1) with

ju� vj �
�
1� u2

�5
; (22)

12



we have
��n (u) =�

�
n (v) � C:

Proof
(a), (b) These are Lemma 7.16 in [7, p. 194].
(c) Note that the class of weights F (C2) we treat here lies in the class
F
�
Lip1

2

�
in [7] (see [7, p. 13]) and hence we may apply Theorem 6.3(b) in

[7, pp. 147-148] with  (u) = u1=2. We obtain for n � 1 and u; v 2 (�1; 1) ;

j��n (u)� ��n (v)j �
Cp
1� jvj

�
ju� vj

1�max fjuj ; jvjg

�1=4
:

Moreover, from Theorem 6.1(b) in [7, p. 146],

��n (v) � C
p
1� v2:

Then subject to (22), we obtain

1� juj � 1� jvj � 1� u2;

so ����1� ��n (u)

��n (v)

���� � C

(1� juj)5=4
ju� vj1=4 � C:

�

Proof of (19) of Lemma 3.2
We see that

log jRn (u)j+ nV ��n (u) = �
n�1X
j=0

Z
Ij

log

���� u� s

u� �j

���� (n��n (s)) ds =: � n�1X
j=0

�j:

(23)
Now we proceed in �ve steps:
Step 1: An inequality for �j
Fix u 2 [�1; 1] and choose j0 such that u 2 Ij0. Since jIjj � jIj�1j (by
Lemma 3.3), we claim that there exists � 2 (0; 1), independent of u; j and n,
such that for jj � j0j � 2,

s 2 Ij )
�j � s

u� �j
� �� : (24)

13



To see this, suppose for example that j � j0 � 2, so that Ij is to the left of
Ij0�1. Then u� �j > 0 and

�j � s

u� �j
�
�j � tj+1

tj0 � �j
� tj � tj+1

tj0 � tj
� � jIjj

jIjj+ jIj+1j
:

(In the third inequality, we use the fact that the ratio decreases as we decrease
�j). So (24) holds in this case. The case where j � j0 + 2 is similar. Next, a
Taylor series expansion gives

log

���� u� s

u� �j

���� = log

�
1 +

�j � s

u� �j

�
=

�j � s

u� �j
� 1
2

1

(1 + r)2

�
�j � s

u� �j

�2
;

where r is between 0 and
�j�s
u��j

. As r � �� ,

log

���� u� s

u� �j

���� � �j � s

u� �j
� 1

2 (1� �)2

�
jIjj

dist (u; Ij)

�2
:

Then the de�nition (17) of �j gives

�j � �
1

2 (1� r)2

�
jIjj

dist (u; Ij)

�2
:

Step 2: �j with Ij far from Ij0
Consider those j with jj � j0j � 2 and

dist (u; Ij) �
�
1� u2

�5
:

Let S denote the set of all such indices j. Here the �rst restriction on j
ensures that

dist (u; Ij) � C jIjj
and then using the bound on �j from Step 1,X

j2S
�j � �C

X
j2S

jIjj
dist (u; Ij)

� �C
Z
fs2[0;1]:js�uj�C1(1�u2)5g

ds

js� uj

� �C log
����1� u2

2

���� :
14



Step 3: �j with Ij close, but not too close, to Ij0
Consider those j with jj � j0j � 2 and

dist (u; Ij) <
�
1� u2

�5
:

Let T denote the set of all such indices j. Note that from Lemma 3.3(a),
(b), and then (c), uniformly for such j, and some k 2 fj; j + 1g ;

jIjj
jIj0j

� C
��n (u)

��n (tk)
� C:

Then X
j2T

�j � �C jIj0j
X
j2T

jIjj
dist (u; Ij)

2

� �C jIj0j
Z
fs:js�uj�C1jIj0jg

ds

js� uj2

� �C:

Step 4: �j with Ij very close to Ij0
Now we deal with the at most 3 remaining terms �j with jj � j0j � 1.
Here we can apply Lemma 3.3 to obtain, for some constants C1; C2 and C3
(independent of j; j0; u and n),

�j =

Z
Ij

log

���� u� s

u� �j

���� (n��n (s)) ds
�

Z
Ij

log

���� u� s

C1 jIjj

���� (n��n (s)) ds
� C2

jIjj

Z
Ij

log

���� u� s

C1 jIjj

���� ds
� C2

Z C3

�C3
log

���� vC1
���� dv � �C4:

Thus X
j:jj�j0j�1

�j � �C5:

Step 5: Finish the Proof of (19)
Combining (23) and all the estimates above gives for u 2 (�1; 1) ;

log jRn (u)j+ nV ��n (u) � C � C log
�
1� u2

�
:
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�

Proof of (18) of Lemma 3.2
We use the �j de�ned above. For s 2 Ij and u 2 C,

log

���� u� s

u� �j

���� =
1

2
log

����1 + �j � s

u� �j

����2
=

1

2
log

 
1 +

���� �j � s

u� �j

����2 + 2Re� �j � s

u� �j

�!

� 1

2

���� �j � s

u� �j

����2 +Re� 1

u� �j

��
�j � s

�
;

so integrating over Ij and using (17) gives

�j � jIjj2

2
��u� �j

��2
Z
Ij

n��n (s) ds+ 0

� 1

2

�
jIjj

dist (u; Ij)

�2
:

Suppose now that for some C > 0;

� (u) := sup

�
jIjj : dist (u; Ij) �

1

8

�
� C jImuj : (25)

Then X
j:dist(u;Ij)� 1

8

�j

� � (u)

2

X
j:dist(u;Ij)� 1

8

jIjj
dist (u; Ij)

2

� C1� (u)
X

j:dist(u;Ij)� 1
8

jIjj
(Imu)2 + dist (Re u; Ij)

2

� C2� (u)

Z 1

�1

ds

(Imu)2 + jReu� sj2
� C3; (26)

16



by (25). Moreover, X
j:dist(u;Ij)>

1
8

�j

� C4
X

j:dist(u;Ij)>
1
8

jIjj � C5:

Combining this, (23) and (26) gives

jRn (u)j exp
�
nV ��n (u)

�
� C6;

provided (25) holds. Now we show that (25) does hold if

2

an
� juj � 1

2an
and arg (u) 2

�
�

4
;
3�

4

�
: (27)

We consider two subcases:
(I) I is a �nite interval
In this case an ! d < 1 as n ! 1: Then the condition (27) ensures that
jImuj � C, with C independent of u and n. Hence (25) is immediate.
(II) I = (�1;1)
In this case an !1; n!1, and (27) implies that juj � 1

8
for large enough

n. Then for n � n0;

dist (u; Ij) �
1

8
) Ij �

�
�1
3
;
1

3

�
:

(The threshhold n0 does not depend on u; j; j0; n). Since (see (7.89) and
(7.84) in [7, pp. 187-188]),

Ij �
�
�1
3
;
1

3

�
) jIjj �

1

n
;

(with constants in the � relation independent of n), and since jImuj � 1
an
,

we see that (25) reduces to
1

n
� C

an
;

which is true as
an = o (n) :

17



(See (3.30) in [7, p. 72] and note that in the even case �n = an). �

From this we deduce:

Lemma 3.4
Let L be as in Lemma 3.2. There exist polynomials R�n of degree � n + 2L
such that for 1

2
� jzj � 2 with arg (z) 2

�
�
4
; 3�
4

�
,

jR�n (z)j exp (V �n (z)� cn) � C1 (28)

and
jR�nW j � C2in I: (29)

Proof
Observe that

V �n (anu) =

Z an

�an
log

1

janu� tj�n (t) dt

= n

Z 1

�1
log

1

janu� ansj
��n (s) ds

= n log
1

an
+ nV ��n (u) :

We set

R�n (z) := (1�
�
a�1n z

�2
)LRn

�
a�1n z

�
exp

�
cn � n log

1

an

�
;

where L is as in Lemma 3.2. We see that

jR�n (anu)j exp (V �n (anu)� cn)

=
��1� u2

��L jRn (u)j exp �V ��n (u)
�

and (28) follows from (18), on setting z = anu. (Note that j1� u2j is bounded
below). Next, for x 2 [�1; 1], from (6)

jR�nW j (anx)
= jR�n (anx)j exp (V �n (anx)� cn)

=
�
1� x2

�L jRn (x)j exp �nV ��n (x)
�
� C;

18



by (19). Then
k R�nW kL1(I)=k R�nW kL1[�an;an]� C:

�
Although the sup-norm of R�nW is bounded, all we can deduce from

this last lemma is that the L2 norm over I is O (an). This is a problem
if an ! 1; n ! 1. To �x this, we multiply R�n by a polynomial of de-
gree O (an) that behaves like (1 + x2)

�1 on [�an; an]. But that would give a
polynomial of degree n+O (an), rather than n. To avoid this, we show that
the polynomials R�m with m = n� O (an) still satisfy the conclusions of the
previous lemma, and for this we need:

Lemma 3.5
Let K > 0. Assume that

lim
n!1

an =1:

Assume that for n � 1, we are given an integer m = m (n) � n with

n�m = O (an) ; n!1:

Then for juj � K;

(V �n (u)� cn)� (V �m (u)� cm) � �C:

Proof
We use [7, p. 46, eqn. (2.34)]

cn =

Z n

0

log
2

as
ds

and [7, p. 46, eqn. (2.35)]

�n (t) =

Z n

0

�s (t) ds;

where �s is the equilibrium density for the interval �s = [�as; as], so that

�s (t) =

(
1

�
p
a2s�t2

; t 2 (�as; as) ;
0; otherwise

:

19



The Green�s function for Cn�s with pole at 1 has the representations

g�s (u) =

Z
log ju� tj �s (t) dt+ log

2

as

= log

������ uas +
s�

u

as

�2
� 1

������ :
Then we see that

�V �n (u) + cn

=

Z
log ju� tj

�Z n

0

�s (t) ds

�
dt+

Z n

0

log
2

as
ds

=

Z n

0

g�s (u) ds: (30)

So,

(V �n (u)� cn)� (V �m (u)� cm) = �
Z n

m

g�s (u) ds:

Here for s 2 [m;n] ;

g�s (u) = log

������ uas +
s�

u

as

�2
� 1

������
� log

0@���� uas
����+
s���� uas

����2 + 1
1A

� log

�
1 + 2

���� uas
����� � 2Kam :

Thus

�
Z n

m

g�s (u) ds � �C
n�m

am
� �C an

am
� �C1:

The last relation follows as m � n) am � an (see (3.27) in [7, p. 72]). �

We turn to the

Proof of Theorem 3.1

20



If (an) is bounded, then we can just choose Pn = R�n and the assertions (13)
and (14) of Theorem 3.1 follow from the corresponding ones in Lemma 3.4.
Now we consider the case where (an) is unbounded. For n � 1, let ` = ` (n)
denote the greatest integer � an � 2L. By Corollary 2 in [8], there exist for
large enough n, polynomials S` of degree � ` with

S` (x) �
1

1 + x2
; x 2 [�2an; 2an]

and
jS` (z)j � C; jzj = 1

2
:

Then we set
Pn (z) = R�n�` (z)S`

�z
2

�
;

a polynomial of degree � n. Then in [�an; an], (29) gives

jPn (x)jW (x) � C

1 + (x=2)2
;

so Z an

�an
jPnW j2 � C:

Restricted range inequalities (see Theorem 4.2 in [7, p. 96]) then give (14).
Moreover, (28) and Lemma 3.5 with m = n�` give for jzj = 1 with arg (z) 2�
�
4
; 3�
4

�
;

jPn (z)j � C
��R�n�`�� (z) � C exp (� [V �n�` (z)� cn�`])

� C1 exp (� [V �n (z)� cn]) :

So we have (13). Finally, the extremal property (1) of �n gives (15). �

4 Proof of Theorem 1.2

If we combine Lemma 2.1 and Theorem 3.1, we see that the following three
assertions together give Theorem 1.2:
(I)

1

2�

Z 3�
4

�
4

exp
�
�2
�
V �n

�
ei�
�
� cn

��
d� �

r
an
n
exp (�2 [V �n (i)� cn]) : (31)
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(II) Given 0 < � < �
2
, there exists C > 0 such that

exp
�
�2
�
V �n

�
ei�
�
� cn

��
= exp (�2 [V �n (i)� cn]) � exp

�
�C n

an

�
; (32)

uniformly for n � 1 and � 2 [��; �] [ [� � �; � + �] :
(III)

V �n (i)� cn = �
Z n

0

log

 
1

as
+

s
1 +

1

a2s

!
ds: (33)

(Recall that n=an !1 as n!1).
Proof of (I), (II)
Observe that as �n is even,

V �n
�
ei�
�
� V �n (i) =

Z an

0

log

���� t2 + 1t2 � e2i�

�����n (t) dt
=

1

2

Z an

0

log

�
1 +

4t2 cos2 �

jt2 � e2i�j2
�
�n (t) dt:

Here for all � and t;

4t2 cos2 �

jt2 � e2i�j2
� 4t2 cos2 �

(t2 + 1)2
(� 1)

while for � 2
�
�
4
; 3�
4

�
, we have � uniformly in �; t, instead of just �. Then

we obtain for all � 2 [��; �] ;

V �n
�
ei�
�
� V �n (i) � C

�
cos2 �

� Z an

0

t2

(t2 + 1)2
�n (t) dt (34)

and for � 2
�
�
4
; 3�
4

�
,

V �n
�
ei�
�
� V �n (i) �

�
cos2 �

� Z an

0

t2

(t2 + 1)2
�n (t) dt: (35)

In all cases, the constants are independent of n; �. Now we need the estimates

�n (t) �
Cnp
a2n � t2

; t 2 (�an; an)
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and

�n (t) �
np

a2n � t2
� n

an
; t 2

�
�1
2
an;

1

2
an

�
:

These estimates follow from Theorem 1.11 in [7, pp. 17-18]. Let us substitute
these bounds in (34) and (35). Some straightforward estimation gives for all
� 2 [��; �] ;

V �n
�
ei�
�
� V �n (i) � C

n

an

�
cos2 �

�
: (36)

and for � 2
�
�
4
; 3�
4

�
,

V �n
�
ei�
�
� V �n (i) � n

an

�
cos2 �

�
(37)

(For � = �
2
, we interpret 0=0 as 1). Now (36) directly gives (32). Moreover,

this last relation gives for some C1; C2; C3;

1

2�

Z 3�
4

�
4

exp
�
�2
�
V �n

�
ei�
�
� cn

��
d�= exp (�2 [V �n (i)� cn])

� 1

2�

Z 3�
4

�
4

exp

�
�C1

n

an
cos2 �

�
d�

� 1

2�

Z 3�
4

�
4

exp

�
�C2

n

an

�
� � �

2

�2�
d� � C3

r
an
n
:

Similarly (37) gives a matching upper bound, and so we have (I) also. �

Proof of (III)
From (30),

cn � V �n (i) =

Z n

0

g�s (i) ds:

Since g�s admits the representation

g�s (z) = log

������ zas +
s�

z

as

�2
� 1

������ ;
we obtain (33). �
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