Smallest Eigenvalues of Hankel Matrices for Exponential Weights

Y. Chen ${ }^{1}$ and D.S. Lubinsky ${ }^{2}$
${ }^{1}$ Department of Mathematics
Imperial College
180 Queen's Gate
London SW7 2BZ
England
y.chen@ic.ac.uk
${ }^{2}$ The School of Mathematics
Georgia Institute of Technology
Atlanta
GA 30332-0160
USA
lubinsky@math.gatech.edu
fax:404-894-4409

30 November 2003

Abstract

We obtain the rate of decay of the smallest eigenvalue of the Hankel matrices $\left(\int_{I} t^{j+k} W^{2}(t) d t\right)_{j, k=0}^{n}$ for a general class of even exponential weights $W^{2}=\exp (-2 Q)$ on an interval I. More precise asymptotics for more special weights have been obtained by many authors.

Remark 1 Running Title: Smallest Eigenvalues of Hankel Matrices

1 The Result

Let $I=(-d, d)$ where $0<d \leq \infty$. Let $Q: I \rightarrow[0, \infty)$ be continuous and $W^{2}=\exp (-2 Q)$ be such that all the moments

$$
\int_{I} t^{j} W^{2}(t) d t, j=0,1,2, \ldots
$$

exist. Form the positive definite Hankel matrix

$$
H_{n}=\left(\int_{I} t^{j+k} W^{2}(t) d t\right)_{j, k=0}^{n}
$$

and denote its smallest eigenvalue by λ_{n}. The focus of this paper is the rate of decay of the smallest eigenvalue λ_{n} of H_{n}.

Many authors have investigated the asymptotic behaviour of λ_{n} as $n \rightarrow$ ∞. For example, Widom, and Wilf investigated the behaviour of λ_{n} for weights on a finite interval satisfying the Szegö condition [13]. For the Hermite weight $W(x)=\exp \left(-\frac{1}{2} x^{2}\right)$, Szegö [11] established the asymptotic

$$
\lambda_{n}=2^{\frac{13}{4}} \pi^{\frac{3}{2}} e n^{\frac{1}{4}} \exp \left(-2(2 n)^{1 / 2}\right)(1+o(1))
$$

with similar results for Laguerre weights. The first author, Berg and Ismail [2] showed that λ_{n} remains bounded away from 0 iff the moment problem for W^{2} is indeterminate. Moreover, the first author and Lawrence [3] established asymptotic behaviour of λ_{n} for weights on $(0, \infty)$ such as $\exp \left(-x^{\beta}\right), \beta>0$. Beckermann has explored condition numbers for Hankel matrices [1].

It is well known that λ_{n} is given by the Rayleigh quotient:

$$
\lambda_{n}=\min \left\{\frac{\bar{X}^{T} H_{n} X}{\bar{X}^{T} X}: X \in \mathbb{C}^{n+1} \backslash\{\underline{0}\}\right\}
$$

Corresponding to any of these vectors $X=\left(x_{0}, x_{1}, x_{2}, \ldots x_{n}\right)^{T}$, we can define a polynomial

$$
P(z)=\sum_{j=0}^{n} x_{j} z^{j}
$$

Using the definition of H_{n}, we see that we can recast the Rayleigh quotient in the form

$$
\begin{equation*}
\lambda_{n}=\min \left\{\frac{\int_{I}|P|^{2} W^{2}}{\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|P\left(e^{i \theta}\right)\right|^{2} d \theta}: \operatorname{deg}(P) \leq n\right\} \tag{1}
\end{equation*}
$$

This extremum property, very similar to the extremal property of Christoffel functions, is the basis for the analysis in this paper.

Before we define our class of weights, which is the even case of the weights in [7], we need the notion of a quasi-increasing function. A function g : $(0, d) \rightarrow(0, \infty)$ is said to be quasi-increasing if there exists $C>0$ such that

$$
g(x) \leq C g(y), 0<x \leq y<d
$$

Of course, any increasing function is quasi-increasing.

Definition 1.1 General Exponential Weights

Let $W=e^{-Q}$ where $Q: I \rightarrow[0, \infty)$ is even and satisfies the following properties:
(a) Q^{\prime} is continuous in I and $Q(0)=0$;
(b) $Q^{\prime \prime}$ exists and is positive in $I \backslash\{0\}$;
(c)

$$
\lim _{t \rightarrow d-} Q(t)=\infty
$$

(d) The function

$$
T(t):=\frac{t Q^{\prime}(t)}{Q(t)}, t \neq 0
$$

is quasi-increasing in $(0, d)$, with

$$
T(t) \geq \Lambda>1, t \in(0, d)
$$

(e) There exists $C_{1}>0$ such that

$$
\frac{Q^{\prime \prime}(x)}{\left|Q^{\prime}(x)\right|} \leq C_{1} \frac{\left|Q^{\prime}(x)\right|}{Q(x)}, \text { a.e. } x \in(0, d)
$$

Then we write $W \in \mathcal{F}\left(C^{2}\right)$.
The simplest case of the above definition is when $I=\mathbb{R}$ and T is bounded. This is the so called Freud case, for the boundedness of T forces Q to be of at most polynomial growth. A typical example is

$$
Q(x)=|x|^{\alpha}, x \in \mathbb{R},
$$

where $\alpha>1$. A more general example satisfying the requirements of Definition 1.1 is

$$
Q(x)=\exp _{\ell}\left(|x|^{\alpha}\right)-\exp _{\ell}(0)
$$

where $\alpha>1$ and $\ell \geq 0$. Here we set $\exp _{0}(x):=x$ and for $\ell \geq 1$,

$$
\exp _{\ell}(x)=\underbrace{\exp (\exp (\exp \ldots \exp (x))))}_{\ell \text { times }}
$$

is the ℓ th iterated exponential.
An example on the finite interval $I=(-1,1)$ is

$$
Q(x)=\exp _{\ell}\left(\left(1-x^{2}\right)^{-\alpha}\right)-\exp _{\ell}(1), x \in(-1,1)
$$

where $\alpha>0$ and $\ell \geq 0$.
In analysis of exponential weights, an important role is played by the Mhaskar-Rakhmanov-Saff number $a_{u} \in(0, d), u>0$, which is the unique root of the equation

$$
u=\frac{2}{\pi} \int_{0}^{1} \frac{a_{u} s Q^{\prime}\left(a_{u} s\right)}{\sqrt{1-s^{2}}} d s
$$

One of the features that motivates their importance is the Mhaskar-Saff identity [9]

$$
\|P W\|_{L_{\infty}(I)}=\|P W\|_{L_{\infty}\left[-a_{n}, a_{n}\right]}
$$

valid for all polynomials P of degree $\leq n$. Throughout, C, C_{1}, C_{2}, \ldots denote positive constants independent of n, x, t and polynomials P of degree at most n. We write $C=C(\lambda), C \neq C(\lambda)$ to indicate dependence on, or independence of, a parameter λ. The same symbol does not necessarily denote the same constant in different occurrences. Given sequences of real numbers $\left(c_{n}\right)$ and $\left(d_{n}\right)$ we write

$$
c_{n} \sim d_{n}
$$

if there exist positive constants C_{1} and C_{2} such that

$$
C_{1} \leq c_{n} / d_{n} \leq C_{2}
$$

for the relevant range of n. Similar notation is used for functions and sequences of functions. We shall prove:

Theorem 1.2

Let W be even and $W \in \mathcal{F}\left(C^{2}\right)$. Then for $n \geq 1$,

$$
\begin{equation*}
\lambda_{n} \sim \sqrt{\frac{n}{a_{n}}} \exp \left(-2 \int_{0}^{n} \log \left[\frac{1}{a_{s}}+\sqrt{1+\frac{1}{a_{s}^{2}}}\right] d s\right) \tag{2}
\end{equation*}
$$

One may recast this estimate in a number of other ways: for example,

$$
\lambda_{n} \sim \sqrt{\frac{n}{a_{n}}} \exp \left(-2 \int_{0}^{n} \operatorname{arc} \sinh \left(\frac{1}{a_{s}}\right) d s\right) .
$$

An integration by parts shows that

$$
\begin{equation*}
\lambda_{n} \sim \sqrt{\frac{n}{a_{n}}} \exp \left(-2\left\{n \log \left[\frac{1}{a_{n}}+\sqrt{1+\frac{1}{a_{n}^{2}}}\right]+\int_{0}^{a_{n}} \frac{b_{t}}{t \sqrt{1+t^{2}}} d t\right\}\right) \tag{3}
\end{equation*}
$$

where b_{t} is the inverse function of a_{t}, that is

$$
b_{a_{t}}=b\left(a_{t}\right)=t, t>0
$$

(For this, one also needs $\lim _{s \rightarrow 0+} s \log \frac{1}{a_{s}}=0$, which follows from the convergence of $\int_{0}^{1} \log \frac{2}{a_{s}} d s$, see below). Another form, which is the initial form in our proof, is

$$
\begin{equation*}
\lambda_{n} \sim \sqrt{\frac{n}{a_{n}}} \exp \left(2\left[V^{\sigma_{n}}(i)-c_{n}\right]\right) \tag{4}
\end{equation*}
$$

where $V^{\sigma_{n}}$ is an equilibrium potential, and c_{n} is an equilibrium constant we shall define these at the end of this section.

Example

Let $\alpha>1$ and

$$
Q(x)=|x|^{\alpha}, x \in \mathbb{R}
$$

Here

$$
a_{u}=C_{\alpha} u^{1 / \alpha}, u>0,
$$

where [9]

$$
C_{\alpha}=\left(\frac{2^{\alpha-2} \Gamma(\alpha / 2)^{2}}{\Gamma(\alpha)}\right)^{1 / \alpha} .
$$

Using (2), the Maclaurin series expansion [5, p. 51]

$$
\log \left(x+\sqrt{1+x^{2}}\right)=\sum_{k=0}^{\infty}(-1)^{k} \frac{(2 k)!}{2^{2 k}(k!)^{2}(2 k+1)} x^{2 k+1},|x| \leq 1
$$

and some straightforward estimations, we obtain

$$
\lambda_{n} \sim n^{\frac{1}{2}\left(1-\frac{1}{\alpha}\right)} \exp \left(-2 n \sum_{k=0}^{\left[\frac{\alpha-1}{2}\right]}(-1)^{k} \frac{(2 k)!}{2^{2 k}(k!)^{2}(2 k+1)} \frac{a_{n}^{-2 k-1}}{1-\frac{2 k+1}{\alpha}}\right)
$$

provided α is not an odd integer. If α is an odd integer, we obtain instead

$$
\lambda_{n} \sim n^{\frac{1}{2}\left(1-\frac{1}{\alpha}\right)} \exp \binom{-2 n \sum_{k=0}^{\left[\frac{\alpha-3}{2}\right]}(-1)^{k} \frac{(2 k)!}{2^{2 k}(k!)^{2}(2 k+1)} \frac{a^{-2 k-1}}{1-\frac{2 k+1}{\alpha}}}{-2(\log n)(-1)^{\frac{\alpha-1}{2}} \frac{(\alpha-1)!}{2^{\alpha-1}\left(\frac{\alpha-1}{2}!\right)^{2} \alpha} C_{\alpha}^{-\alpha}} .
$$

In both estimates, $[x]$ denotes the greatest integer $\leq x$. In particular, for the Hermite weight $\alpha=2$, this gives

$$
\lambda_{n} \sim n^{\frac{1}{4}} \exp (-4 \sqrt{n}),
$$

which accords with Szegö's result, if we recall that $Q(x)=\frac{1}{2} x^{2}$ in his formulation.

This paper is organised as follows: in Section 2, we establish a general lower bound for λ_{n}, using the same methods that were used in [7] to establish lower bounds for Christoffel functions. In Section 3, we establish upper bounds for λ_{n} by discretizing a potential. Then in Section 4, we complete the proof.

Throughout the paper, we assume that $W \in \mathcal{F}\left(C^{2}\right)$. (In fact, with more work, our results hold for the class \mathcal{F} (Dini) in [7], but in terms of weights defined by explicit formulas, the difference is insubstantial). For each $t>0$, it is known that there is a non-negative density function σ_{t} on $\left[-a_{t}, a_{t}\right]$ with total mass t,

$$
\begin{equation*}
\int_{-a_{t}}^{a_{t}} \sigma_{t}(s) d s=t \tag{5}
\end{equation*}
$$

satisfying the equilibrium condition

$$
\begin{equation*}
\int_{-a_{t}}^{a_{t}} \log \frac{1}{|x-s|} \sigma_{t}(s) d s+Q(x)=c_{t}, x \in\left[-a_{t}, a_{t}\right] \tag{6}
\end{equation*}
$$

We call σ_{t} the equilibrium density of mass t, c_{t} the equilibrium constant for t, and

$$
V^{\sigma_{t}}(z)=\int_{-a_{t}}^{a_{t}} \log \frac{1}{|z-s|} \sigma_{t}(s) d s
$$

the corresponding equilibrium potential. One representation for σ_{t} is

$$
\begin{equation*}
\sigma_{t}(x)=\frac{\sqrt{a_{t}^{2}-x^{2}}}{\pi^{2}} \int_{-a_{t}}^{a_{t}} \frac{Q^{\prime}(s)-Q^{\prime}(x)}{s-x} \frac{d s}{\sqrt{a_{t}^{2}-s^{2}}}, x \in\left(-a_{t}, a_{t}\right) . \tag{7}
\end{equation*}
$$

and one for c_{t} is

$$
c_{t}=\int_{0}^{t} \log \frac{2}{a_{s}} d s
$$

See [7, Chapter 2].

2 Lower Bounds for λ_{n}

The result of this section is:

Lemma 2.1

Let $0<\eta<\frac{\pi}{2}$. Then
$\lambda_{n}^{-1} \leq C_{1}\left\{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \exp \left(-2\left[V^{\sigma_{n}}\left(e^{i \theta}\right)-c_{n}\right]\right) d \theta+\sup _{\theta \in[0, \eta]} \exp \left(-2\left[V^{\sigma_{n}}\left(e^{i \theta}\right)-c_{n}\right]\right)\right\}$.
Here C_{1} depends on η, not on n.
Throughout we fix n and set

$$
\Delta=\left[-a_{n}, a_{n}\right]
$$

Given $x \notin \Delta$, we use $g_{\Delta}(z, x)$ to denote the Green's function for $\overline{\mathbb{C}} \backslash \Delta$ with pole at x, so that $g_{\Delta}(z, x)+\log |z-x|$ is harmonic as a function of z in $\overline{\mathbb{C}} \backslash \Delta$ and vanishes on Δ. When $x \in \Delta$, we set $g_{\Delta}(z, x) \equiv 0$, and when $x=\infty$, the Green's function is denoted by $g_{\Delta}(z)$. We also let

$$
\phi(z)=z+\sqrt{z^{2}-1}, z \in \mathbb{C} \backslash[-1,1]
$$

denote the conformal map of $\mathbb{C} \backslash[-1,1]$ onto the exterior $\{w:|w|>1\}$ of the unit ball. Then the Green's function for $\overline{\mathbb{C}} \backslash \Delta$ with pole at ∞ admits the representation

$$
g_{\Delta}(z)=\log \left|\phi\left(\frac{z}{a_{n}}\right)\right| .
$$

For further orientation on the potential theory we use, see [10] or [7]. We also use $H[f]$ to denote the Hilbert transform of a function $f \in L_{1}(\mathbb{R})$, so that

$$
H[f](z)=\frac{1}{\pi i} \int_{-\infty}^{\infty} \frac{f(t)}{t-z} d t
$$

where the integral must be taken in a Cauchy principal value sense if z is real.

Proof of Lemma 2.1

We use the extremal property (1), in the form

$$
\lambda_{n}^{-1}=\sup \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|P\left(e^{i \theta}\right)\right|^{2} d \theta / \int_{I}|P W|^{2}
$$

where the sup is taken over all monic polynomials P of degree $\leq n$. Acordingly let P be a monic polynomial of degree $m \leq n$. If ν denotes a measure of total mass m that places unit mass at each zero of P, then $\log |P|$ admits the representation

$$
\log |P(z)|=\int \log |z-t| d \nu(t)
$$

Form

$$
G(z)=\int\left(\log |z-t|+g_{\Delta}(z, t)\right) d \nu(t)+V^{\sigma_{n}}(z)-c_{n}+(n-m) g_{\Delta}(z)
$$

Since $\log |z-t|+g_{\Delta}(z, t)$ is bounded and has finite limit as $z \rightarrow t$, we see that G is harmonic in $\mathbb{C} \backslash \Delta$. Moreover, since as $z \rightarrow \infty, V^{\sigma_{n}}(z)=-n \log |z|+o(1)$ and $g_{\Delta}(z)=\log \frac{2}{a_{n}}+\log |z|+o(1)$,

$$
\lim _{|z| \rightarrow \infty} G(z)=\int g_{\Delta}(\infty, t) d \nu(t)-c_{n}+(n-m) \log \frac{2}{a_{n}}=: G(\infty)
$$

Thus G is harmonic in $\overline{\mathbb{C}} \backslash \Delta$, and hence has a single valued harmonic conjugate there, $\widetilde{G}(z)$ say. Hence the function

$$
f(z):=\exp (G(z)+i \widetilde{G}(z)) / \phi\left(\frac{z}{a_{n}}\right)
$$

is analytic in $\overline{\mathbb{C}} \backslash \Delta$, with a simple zero at ∞. Cauchy's integral formula for the exterior of a segment gives for $z \notin \Delta$,

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi i} \int_{\Delta} \frac{f_{+}(x)-f_{-}(x)}{x-z} d x=\frac{1}{2}\left[H\left[f_{+}\right]-H\left[f_{-}\right](z)\right] \tag{9}
\end{equation*}
$$

where $f_{ \pm}$denote boundary values of f on Δ from the upper and lower half planes. Note that we set $f_{ \pm}=0$ outside Δ. Next,

$$
\begin{equation*}
\left|f_{ \pm}(x)\right|=\exp (G(x))=|P W|(x), x \in\left(-a_{n}, a_{n}\right) \tag{10}
\end{equation*}
$$

by (6). Moreover, as the Green's function g_{Δ} is non-negative,

$$
\begin{equation*}
|f(z)|=\exp (G(z)) /\left|\phi\left(\frac{z}{a_{n}}\right)\right| \geq|P(z)| \exp \left(V^{\sigma_{n}}(z)-c_{n}\right) /\left|\phi\left(\frac{z}{a_{n}}\right)\right|, z \notin \Delta . \tag{11}
\end{equation*}
$$

The representation (9) of f gives for $z \notin \Delta$,

$$
\begin{aligned}
|f(z)| & \leq \frac{1}{2 \pi}\left(\int_{\Delta}\left(f_{+}(x)-f_{-}(x)\right)^{2} d x\right)^{1 / 2}\left(\int_{\Delta} \frac{d x}{|x-z|^{2}}\right)^{1 / 2} \\
& \leq \frac{1}{\pi}\left(\int_{\Delta}|P W|^{2}\right)^{1 / 2}\left(\frac{\pi}{|\operatorname{Im} z|}\right)^{1 / 2}
\end{aligned}
$$

Combining this and (11) gives

$$
\begin{align*}
& \frac{1}{2 \pi}\left[\int_{-\pi+\eta}^{-\eta}+\int_{\eta}^{\pi-\eta}\right]\left|P\left(e^{i \theta}\right)\right|^{2} d \theta \\
\leq & \left(\int_{\Delta}|P W|^{2}\right)\left(\frac{1}{\pi \sin \eta}\right) \frac{1}{2 \pi}\left[\int_{-\pi+\eta}^{-\eta}+\int_{\eta}^{\pi-\eta}\right] \exp \left(-2\left[V^{\sigma_{n}}\left(e^{i \theta}\right)-c_{n}\right]\right)\left|\phi\left(\frac{e^{i \theta}}{a_{n}}\right)\right|^{2} d \theta \\
\leq & \frac{\left(1+\frac{2}{a_{n}}\right)^{2}}{\pi \sin \eta}\left(\int_{I}|P W|^{2}\right) \frac{1}{2 \pi} \int_{-\pi}^{\pi} \exp \left(-2\left[V^{\sigma_{n}}\left(e^{i \theta}\right)-c_{n}\right]\right) d \theta . \tag{12}
\end{align*}
$$

The rest of the integral is more difficult. First, note that since (11) holds and $V^{\sigma_{n}}(\bar{z})=V^{\sigma_{n}}(z)=V^{\sigma_{n}}(-z)$,

$$
\begin{aligned}
& \frac{1}{2 \pi}\left[\int_{-\eta}^{\eta}+\int_{\pi-\eta}^{\pi+\eta}\right]\left|P\left(e^{i \theta}\right)\right|^{2} d \theta \\
\leq & \sup _{\theta \in[0, \eta]} \exp \left(-2\left[V^{\sigma_{n}}\left(e^{i \theta}\right)-c_{n}\right]\right) \frac{\left(1+\frac{2}{a_{n}}\right)^{2}}{2 \pi}\left[\int_{-\eta}^{\eta}+\int_{\pi-\eta}^{\pi+\eta}\right]\left|f\left(e^{i \theta}\right)\right|^{2} d \theta \\
\leq & \sup _{\theta \in[0, \eta]} \exp \left(-2\left[V^{\sigma_{n}}\left(e^{i \theta}\right)-c_{n}\right]\right) \frac{\left(1+\frac{2}{a_{n}}\right)^{2}}{4 \pi} \int_{-\pi}^{\pi}\left(\left|H\left[f_{+}\right]\left(e^{i \theta}\right)\right|^{2}+\left|H\left[f_{-}\right]\left(e^{i \theta}\right)\right|^{2}\right) d \theta
\end{aligned}
$$

by (9). Now since $f_{ \pm}$are continuous on Δ, and are 0 off Δ, they are trivially in $L_{2}(\mathbb{R})$, and then $H\left[f_{ \pm}\right]$belong to the Hardy 2 -space of the upper-half plane [6, p. 128]. Next, normalized Lebesgue measure on the semi-circular arc of the unit circle in the upper-half plane is a Carleson measure with respect to that upper-half plane. So we can use Carleson's inequality to replace the integral over the upper and lower halves of the unit circle, by an integral along the real axis:

$$
\int_{-\pi}^{\pi}\left|H\left[f_{ \pm}\right]\left(e^{i \theta}\right)\right|^{2} d \theta \leq C \int_{-\infty}^{\infty}\left|H\left[f_{ \pm}\right](x)\right|^{2} d x
$$

with C independent of f. For a discussion of Carleson's inequality and Carleson measures, see [4] or [6]. Then

$$
\begin{aligned}
& \frac{1}{2 \pi}\left[\int_{-\eta}^{\eta}+\int_{\pi-\eta}^{\pi+\eta}\right]\left|P\left(e^{i \theta}\right)\right|^{2} d \theta \\
\leq & C\left\{\sup _{\theta \in[0, \eta]} \exp \left(-2\left[V^{\sigma_{n}}\left(e^{i \theta}\right)-c_{n}\right]\right)\right\} \int_{-\infty}^{\infty}\left(\left|H\left[f_{+}\right](x)\right|^{2}+\left|H\left[f_{-}\right](x)\right|^{2}\right) d x
\end{aligned}
$$

with C independent of f, P (and n). As the Hilbert transform is an isometry of $L_{2}(\mathbb{R})$, we obtain from (10)

$$
\begin{aligned}
& \frac{1}{2 \pi}\left[\int_{-\eta}^{\eta}+\int_{\pi-\eta}^{\pi+\eta}\right]\left|P\left(e^{i \theta}\right)\right|^{2} d \theta \\
\leq & 2 C\left\{\sup _{\theta \in[0, \eta]} \exp \left(-2\left[V^{\sigma_{n}}\left(e^{i \theta}\right)-c_{n}\right]\right)\right\} \int_{I}|P W|^{2} .
\end{aligned}
$$

Adding this and (12) gives, for all monic polynomials of degree $\leq n$,

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|P\left(e^{i \theta}\right)\right|^{2} d \theta / \int_{I}|P W|^{2} \\
\leq & C_{1}\left\{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \exp \left(-2\left[V^{\sigma_{n}}\left(e^{i \theta}\right)-c_{n}\right]\right) d \theta+\sup _{\theta \in[0, \eta]} \exp \left(-2\left[V^{\sigma_{n}}\left(e^{i \theta}\right)-c_{n}\right]\right)\right\} .
\end{aligned}
$$

Now the extremal property (1) gives the lemma.
We note that this lemma holds more generally than for our class of weights: Q does not need to be even or satisfy any smoothness restrictions. With minor modifications, the lemma holds for any exponential weight W for which the equilibrium measure is supported on a single interval.

3 Upper Bounds for λ_{n}

In this section, we use Totik's method of discretisation of a potential [12] to obtain a polynomial that gives an upper bound to match the lower bound in the previous section. The details are similar to those in [7, Chapter 7].

Theorem 3.1

There exist C_{1} and C_{2} and for large enough n, a polynomial P_{n} of degree $\leq n$ such that for $|z|=1$ with $\arg (z) \in\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right]$,

$$
\begin{equation*}
\left|P_{n}(z)\right| \geq C_{1} \exp \left(-\left[V^{\sigma_{n}}(z)-c_{n}\right]\right) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{I}|P W|^{2} \leq C_{2} \tag{14}
\end{equation*}
$$

Moreover for such n,

$$
\begin{equation*}
\lambda_{n}^{-1} \geq C_{3} \int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \exp \left(-2\left[V^{\sigma_{n}}\left(e^{i \theta}\right)-c_{n}\right]\right) d \theta \tag{15}
\end{equation*}
$$

with C_{3} independent of n.
Throughout, we let σ_{n}^{*} denote the density σ_{n} contracted to $[-1,1]$ so that

$$
\sigma_{n}^{*}(s)=\frac{a_{n}}{n} \sigma_{n}\left(a_{n} s\right), s \in(-1,1),
$$

and

$$
\begin{equation*}
\int_{-1}^{1} \sigma_{n}^{*}=1 \tag{16}
\end{equation*}
$$

For a fixed n, we determine points

$$
-1=t_{0}<t_{1}<t_{2}<\ldots<t_{n}=1
$$

and intervals

$$
I_{j}=\left[t_{j}, t_{j+1}\right), 0 \leq j \leq n-1 ;\left|I_{j}\right|=t_{j+1}-t_{j}
$$

with

$$
\int_{I_{j}} \sigma_{n}^{*}=\frac{1}{n}, 0 \leq j \leq n-1 .
$$

Moreover, we use Totik's idea [12] of the "weight point" or "centre of mass"

$$
\xi_{j}=\int_{t_{j}}^{t_{j+1}} s \sigma_{n}^{*}(s) d s / \int_{t_{j}}^{t_{j+1}} \sigma_{n}^{*}(s) d s \in\left(t_{j}, t_{j+1}\right)
$$

so that

$$
\begin{equation*}
\int_{t_{j}}^{t_{j+1}}\left(s-\xi_{j}\right) \sigma_{n}^{*}(s) d s=0 \tag{17}
\end{equation*}
$$

We define

$$
R_{n}(z)=\prod_{j=0}^{n-1}\left(z-\xi_{j}\right)
$$

and will prove:

Lemma 3.2

There exists a positive integer L such that for large enough n, and $\frac{2}{a_{n}} \geq$ $|u| \geq \frac{1}{2 a_{n}}$ with $\arg (u) \in\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right]$,

$$
\begin{equation*}
\left|R_{n}(u)\right| \exp \left(n V^{\sigma_{n}^{*}}(u)\right) \geq C_{1}, \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|R_{n}(x)\right| \exp \left(n V^{\sigma_{n}^{*}}(x)\right) \leq C_{2}\left(1-x^{2}\right)^{-L}, x \in(-1,1) \tag{19}
\end{equation*}
$$

Later on, if I is unbounded, we shall "damp down" R_{n} on I by multiplying with another polynomial so that we obtain (14). For the proof of Lemma 3.2, we need properties of the discretisation points:

Lemma 3.3

(a) Uniformly in n and $1 \leq j \leq n-2$,

$$
\begin{equation*}
\sigma_{n}^{*}\left(t_{j}\right) \sim \sigma_{n}^{*}(s) \sim \sigma_{n}^{*}\left(t_{j+1}\right) \sim \frac{1}{n\left|I_{j}\right|} \sim \frac{1}{n\left|I_{j+1}\right|}, s \in\left[t_{j}, t_{j+1}\right] \tag{20}
\end{equation*}
$$

(b) Moreover, if $j=0$,

$$
\begin{equation*}
\sigma_{n}^{*}(s) \leq C \sigma_{n}^{*}\left(t_{j+1}\right) \sim \frac{1}{n\left|I_{j}\right|} \sim \frac{1}{n\left|I_{j+1}\right|}, s \in\left[t_{j}, t_{j+1}\right] \tag{21}
\end{equation*}
$$

with an analogous assertion if $j=n-1$.
(c) There exists $C>0$ such that for $n \geq 1$, and $u, v \in(-1,1)$ with

$$
\begin{equation*}
|u-v| \leq\left(1-u^{2}\right)^{5} \tag{22}
\end{equation*}
$$

we have

$$
\sigma_{n}^{*}(u) / \sigma_{n}^{*}(v) \leq C .
$$

Proof

(a), (b) These are Lemma 7.16 in [7, p. 194].
(c) Note that the class of weights $\mathcal{F}\left(C^{2}\right)$ we treat here lies in the class $\mathcal{F}\left(\operatorname{Lip} \frac{1}{2}\right)$ in [7] (see [7, p. 13]) and hence we may apply Theorem 6.3(b) in [7, pp. 147-148] with $\psi(u)=u^{1 / 2}$. We obtain for $n \geq 1$ and $u, v \in(-1,1)$,

$$
\left|\sigma_{n}^{*}(u)-\sigma_{n}^{*}(v)\right| \leq \frac{C}{\sqrt{1-|v|}}\left(\frac{|u-v|}{1-\max \{|u|,|v|\}}\right)^{1 / 4}
$$

Moreover, from Theorem 6.1(b) in [7, p. 146],

$$
\sigma_{n}^{*}(v) \geq C \sqrt{1-v^{2}}
$$

Then subject to (22), we obtain

$$
1-|u| \sim 1-|v| \sim 1-u^{2}
$$

so

$$
\left|1-\frac{\sigma_{n}^{*}(u)}{\sigma_{n}^{*}(v)}\right| \leq \frac{C}{(1-|u|)^{5 / 4}}|u-v|^{1 / 4} \leq C .
$$

Proof of (19) of Lemma 3.2

We see that

$$
\begin{equation*}
\log \left|R_{n}(u)\right|+n V^{\sigma_{n}^{*}}(u)=-\sum_{j=0}^{n-1} \int_{I_{j}} \log \left|\frac{u-s}{u-\xi_{j}}\right|\left(n \sigma_{n}^{*}(s)\right) d s=:-\sum_{j=0}^{n-1} \Gamma_{j} . \tag{23}
\end{equation*}
$$

Now we proceed in five steps:
Step 1: An inequality for Γ_{j}
Fix $u \in[-1,1]$ and choose j_{0} such that $u \in I_{j_{0}}$. Since $\left|I_{j}\right| \sim\left|I_{j \pm 1}\right|$ (by Lemma 3.3), we claim that there exists $\tau \in(0,1)$, independent of u, j and n, such that for $\left|j-j_{0}\right| \geq 2$,

$$
\begin{equation*}
s \in I_{j} \Rightarrow \frac{\xi_{j}-s}{u-\xi_{j}} \geq-\tau \tag{24}
\end{equation*}
$$

To see this, suppose for example that $j \leq j_{0}-2$, so that I_{j} is to the left of $I_{j_{0}-1}$. Then $u-\xi_{j}>0$ and

$$
\frac{\xi_{j}-s}{u-\xi_{j}} \geq \frac{\xi_{j}-t_{j+1}}{t_{j_{0}}-\xi_{j}} \geq \frac{t_{j}-t_{j+1}}{t_{j_{0}}-t_{j}} \geq-\frac{\left|I_{j}\right|}{\left|I_{j}\right|+\left|I_{j+1}\right|}
$$

(In the third inequality, we use the fact that the ratio decreases as we decrease ξ_{j}). So (24) holds in this case. The case where $j \geq j_{0}+2$ is similar. Next, a Taylor series expansion gives

$$
\begin{aligned}
\log \left|\frac{u-s}{u-\xi_{j}}\right| & =\log \left(1+\frac{\xi_{j}-s}{u-\xi_{j}}\right) \\
& =\frac{\xi_{j}-s}{u-\xi_{j}}-\frac{1}{2} \frac{1}{(1+r)^{2}}\left(\frac{\xi_{j}-s}{u-\xi_{j}}\right)^{2}
\end{aligned}
$$

where r is between 0 and $\frac{\xi_{j}-s}{u-\xi_{j}}$. As $r \geq-\tau$,

$$
\log \left|\frac{u-s}{u-\xi_{j}}\right| \geq \frac{\xi_{j}-s}{u-\xi_{j}}-\frac{1}{2(1-\tau)^{2}}\left(\frac{\left|I_{j}\right|}{\operatorname{dist}\left(u, I_{j}\right)}\right)^{2}
$$

Then the definition (17) of ξ_{j} gives

$$
\Gamma_{j} \geq-\frac{1}{2(1-r)^{2}}\left(\frac{\left|I_{j}\right|}{\operatorname{dist}\left(u, I_{j}\right)}\right)^{2}
$$

Step 2: Γ_{j} with I_{j} far from $I_{j_{0}}$
Consider those j with $\left|j-j_{0}\right| \geq 2$ and

$$
\operatorname{dist}\left(u, I_{j}\right) \geq\left(1-u^{2}\right)^{5}
$$

Let \mathcal{S} denote the set of all such indices j. Here the first restriction on j ensures that

$$
\operatorname{dist}\left(u, I_{j}\right) \geq C\left|I_{j}\right|
$$

and then using the bound on Γ_{j} from Step 1,

$$
\begin{aligned}
\sum_{j \in \mathcal{S}} \Gamma_{j} & \geq-C \sum_{j \in \mathcal{S}} \frac{\left|I_{j}\right|}{\operatorname{dist}\left(u, I_{j}\right)} \\
& \geq-C \int_{\left\{s \in[0,1]:|s-u| \geq C_{1}\left(1-u^{2}\right)^{5}\right\}} \frac{d s}{|s-u|} \\
& \geq-C \log \left|\frac{1-u^{2}}{2}\right|
\end{aligned}
$$

Step 3: Γ_{j} with I_{j} close, but not too close, to $I_{j_{0}}$
Consider those j with $\left|j-j_{0}\right| \geq 2$ and

$$
\operatorname{dist}\left(u, I_{j}\right)<\left(1-u^{2}\right)^{5}
$$

Let \mathcal{T} denote the set of all such indices j. Note that from Lemma 3.3(a), (b), and then (c), uniformly for such j, and some $k \in\{j, j+1\}$,

$$
\frac{\left|I_{j}\right|}{\left|I_{j_{0}}\right|} \leq C \frac{\sigma_{n}^{*}(u)}{\sigma_{n}^{*}\left(t_{k}\right)} \leq C
$$

Then

$$
\begin{aligned}
\sum_{j \in \mathcal{T}} \Gamma_{j} & \geq-C\left|I_{j_{0}}\right| \sum_{j \in \mathcal{T}} \frac{\left|I_{j}\right|}{\operatorname{dist}\left(u, I_{j}\right)^{2}} \\
& \geq-C\left|I_{j_{0}}\right| \int_{\left\{s:|s-u| \geq C_{1}\left|I_{j_{0}}\right|\right\}} \frac{d s}{|s-u|^{2}} \\
& \geq-C .
\end{aligned}
$$

Step 4: Γ_{j} with I_{j} very close to $I_{j_{0}}$
Now we deal with the at most 3 remaining terms Γ_{j} with $\left|j-j_{0}\right| \leq 1$. Here we can apply Lemma 3.3 to obtain, for some constants C_{1}, C_{2} and C_{3} (independent of j, j_{0}, u and n),

$$
\begin{aligned}
\Gamma_{j} & =\int_{I_{j}} \log \left|\frac{u-s}{u-\xi_{j}}\right|\left(n \sigma_{n}^{*}(s)\right) d s \\
& \geq \int_{I_{j}} \log \left|\frac{u-s}{C_{1}\left|I_{j}\right|}\right|\left(n \sigma_{n}^{*}(s)\right) d s \\
& \geq \frac{C_{2}}{\left|I_{j}\right|} \int_{I_{j}} \log \left|\frac{u-s}{C_{1}\left|I_{j}\right|}\right| d s \\
& \geq C_{2} \int_{-C_{3}}^{C_{3}} \log \left|\frac{v}{C_{1}}\right| d v \geq-C_{4}
\end{aligned}
$$

Thus

$$
\sum_{j:\left|j-j_{0}\right| \leq 1} \Gamma_{j} \geq-C_{5}
$$

Step 5: Finish the Proof of (19)

Combining (23) and all the estimates above gives for $u \in(-1,1)$,

$$
\log \left|R_{n}(u)\right|+n V^{\sigma_{n}^{*}}(u) \leq C-C \log \left(1-u^{2}\right)
$$

Proof of (18) of Lemma 3.2

We use the Γ_{j} defined above. For $s \in I_{j}$ and $u \in \mathbb{C}$,

$$
\begin{aligned}
\log \left|\frac{u-s}{u-\xi_{j}}\right| & =\frac{1}{2} \log \left|1+\frac{\xi_{j}-s}{u-\xi_{j}}\right|^{2} \\
& =\frac{1}{2} \log \left(1+\left|\frac{\xi_{j}-s}{u-\xi_{j}}\right|^{2}+2 \operatorname{Re}\left(\frac{\xi_{j}-s}{u-\xi_{j}}\right)\right) \\
& \leq \frac{1}{2}\left|\frac{\xi_{j}-s}{u-\xi_{j}}\right|^{2}+\operatorname{Re}\left(\frac{1}{u-\xi_{j}}\right)\left(\xi_{j}-s\right)
\end{aligned}
$$

so integrating over I_{j} and using (17) gives

$$
\begin{aligned}
\Gamma_{j} & \leq \frac{\left|I_{j}\right|^{2}}{2\left|u-\xi_{j}\right|^{2}} \int_{I_{j}} n \sigma_{n}^{*}(s) d s+0 \\
& \leq \frac{1}{2}\left[\frac{\left|I_{j}\right|}{\operatorname{dist}\left(u, I_{j}\right)}\right]^{2}
\end{aligned}
$$

Suppose now that for some $C>0$,

$$
\begin{equation*}
\chi(u):=\sup \left\{\left|I_{j}\right|: \operatorname{dist}\left(u, I_{j}\right) \leq \frac{1}{8}\right\} \leq C|\operatorname{Im} u| \tag{25}
\end{equation*}
$$

Then

$$
\begin{align*}
& \sum_{j: d i s t\left(u, I_{j}\right) \leq \frac{1}{8}} \Gamma_{j} \\
\leq & \frac{\chi(u)}{2} \sum_{j: d i s t\left(u, I_{j}\right) \leq \frac{1}{8}} \frac{\left|I_{j}\right|}{\operatorname{dist}\left(u, I_{j}\right)^{2}} \\
\leq & C_{1} \chi(u) \sum_{j: d i s t\left(u, I_{j}\right) \leq \frac{1}{8}} \frac{\left|I_{j}\right|}{(\operatorname{Im} u)^{2}+\operatorname{dist}\left(\operatorname{Re} u, I_{j}\right)^{2}} \\
\leq & C_{2} \chi(u) \int_{-\infty}^{\infty} \frac{d s}{(\operatorname{Im} u)^{2}+|\operatorname{Re} u-s|^{2}} \leq C_{3}, \tag{26}
\end{align*}
$$

by (25). Moreover,

$$
\begin{aligned}
& \sum_{j: d i s t\left(u, I_{j}\right)>\frac{1}{8}} \Gamma_{j} \\
\leq & C_{4} \sum_{j: d i s t\left(u, I_{j}\right)>\frac{1}{8}}\left|I_{j}\right| \leq C_{5} .
\end{aligned}
$$

Combining this, (23) and (26) gives

$$
\left|R_{n}(u)\right| \exp \left(n V^{\sigma_{n}^{*}}(u)\right) \geq C_{6}
$$

provided (25) holds. Now we show that (25) does hold if

$$
\begin{equation*}
\frac{2}{a_{n}} \geq|u| \geq \frac{1}{2 a_{n}} \text { and } \arg (u) \in\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right] \tag{27}
\end{equation*}
$$

We consider two subcases:
(I) I is a finite interval

In this case $a_{n} \rightarrow d<\infty$ as $n \rightarrow \infty$. Then the condition (27) ensures that $|\operatorname{Im} u| \geq C$, with C independent of u and n. Hence (25) is immediate.
(II) $I=(-\infty, \infty)$

In this case $a_{n} \rightarrow \infty, n \rightarrow \infty$, and (27) implies that $|u| \leq \frac{1}{8}$ for large enough n. Then for $n \geq n_{0}$,

$$
\operatorname{dist}\left(u, I_{j}\right) \leq \frac{1}{8} \Rightarrow I_{j} \subset\left(-\frac{1}{3}, \frac{1}{3}\right)
$$

(The threshhold n_{0} does not depend on u, j, j_{0}, n). Since (see (7.89) and (7.84) in [7, pp. 187-188]),

$$
I_{j} \subset\left(-\frac{1}{3}, \frac{1}{3}\right) \Rightarrow\left|I_{j}\right| \sim \frac{1}{n}
$$

(with constants in the \sim relation independent of n), and since $|\operatorname{Im} u| \sim \frac{1}{a_{n}}$, we see that (25) reduces to

$$
\frac{1}{n} \leq \frac{C}{a_{n}}
$$

which is true as

$$
a_{n}=o(n) .
$$

(See (3.30) in [7, p. 72] and note that in the even case $\delta_{n}=a_{n}$).
From this we deduce:

Lemma 3.4

Let L be as in Lemma 3.2. There exist polynomials R_{n}^{*} of degree $\leq n+2 L$ such that for $\frac{1}{2} \leq|z| \leq 2$ with $\arg (z) \in\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right]$,

$$
\begin{equation*}
\left|R_{n}^{*}(z)\right| \exp \left(V^{\sigma_{n}}(z)-c_{n}\right) \geq C_{1} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|R_{n}^{*} W\right| \leq C_{2} \text { in } I \tag{29}
\end{equation*}
$$

Proof

Observe that

$$
\begin{aligned}
V^{\sigma_{n}}\left(a_{n} u\right) & =\int_{-a_{n}}^{a_{n}} \log \frac{1}{\left|a_{n} u-t\right|} \sigma_{n}(t) d t \\
& =n \int_{-1}^{1} \log \frac{1}{\left|a_{n} u-a_{n} s\right|} \sigma_{n}^{*}(s) d s \\
& =n \log \frac{1}{a_{n}}+n V^{\sigma_{n}^{*}}(u)
\end{aligned}
$$

We set

$$
R_{n}^{*}(z):=\left(1-\left(a_{n}^{-1} z\right)^{2}\right)^{L} R_{n}\left(a_{n}^{-1} z\right) \exp \left(c_{n}-n \log \frac{1}{a_{n}}\right)
$$

where L is as in Lemma 3.2. We see that

$$
\begin{aligned}
& \left|R_{n}^{*}\left(a_{n} u\right)\right| \exp \left(V^{\sigma_{n}}\left(a_{n} u\right)-c_{n}\right) \\
= & \left|1-u^{2}\right|^{L}\left|R_{n}(u)\right| \exp \left(V^{\sigma_{n}^{*}}(u)\right)
\end{aligned}
$$

and (28) follows from (18), on setting $z=a_{n} u$. (Note that $\left|1-u^{2}\right|$ is bounded below). Next, for $x \in[-1,1]$, from (6)

$$
\begin{aligned}
& \left|R_{n}^{*} W\right|\left(a_{n} x\right) \\
= & \left|R_{n}^{*}\left(a_{n} x\right)\right| \exp \left(V^{\sigma_{n}}\left(a_{n} x\right)-c_{n}\right) \\
= & \left(1-x^{2}\right)^{L}\left|R_{n}(x)\right| \exp \left(n V^{\sigma_{n}^{*}}(x)\right) \leq C,
\end{aligned}
$$

by (19). Then

$$
\left\|R_{n}^{*} W\right\|_{L_{\infty}(I)}=\left\|R_{n}^{*} W\right\|_{L_{\infty}\left[-a_{n}, a_{n}\right]} \leq C .
$$

Although the sup-norm of $R_{n}^{*} W$ is bounded, all we can deduce from this last lemma is that the L_{2} norm over I is $O\left(a_{n}\right)$. This is a problem if $a_{n} \rightarrow \infty, n \rightarrow \infty$. To fix this, we multiply R_{n}^{*} by a polynomial of degree $O\left(a_{n}\right)$ that behaves like $\left(1+x^{2}\right)^{-1}$ on $\left[-a_{n}, a_{n}\right]$. But that would give a polynomial of degree $n+O\left(a_{n}\right)$, rather than n. To avoid this, we show that the polynomials R_{m}^{*} with $m=n-O\left(a_{n}\right)$ still satisfy the conclusions of the previous lemma, and for this we need:

Lemma 3.5

Let $K>0$. Assume that

$$
\lim _{n \rightarrow \infty} a_{n}=\infty
$$

Assume that for $n \geq 1$, we are given an integer $m=m(n) \leq n$ with

$$
n-m=O\left(a_{n}\right), n \rightarrow \infty .
$$

Then for $|u| \leq K$,

$$
\left(V^{\sigma_{n}}(u)-c_{n}\right)-\left(V^{\sigma_{m}}(u)-c_{m}\right) \geq-C .
$$

Proof

We use [7, p. 46, eqn. (2.34)]

$$
c_{n}=\int_{0}^{n} \log \frac{2}{a_{s}} d s
$$

and $[7$, p. 46, eqn. (2.35)]

$$
\sigma_{n}(t)=\int_{0}^{n} \gamma_{\Delta_{s}}(t) d s
$$

where $\gamma_{\Delta_{s}}$ is the equilibrium density for the interval $\Delta_{s}=\left[-a_{s}, a_{s}\right]$, so that

$$
\gamma_{\Delta_{s}}(t)=\left\{\begin{array}{ll}
\frac{1}{\pi \sqrt{a_{s}^{2}-t^{2}}}, & t \in\left(-a_{s}, a_{s}\right), \\
0, & \text { otherwise }
\end{array} .\right.
$$

The Green's function for $\mathbb{C} \backslash \Delta_{s}$ with pole at ∞ has the representations

$$
\begin{aligned}
g_{\Delta_{s}}(u) & =\int \log |u-t| \gamma_{\Delta_{s}}(t) d t+\log \frac{2}{a_{s}} \\
& =\log \left|\frac{u}{a_{s}}+\sqrt{\left(\frac{u}{a_{s}}\right)^{2}-1}\right| .
\end{aligned}
$$

Then we see that

$$
\begin{align*}
& -V^{\sigma_{n}}(u)+c_{n} \\
= & \int \log |u-t|\left(\int_{0}^{n} \gamma_{\Delta_{s}}(t) d s\right) d t+\int_{0}^{n} \log \frac{2}{a_{s}} d s \\
= & \int_{0}^{n} g_{\Delta_{s}}(u) d s . \tag{30}
\end{align*}
$$

So,

$$
\left(V^{\sigma_{n}}(u)-c_{n}\right)-\left(V^{\sigma_{m}}(u)-c_{m}\right)=-\int_{m}^{n} g_{\Delta_{s}}(u) d s
$$

Here for $s \in[m, n]$,

$$
\begin{aligned}
g_{\Delta_{s}}(u) & =\log \left|\frac{u}{a_{s}}+\sqrt{\left(\frac{u}{a_{s}}\right)^{2}-1}\right| \\
& \leq \log \left(\left|\frac{u}{a_{s}}\right|+\sqrt{\left|\frac{u}{a_{s}}\right|^{2}+1}\right) \\
& \leq \log \left(1+2\left|\frac{u}{a_{s}}\right|\right) \leq 2 \frac{K}{a_{m}}
\end{aligned}
$$

Thus

$$
-\int_{m}^{n} g_{\Delta_{s}}(u) d s \geq-C \frac{n-m}{a_{m}} \geq-C \frac{a_{n}}{a_{m}} \geq-C_{1}
$$

The last relation follows as $m \sim n \Rightarrow a_{m} \sim a_{n}$ (see (3.27) in [7, p. 72]).
We turn to the

Proof of Theorem 3.1

If $\left(a_{n}\right)$ is bounded, then we can just choose $P_{n}=R_{n}^{*}$ and the assertions (13) and (14) of Theorem 3.1 follow from the corresponding ones in Lemma 3.4. Now we consider the case where $\left(a_{n}\right)$ is unbounded. For $n \geq 1$, let $\ell=\ell(n)$ denote the greatest integer $\leq a_{n}-2 L$. By Corollary 2 in [8], there exist for large enough n, polynomials S_{ℓ} of degree $\leq \ell$ with

$$
S_{\ell}(x) \sim \frac{1}{1+x^{2}}, x \in\left[-2 a_{n}, 2 a_{n}\right]
$$

and

$$
\left|S_{\ell}(z)\right| \geq C,|z|=\frac{1}{2}
$$

Then we set

$$
P_{n}(z)=R_{n-\ell}^{*}(z) S_{\ell}\left(\frac{z}{2}\right),
$$

a polynomial of degree $\leq n$. Then in $\left[-a_{n}, a_{n}\right]$, (29) gives

$$
\left|P_{n}(x)\right| W(x) \leq \frac{C}{1+(x / 2)^{2}}
$$

so

$$
\int_{-a_{n}}^{a_{n}}\left|P_{n} W\right|^{2} \leq C
$$

Restricted range inequalities (see Theorem 4.2 in [7, p. 96]) then give (14). Moreover, (28) and Lemma 3.5 with $m=n-\ell$ give for $|z|=1$ with $\arg (z) \in$ $\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right]$,

$$
\begin{aligned}
\left|P_{n}(z)\right| & \geq C\left|R_{n-\ell}^{*}\right|(z) \geq C \exp \left(-\left[V^{\sigma_{n-\ell}}(z)-c_{n-\ell}\right]\right) \\
& \geq C_{1} \exp \left(-\left[V^{\sigma_{n}}(z)-c_{n}\right]\right) .
\end{aligned}
$$

So we have (13). Finally, the extremal property (1) of λ_{n} gives (15).

4 Proof of Theorem 1.2

If we combine Lemma 2.1 and Theorem 3.1, we see that the following three assertions together give Theorem 1.2:

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \exp \left(-2\left[V^{\sigma_{n}}\left(e^{i \theta}\right)-c_{n}\right]\right) d \theta \sim \sqrt{\frac{a_{n}}{n}} \exp \left(-2\left[V^{\sigma_{n}}(i)-c_{n}\right]\right) \tag{I}
\end{equation*}
$$

(II) Given $0<\eta<\frac{\pi}{2}$, there exists $C>0$ such that

$$
\begin{equation*}
\exp \left(-2\left[V^{\sigma_{n}}\left(e^{i \theta}\right)-c_{n}\right]\right) / \exp \left(-2\left[V^{\sigma_{n}}(i)-c_{n}\right]\right) \leq \exp \left(-C \frac{n}{a_{n}}\right) \tag{32}
\end{equation*}
$$

uniformly for $n \geq 1$ and $\theta \in[-\eta, \eta] \cup[\pi-\eta, \pi+\eta]$.
(III)

$$
\begin{equation*}
V^{\sigma_{n}}(i)-c_{n}=-\int_{0}^{n} \log \left(\frac{1}{a_{s}}+\sqrt{1+\frac{1}{a_{s}^{2}}}\right) d s \tag{33}
\end{equation*}
$$

(Recall that $n / a_{n} \rightarrow \infty$ as $n \rightarrow \infty$).
Proof of (I), (II)
Observe that as σ_{n} is even,

$$
\begin{aligned}
V^{\sigma_{n}}\left(e^{i \theta}\right)-V^{\sigma_{n}}(i) & =\int_{0}^{a_{n}} \log \left|\frac{t^{2}+1}{t^{2}-e^{2 i \theta}}\right| \sigma_{n}(t) d t \\
& =\frac{1}{2} \int_{0}^{a_{n}} \log \left(1+\frac{4 t^{2} \cos ^{2} \theta}{\left|t^{2}-e^{2 i \theta}\right|^{2}}\right) \sigma_{n}(t) d t
\end{aligned}
$$

Here for all θ and t,

$$
\frac{4 t^{2} \cos ^{2} \theta}{\left|t^{2}-e^{2 i \theta}\right|^{2}} \geq \frac{4 t^{2} \cos ^{2} \theta}{\left(t^{2}+1\right)^{2}}(\leq 1)
$$

while for $\theta \in\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right]$, we have \sim uniformly in θ, t, instead of just \geq. Then we obtain for all $\theta \in[-\pi, \pi]$,

$$
\begin{equation*}
V^{\sigma_{n}}\left(e^{i \theta}\right)-V^{\sigma_{n}}(i) \geq C\left(\cos ^{2} \theta\right) \int_{0}^{a_{n}} \frac{t^{2}}{\left(t^{2}+1\right)^{2}} \sigma_{n}(t) d t \tag{34}
\end{equation*}
$$

and for $\theta \in\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right]$,

$$
\begin{equation*}
V^{\sigma_{n}}\left(e^{i \theta}\right)-V^{\sigma_{n}}(i) \sim\left(\cos ^{2} \theta\right) \int_{0}^{a_{n}} \frac{t^{2}}{\left(t^{2}+1\right)^{2}} \sigma_{n}(t) d t \tag{35}
\end{equation*}
$$

In all cases, the constants are independent of n, θ. Now we need the estimates

$$
\sigma_{n}(t) \leq \frac{C n}{\sqrt{a_{n}^{2}-t^{2}}}, t \in\left(-a_{n}, a_{n}\right)
$$

and

$$
\sigma_{n}(t) \sim \frac{n}{\sqrt{a_{n}^{2}-t^{2}}} \sim \frac{n}{a_{n}}, t \in\left(-\frac{1}{2} a_{n}, \frac{1}{2} a_{n}\right) .
$$

These estimates follow from Theorem 1.11 in [7, pp. 17-18]. Let us substitute these bounds in (34) and (35). Some straightforward estimation gives for all $\theta \in[-\pi, \pi]$,

$$
\begin{equation*}
V^{\sigma_{n}}\left(e^{i \theta}\right)-V^{\sigma_{n}}(i) \geq C \frac{n}{a_{n}}\left(\cos ^{2} \theta\right) \tag{36}
\end{equation*}
$$

and for $\theta \in\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right]$,

$$
\begin{equation*}
V^{\sigma_{n}}\left(e^{i \theta}\right)-V^{\sigma_{n}}(i) \sim \frac{n}{a_{n}}\left(\cos ^{2} \theta\right) \tag{37}
\end{equation*}
$$

(For $\theta=\frac{\pi}{2}$, we interpret $0 / 0$ as 1). Now (36) directly gives (32). Moreover, this last relation gives for some C_{1}, C_{2}, C_{3},

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \exp \left(-2\left[V^{\sigma_{n}}\left(e^{i \theta}\right)-c_{n}\right]\right) d \theta / \exp \left(-2\left[V^{\sigma_{n}}(i)-c_{n}\right]\right) \\
\geq & \frac{1}{2 \pi} \int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \exp \left(-C_{1} \frac{n}{a_{n}} \cos ^{2} \theta\right) d \theta \\
\geq & \frac{1}{2 \pi} \int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \exp \left(-C_{2} \frac{n}{a_{n}}\left(\theta-\frac{\pi}{2}\right)^{2}\right) d \theta \geq C_{3} \sqrt{\frac{a_{n}}{n}}
\end{aligned}
$$

Similarly (37) gives a matching upper bound, and so we have (I) also.

Proof of (III)

From (30),

$$
c_{n}-V^{\sigma_{n}}(i)=\int_{0}^{n} g_{\Delta_{s}}(i) d s
$$

Since $g_{\Delta_{s}}$ admits the representation

$$
g_{\Delta_{s}}(z)=\log \left|\frac{z}{a_{s}}+\sqrt{\left(\frac{z}{a_{s}}\right)^{2}-1}\right|,
$$

we obtain (33).
Acknowledgement
We thank a referee for a careful reading of the manuscript, and for pointing out an error in the proof of Lemma 3.2.

References

[1] B. Beckermann, The Condition Number of Real Vandermonde, Krylov and Positive Definite Hankel Matrices, Numerische Mathematik, 85(2000), 553-577.
[2] C. Berg, Y. Chen and M.E.H. Ismail, Small Eigenvalues of large Hankel matrices: the indeterminate case, Math. Scandinavica, 91(2002), 67-81.
[3] Y. Chen and N. Lawrence, Small Eigenvalues of large Hankel Matrices, J. Physics A, 32(1999), 7305-7315.
[4] J. B. Garnett, Bounded Analytic Functions, Academic Press, Orlando, 1981.
[5] I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Series and Products, Academic Press, 4th Edition, San Diego, 1980.
[6] P. Koosis, Introduction to H_{p} Spaces, Cambridge University Press, Cambridge, 1998.
[7] E. Levin and D.S. Lubinsky, Orthogonal Polynomials for Exponential Weights, Springer, New York, 2001.
[8] D.S. Lubinsky, Best Approximation and Interpolation of $\left(1+\left(a x^{2}\right)\right)^{-1}$ and its Transforms, to appear in J. Approx. Theory.
[9] H.N. Mhaskar and E.B. Saff, Where does the sup Norm of a Weighted Polynomial Live?, Constr. Approx., 1(1985), 71-91.
[10] E.B. Saff and V. Totik, Logarithmic Potentials with External Fields, Springer, Berlin, 1997.
[11] G. Szego, On some Hermitian Forms associated with two given curves of the complex plane, (in) Gabor Szegö: Collected Papers, Vol. 2, P. 666, Birkhäuser, Basel, 1982.
[12] V. Totik, Weighted Approximation with Varying Weights, Springer Lecture Notes in Maths., Vol. 1300, Springer, Berlin, 1994.
[13] H. Widom and H. S. Wilf, Small Eigenvalues of large Hankel matrices, Proc. Amer. Math. Soc., 17(1966), 338-344.

