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Abstract. We establish universality limits for measures on a subarc of
the unit circle. Assume that µ is a regular measure on such an arc, in
the sense of Stahl, Totik, and Ullmann, and is absolutely continuous in
an open arc containing some point z0 = eiθ0 . Assume, moreover, that
µ′ is positive and continuous at z0. Then universality for µ holds at z0,
in the sense that the reproducing kernel Kn (z, t) for µ satisfies

lim
n→∞

Kn

(
z0 exp

(
2πis
n

)
, z0 exp

(
2πit̄
n

))
Kn (z0, z0)

= eiπ(s−t)S ((s− t)T (θ0)) ,

uniformly for s, t in compact subsets of the plane, where S (z) = sinπz
πz

is the sinc kernel, and T/2π is the equilibrium density for the arc.

1. Introduction and Results1

In the theory of random Hermitian matrices, arising from scattering the-
ory in physics, universality limits play an important role. They can be
reduced to scaling limits for reproducing kernels involving orthogonal poly-
nomials, which makes the analysis feasible. This has been completed in a
very wide array of settings [2], [3], [4], [8], [9], [10], [12], [13], [14], [15], [20],
[23].
In a recent paper, Eli Levin and the first author established universality

limits for measures on the unit circle [9]. In this paper, we consider instead
subarcs of the unit circle. Our analysis depends heavily on the work of
Leonid Golinskii, who provided a detailed exposition for Szegő-Bernstein
theory for such arcs, and deduced asymptotics of orthogonal polynomials
and their Christoffel functions [6], [7]. In turn, Golinskii’s work depended
heavily on work of Akhiezer [1].
Let α ∈ (0, π) and let our arc be

∆α =
{
eiθ : θ ∈ [α, 2π − α]

}
.

Let µ be a finite positive Borel measure on∆α (or equivalently on [α, 2π − α])
with infinitely many points in its support. Then we may define orthonormal
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polynomials
φn (z) = κnz

n + ..., κn > 0,

n = 0, 1, 2, ... satisfying the orthonormality conditions

1

2π

∫ 2π−α

α
φn (z)φm (z)dµ (θ) = δmn,

where z = eiθ.
We shall usually assume that µ is regular in the sense of Stahl, Totik and

Ullmann [21], so that

(1.1) lim
n→∞

κ1/n
n =

1

cos α2
.

Here cos α2 is the logarithmic capacity of ∆α. A simple suffi cient condition
for regularity is that µ′ > 0 a.e. in [α, 2π−α), but there are pure jump and
pure singularly continuous measures that are regular.
The nth reproducing kernel for µ is

(1.2) Kn (z, u) =

n−1∑
j=0

φj (z)φj (u).

To state our results, we need some auxiliary functions: for θ ∈ [α, 2π − α],
we define λ (θ) ∈ [0, π] by the equation

(1.3) cosλ (θ) =
cos θ2
cos α2

.

Observe that λ is a strictly increasing continuous function of θ, that maps
[α, 2π − α] onto [0, π]. We also let

(1.4) T (θ) =
sin θ

2√
cos2 α

2 − cos2 θ
2

.

T (θ) / (2π) is the density of the equilibrium measure for ∆α in the sense of
potential theory. Finally, we need the sinc kernel:

(1.5) S (z) =
sinπz

πz
.

Our main result is:

Theorem 1.1
Let α ∈ (0, π), and let µ be a finite positive Borel measure on [α, 2π − α]
that is regular. Let J ⊂ (α, 2π − α) be compact, and be such that µ is ab-
solutely continuous in an open set containing J. Assume moreover, that µ′

is positive and continuous at each point of J . Then uniformly for θ0 ∈ J
and s, t in compact subsets of the complex plane C, we have

lim
m→∞

Km

(
ei(θ0+ 2πs

m ), ei(θ0+ 2πt̄
m )
)

Km (eiθ0 , eiθ0)
= eiπ(s−t)S ((s− t)T (θ0)) .
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(1.6)

Remarks
(a) In the case α → 0+, we see that T (θ) → 1 and the right-hand side of
(1.6) reduces to eiπ(s−t)S (s− t), which is the result of Levin and Lubinsky
[9].
(b) If J consists of just a single point θ0, then the hypothesis is that µ
is absolutely continuous in some neighborhood (θ0 − ε, θ0 + ε) of θ0, while
µ′ (θ0) > 0 and µ′ is continuous at θ0.
(c) As in [9], [13], the main idea in this paper is a localization principle, and
a comparison inequality.
(d) As in [11], this limit has implications for the spacing of the zeros of the
reproducing kernel. It is known that for |a| = 1, the zeros of Kn (·, a) lie on
the unit circle [18, Thm. 2.2.12, p. 129].

Corollary 1.2
Assume the hypotheses of Theorem 1.1, and let θ0 ∈ J . For k ≥ 1, let eiθkn
denote the k th closest zero of Kn

(
eiθ0 , ·

)
to θ0, with θkn > θ0, while eiθ−kn

denotes the k th closest zero to θ0, with θ−kn < θ0. Then for large enough
n, θ±kn exists, the zero eiθ±kn is simple, and

(1.7) lim
n→∞

n (θ±kn − θ0) =
±2πk

T (θ0)
.

This result should be compared to the ‘clock theorems’ in [11], [19], the
estimates in [16], and earlier work of Freud [5, p. 266].
We can also deduce asymptotics for derivatives of the reproducing kernel:

we let

K(j,k)
n (z, z) =

n−1∑
m=0

φ(j)
m (z)φ

(k)
m (z).

Corollary 1.3
Assume the hypotheses of Theorem 1.1, and let θ0 ∈ J, z0 = eiθ0 . For
j, k ≥ 0,

lim
n→∞

zj−k0

nj+k
K

(j,k)
n (z0, z0)

Kn (z0, z0)

=
1

T (θ0) (j + k + 1)

[(
1 + T (θ0)

2

)j+k+1

−
(

1− T (θ0)

2

)j+k+1
]
.(1.8)

In the sequel C,C1, C2, ... denote constants independent of n, z, u, θ, s, t.
The same symbol does not necessarily denote the same constant in different
occurrences. We shall write C = C (α) or C 6= C (α) to respectively denote
dependence on, or independence of, the parameter α. [x] denotes the greatest
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integer ≤ x. For sequences {cn} , {dn} of non-zero real numbers, we write
cn ∼ dn if there exist positive constants C1, C2 independent of n such that

C1 ≤ cn/dn ≤ C2.

Given measures µ∗, µ#, we use K∗n,K
#
n to denote their respective repro-

ducing kernels. Similarly superscripts ∗,# are used to distinguish other
quantities associated with them.
We denote the nth Christoffel function for the measure µ by

(1.9)

Ωn

(
eiθ
)

= 1/Kn

(
eiθ, eiθ

)
= min

deg(P )≤n−1

(
1

2π

∫ 2π−α

α

∣∣P (eit)∣∣2 dµ (t)

)
/
∣∣∣P (eiθ)∣∣∣2 .

The paper is organised as follows. In Section 2, we prove some of the
results for a special weight considered by Leonid Golinskii in [6]. In Section
3, we prove Theorem 1.1 and Corollaries 1.2 and 1.3.

2. A Special Weight on the Arc

In this section, we consider the measure dµ (θ) = W (θ) dθ, where

(2.1) W (θ) =
sin α

2

2 sin θ
2

√
cos2 α

2 − cos2 θ
2

, θ ∈ [α, 2π − α] .

This is the special case Ω = 1 of the weights considered by Leonid Golinskii
[6, p. 237]. Golinskii [6, p. 244] provided a detailed derivation of explicit
formulae for the corresponding orthonormal polynomials {φn}: for n ≥ 1,

(2.2) φn

(
eiθ
)

= A (θ) ein(
θ
2
−λ(θ)) +B (θ) ein(

θ
2

+λ(θ))

where λ (θ) ∈ [0, π] is determined by (1.3). Moreover,

A (θ) =

{
e−iλ(θ)

√
1− sin

α

2
− e−i

θ
2

√
1 + sin

α

2

}
g−
(
eiθ
)

2i sin
(
θ
2

) ;(2.3)

B (θ) =

{
eiλ(θ)

√
1− sin

α

2
− e−i

θ
2

√
1 + sin

α

2

}
g+

(
eiθ
)

2i sin
(
θ
2

) ;(2.4)

and all we shall need to know about g± is that [6, p. 241, (35), (38)] they
are continuous and

(2.5)
∣∣∣g± (eiθ)∣∣∣ =

√
2 sin2 (θ/2)

sin (α/2)
.

Note that in [6], we chose Ω = 1 and ρΩ

(
eiθ
)

= sin(α/2)

2 sin2(θ/2)
. We shall assume

that (2.2) holds even for n = 0 as this makes no difference to our asymptot-
ics. We prove
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Theorem 2.1
Let dµ (θ) = W (θ) dθ be given by (2.1), and let Km denote its mth repro-
ducing kernel. Then uniformly for s, t in compact subsets of the complex
plane,

lim
m→∞

Km

(
ei(θ0+ 2πs

m ), ei(θ0+ 2πt̄
m )
)

Km (eiθ0 , eiθ0)
= eiπ(s−t)S ((s− t)T (θ0)) .

We begin with real s, t:

Lemma 2.2
Let θ0 ∈ (α, 2π − α), s, t ∈ R, and for m ≥ 1, define θ = θ (m) , φ = φ (m)
by

(2.6) θ = θ0 +
2πs

m
;φ = θ0 +

2πt

m
.

(a) Uniformly for s, t in compact subsets of the real line,

(2.7) lim
m→∞

m (λ (θ)− λ (φ)) = T (θ0)π (s− t) .

(b) Uniformly for s, t in compact subsets of the real line,

lim
m→∞

1

m
Km

(
eiθ, eiφ

)
= |A (θ0)|2 eiπ(

s−t
2 )(1−T (θ0))S

((
s− t

2

)
(1− T (θ0))

)
+ |B (θ0)|2 eiπ(

s−t
2 )(1+T (θ0))S

((
s− t

2

)
(1 + T (θ0))

)
.(2.8)

(c)

|A (θ0)|2 =
sin2 θ0

2

sin α
2

(
1− T (θ0)−1

)
;(2.9)

|B (θ0)|2 =
sin2 θ0

2

sin α
2

(
1 + T (θ0)−1

)
.(2.10)

(d) Uniformly for s in compact subsets of the real line,

(2.11) lim
m→∞

1

m
Km

(
eiθ, eiθ

)
=

2 sin2 θ0
2

sin α
2

.

and

(2.12) lim
m→∞

1

m
Km

(
eiθ, eiθ

)
W (θ) = T (θ0) .

(e) Uniformly for θ0 in compact subsets of (α, 2π − α), and s, t in compact
subsets of C,

(2.13) lim
m→∞

Km

(
eiθ, eiφ

)
Km (eiθ0 , eiθ0)

= eiπ(s−t)S ((s− t)T (θ0)) .
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Proof
(a) Now by the definition (1.3) of λ,

(
cos

α

2

)
[cosλ (θ)− cosλ (φ)] = cos

θ

2
− cos

φ

2
.

Hence

(
cos

α

2

)
sin

(
λ (θ)− λ (φ)

2

)
sin

(
λ (θ) + λ (φ)

2

)
= sin

(
θ − φ

4

)
sin

(
θ + φ

4

)
.

Since λ is continuous in (α, 2π − α), and θ, φ → θ0 as m → ∞, we deduce
that

(
cos

α

2

) m [λ (θ)− λ (φ)]

2
sin (λ (θ0))

= m

(
θ − φ

4

)
sin

θ0

2
+ o (1)

= π
s− t

2
sin

θ0

2
+ o (1) .(2.14)

Finally,

(
cos

α

2

)
sin (λ (θ0))

=
(

cos
α

2

)√
1− cos2 λ (θ0)

=

√
cos2

α

2
− cos2

θ0

2
.

Substituting this into (2.14) gives the result.
(b) From (2.2),

1

m
Km

(
eiθ, eiφ

)
=

1

m

m−1∑
n=0

[
A (θ) ein(

θ
2
−λ(θ)) +B (θ) ein(

θ
2

+λ(θ))
]

×
[
A (φ)e−in(

φ
2
−λ(φ)) +B (φ)e−in(

φ
2

+λ(φ))
]

(2.15)

= Σ1 + Σ2 + Σ3 + Σ4,
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where these four sums are specified below: firstly by continuity of A,

Σ1 =
1

m

m−1∑
n=0

A (θ)A (φ)ein(
θ−φ

2
−λ(θ)+λ(φ))

= |A (θ0)|2 1

m

m−1∑
n=0

ein(
θ−φ

2
−λ(θ)+λ(φ)) + o (1)

= |A (θ0)|2 1

m

1− eim( θ−φ2
−λ(θ)+λ(φ))

1− ei(
θ−φ

2
−λ(θ)+λ(φ))

+ o (1)

= |A (θ0)|2 ei
m−1

2 ( θ−φ2
−λ(θ)+λ(φ))

S
(
m
2π

(
θ−φ

2 − λ (θ) + λ (φ)
))

S
(

1
2π

(
θ−φ

2 − λ (θ) + λ (φ)
)) + o (1)

= |A (θ0)|2 eiπ(
s−t

2 )(1−T (θ0))S

(
s− t

2
(1− T (θ0))

)
+ o (1) ,

by (2.7) and the continuity of S at 0, where S (0) = 1. Similarly,

Σ4 =
1

m

m−1∑
n=0

B (θ)B (φ)ein(
θ−φ

2
+λ(θ)−λ(φ))

= |B (θ0)|2 eiπ(
s−t

2 )(1+T (θ0))S

(
s− t

2
(1 + T (θ0))

)
+ o (1) .

Next,

Σ3 =
1

m

m−1∑
n=0

A (θ)B (φ)ein(
θ−φ

2
−λ(θ)−λ(φ))

= A (θ0)B (θ0)
1

m

m−1∑
n=0

ein(
θ−φ

2
−λ(θ)−λ(φ)) + o (1)

= A (θ0)B (θ0)
1

m

1− eim( θ−φ2
−λ(θ)−λ(φ))

1− ei(
θ−φ

2
−λ(θ)−λ(φ))

+ o (1) .

Here as m→∞,
θ − φ

2
− λ (θ)− λ (φ) = −2λ (θ0) + o (1)

and −2λ (θ0) ∈ (−2π, 0), so the denominator 1 − ei(
θ−φ

2
−λ(θ)−λ(φ)) in Σ3 is

bounded away from 0. Thus

Σ3 = o (1) ,

and similarly,

Σ4 = o (1) .
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Combining the above asymptotics for Σj , j = 1, 2, 3, 4, gives the result.
(c) Now ∣∣∣∣e−iλ(θ0)

√
1− sin

α

2
− e−i

θ0
2

√
1 + sin

α

2

∣∣∣∣2
=

(
1− sin

α

2

)
+ (−2) cos

α

2
cos

(
θ0

2
− λ (θ0)

)
+
(

1 + sin
α

2

)
= 2

(
1− cos

α

2

[
cos

θ0

2
cosλ (θ0) + sin

θ0

2
sinλ (θ0)

])
= 2

(
1− cos2 θ0

2
− sin

θ0

2

√
cos2

α

2
− cos2

θ0

2

)
,

by definition (1.3) of λ (θ0). We continue this as

= 2 sin2 θ0

2

(
1− T (θ0)−1

)
.

Then (2.9) follows from (2.3) and (2.5). (2.10) is similar.
(d) This follows by setting φ = θ in (2.8) and using (2.9) and (2.10).
(e) From (2.8) to (2.11),

lim
m→∞

Km

(
eiθ, eiφ

)
Km (eiθ0 , eiθ0)

=
1

2

(
1− T (θ0)−1

)
eiπ(

s−t
2 )(1−T (θ0))S

(
s− t

2
(1− T (θ0))

)
+

1

2

(
1 + T (θ0)−1

)
eiπ(

s−t
2 )(1+T (θ0))S

(
s− t

2
(1 + T (θ0))

)
.

This can be continued as

1

2T (θ0)

eiπ(
s−t

2 )

π
(
s−t
2

) [ −e−iπ s−t2
T (θ0) sin

(
π
(
s−t
2

)
(1− T (θ0))

)
+eiπ

s−t
2
T (θ0) sin

(
π
(
s−t
2

)
(1 + T (θ0))

) ]

=
1

2T (θ0)

eiπ(
s−t

2 )

π
(
s−t
2

)
 sin

(
π s−t2

)
cos
(
π s−t2 T (θ0)

){
eiπ

s−t
2
T (θ0) − e−iπ s−t2

T (θ0)
}

+ cos
(
π s−t2

)
sin
(
π s−t2 T (θ0)

){
eiπ

s−t
2
T (θ0) + e−iπ

s−t
2
T (θ0)

} 
=

1

T (θ0)

eiπ(
s−t

2 )

π
(
s−t
2

) cos

(
π
s− t

2
T (θ0)

)
sin

(
π
s− t

2
T (θ0)

)[
cos

(
π
s− t

2

)
+ i sin

(
π
s− t

2

)]
=

1

T (θ0)

eiπ(s−t)

π (s− t) sin (π (s− t)T (θ0))

= eiπ(s−t)S ((s− t)T (θ0)) .

�

Proof of Theorem 2.1
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We already have the result for real s, t. For m ≥ 1, let

(2.16) fm (s, t) =
Km

(
ei(θ0+ 2πs

m ), ei(θ0+ 2πt̄
m )
)

Km (eiθ0 , eiθ0)
.

This is a polynomial in ei2πs/m and e−i2πt/m. We shall show that {fm} is
uniformly bounded for s, t in compact subsets of C: that is, given r > 0,
there exists C such that

(2.17) sup
m≥1

sup
|s|,|t|≤r

|fm (s, t)| ≤ C.

Thus {fm} is a normal family. In as much as the limit (2.13) holds for real
s, t, and the right-hand side of (2.13) is an entire function of s, t, it then
follows from the principle of analytic continuation that the limit holds uni-
formly for s, t in compact subsets of the plane.

To prove (2.17), along standard lines, we note first from (2.15) that for
θ, φ ∈ (α, 2π − α) ,

1

m

∣∣∣Km

(
eiθ, eiφ

)∣∣∣
≤ (|A (θ)|+ |B (θ)|)× (|A (φ)|+ |B (φ)|) .

Let J be a compact subinterval of (α, 2π − α) , and ∆J =
{
eiθ : θ ∈ J

}
. The

last inequality, and continuity of A,B on J shows that

sup
z,u∈∆J

1

m
|Km (z, u)| ≤ C.

Let G denote the Green’s function for C\J with pole at ∞. From the
Bernstein-Walsh inequality [17, p. 156], it follows that for all z, u ∈ C,

1

m
|Km (z, u)| ≤ Cem(G(z)+G(u)).

Moreover, G (z) = 0 for z ∈ ∆J , and because ∆J is a "smooth" arc,∣∣G (zeiu)∣∣ ≤ C1 |u| ,

for z ∈ J1 and |u| ≤ 1, where J1 is any compact subinterval of the interior
of J . It follows that for m ≥ m0 (r) ,

1

m

∣∣∣Km

(
ei(θ0+ 2πs

m ), ei(θ0+ 2πt̄
m )
)∣∣∣ ≤ C1e

C2(|s|+|t|) ≤ C1e
2C2r.

See Lemmas 6.1 and 6.2 in [9, pp. 556-557] for more details. Finally, by
(2.11), Km

(
eiθ0 , eiθ0

)
≥ Cm. So we have (2.17) and the result. �
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3. Proof of Theorem 1.1

We begin with asymptotics for Christoffel functions:

Lemma 3.1
Let µ be a regular measure on [α, 2π−α]. Assume that µ is absolutely con-
tinuous in an open set containing a compact set J ⊂ (α, 2π − α) , and at
each point of J , µ′ is positive and continuous. Let A > 0. Then uniformly
for a ∈ [−A,A] , and θ ∈ J,

(3.1) lim
n→∞

nΩn

(
exp

(
i
(
θ +

a

n

)))
= µ′ (θ) /T (θ) .

Moreover, uniformly for n ≥ n0 (A) , θ ∈ J, and a ∈ [−A,A] ,

(3.2) Ωn

(
exp

(
i
(
θ +

a

n

)))
∼ 1

n
.

Remarks
(a) We emphasize that we are assuming that µ′ is continuous in J when
regarded as a function defined on [α, 2π − α].
(b) Asymptotics for Christoffel functions associated with special measures
on the arc were established by Golinskii [7]. Totik [23], [24] established as-
ymptotics a.e. on more general arcs and curves, that include (3.1) in the
case a = 0.
(c) It follows from Totik’s results and that above, that 1

2πT (θ) is the density
of the equilibrium measure (in the sense of potential theory) for the arc.
Proof
We already know this result for the special weight W (θ) dθ of the previous
section. The extension to the general case is exactly the same as for the
whole unit circle in [9, pp. 549-551, proof of Theorem 3.1], so we omit the
details. �

Next, we need a comparison inequality:

Lemma 3.2
Let r > 0 and µ, µ∗ be measures on [α, 2π − α], with µ ≤ rµ∗. Then for all
real θ, φ, ∣∣∣∣(Kn −

1

r
K∗n

)(
eiθ, eiφ

)∣∣∣∣ /Kn

(
eiθ, eiθ

)
≤

(
Kn

(
eiφ, eiφ

)
Kn (eiθ, eiθ)

)1/2 [
1−

K∗n
(
eiθ, eiθ

)
rKn (eiθ, eiθ)

]1/2

.(3.3)

Proof
Let µ# = rµ∗, so that µ ≤ µ#. In [9, Theorem 4.1, page 552-3], we showed
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that ∣∣∣(Kn −K#
n

)(
eiθ, eiφ

)∣∣∣ /Kn

(
eiθ, eiθ

)
≤

(
Kn

(
eiφ, eiφ

)
Kn (eiθ, eiθ)

)1/2 [
1−

K#
n

(
eiθ, eiθ

)
Kn (eiθ, eiθ)

]1/2

.

It is easily seen from the definition of the orthonormal polynomials and
reproducing kernel that

K#
n (z, w) =

1

r
K∗n (z, w) .

Then the result follows. �

Proof of Theorem 1.1
Let ε ∈ (0, 1) and θ0 ∈ J . By continuity of µ′ and W at θ0, we can choose
δ > 0 such that for |θ − θ0| ≤ δ

1− ε ≤ µ′ (θ)

µ′ (θ0)
≤ (1− ε)−1 ;

1− ε ≤ W (θ)

W (θ0)
≤ (1− ε)−1 .

Let

c = (1− ε)−2 µ
′ (θ0)

W (θ0)

and define two new measures µ∗ and µ# on [α, 2π − α] by

dµ# (θ) = W (θ) dθ;

dµ∗ (θ) = W (θ) dθ in |θ − θ0| < δ;

dµ∗ (θ) = W (θ) dθ +
1

c
dµ (θ) in [α, 2π − α] \ (θ0 − δ, θ0 + δ) .

Then µ∗ ≥ µ# and cµ∗ ≥ µ in [α, 2π − α]. Moreover, by our asymptotics
for Christoffel functions in Lemma 3.1, uniformly for s in a bounded real
interval,

lim
n→∞

K∗n
(
ei(θ0+2πs/n), ei(θ0+2πs/n)

)
Kn

(
ei(θ0+2πs/n), ei(θ0+2πs/n)

) =
µ′ (θ0)

W (θ0)
= c (1− ε)2 ;

lim
n→∞

K∗n
(
ei(θ0+2πs/n), ei(θ0+2πs/n)

)
K#
n

(
ei(θ0+2πs/n), ei(θ0+2πs/n)

) = 1.

Moreover, uniformly for s in a bounded interval,

Kn

(
ei(θ0+2πs/n), ei(θ0+2πs/n)

)
∼ K#

n

(
ei(θ0+2πs/n), ei(θ0+2πs/n)

)
∼ K∗n

(
ei(θ0+2πs/n), ei(θ0+2πs/n)

)
∼ n.
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Then Lemma 3.2 applied to µ# and µ∗ gives, with r = 1, and θ = θ0+2πs/n,
φ = θ0 + 2πt/n, ∣∣∣(K#

n −K∗n
)(

eiθ, eiφ
)∣∣∣ /K#

n

(
eiθ, eiθ

)
≤

(
K#
n

(
eiφ, eiφ

)
K#
n (eiθ, eiθ)

)1/2 [
1−

K∗n
(
eiθ, eiθ

)
K#
n (eiθ, eiθ)

]1/2

→ 0 as n→∞;

and Lemma 3.2 applied to µ and µ∗ with r = c gives,∣∣∣∣(Kn −
1

c
K∗n

)(
eiθ, eiφ

)∣∣∣∣ /Kn

(
eiθ, eiθ

)
≤

(
Kn

(
eiφ, eiφ

)
Kn (eiθ, eiθ)

)1/2 [
1−

K∗n
(
eiθ, eiθ

)
cKn (eiθ, eiθ)

]1/2

≤ C
[
1− (1− ε)2

]1/2
≤ C [3ε]1/2 .

Here C is independent of s, t, a, b, n, ε. Combining these last two inequalities
gives, for large enough n,∣∣∣(cKn −K#

n

)(
eiθ, eiφ

)∣∣∣ /n ≤ Cε1/2,

and recalling the definition of c, and the fact that Kn = O (n) , also∣∣∣∣( µ′ (θ0)

W (θ0)
Kn −K#

n

)(
eiθ, eiφ

)∣∣∣∣ /n ≤ Cε1/2.

Here the left-hand side is independent of ε, so we deduce

lim sup
n→∞

∣∣∣∣( µ′ (θ0)

W (θ0)
Kn −K#

n

)(
ei(θ0+2πs/n), ei(θ0+2πt/n)

)∣∣∣∣ /n = 0.

Using Lemma 3.1 on Kn

(
eiθ0 , eiθ0

)
and K#

n

(
eiθ0 , eiθ0

)
once more, and The-

orem 2.1, we obtain

lim
n→∞

Kn

(
ei(θ0+2πs/n), ei(θ0+2πt/n)

)
Kn (eiθ0 , eiθ0)

= lim
n→∞

K#
n

(
ei(θ0+2πs/n), ei(θ0+2πt/n)

)
K#
n (eiθ0 , eiθ0)

= eiπ(s−t)S ((s− t)T (θ0)) .

The limit holds uniformly for s, t in a real interval. We still have to establish
it for complex s, t. To do this, we can proceed as in the proof of Theorem
2.1: let fm be defined by (2.16). We again need to show the uniform bound-
edness (2.17). But in some interval J containing θ0, we have µ′ ≥ C, and
consequently, in a slightly smaller interval J1,∣∣∣Km

(
eiθ, eiφ

)∣∣∣ ≤ Cm, θ, φ ∈ J,m ≥ 1.
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We can now mimic the proof given in Theorem 2.1 to show the uniform
boundedness (2.17), and then apply normality and analytic continuation. �

Proof of Corollary 1.2
This is an easy consequence of Hurwitz’s theorem: the function eiπsS (sT (θ0))
has (simple) zeros when and only when sT (θ0) is an integer. It follows from
the uniform convergence in Theorem 1.1, and Hurwitz’Theorem, that for
large enough n, Kn

(
ei(θ0+2πs/n), eiθ0

)
has a simple zero s±kn, with

lim
n→∞

s±knT (θ0) = ±k.

Moreover, these are the only zeros of Kn

(
ei(θ0+2πs/n), eiθ0

)
in a bounded

neighborhood of 0. Now observe that

θ±kn = θ0 + 2πs±kn/n,

so

n (θ±kn − θ0) = 2πs±kn =
±2πk

T (θ0)
+ o (1) .

�

Proof of Corollary 1.3
We begin with the identity

S (x) =
sinπx

πx
=

1

2

∫ 1

0

(
eiπxy + e−iπxy

)
dy.

This easily yields

eiπ(s−t)S ((s− t)T (θ0))

=
1

2

∫ 1

0

[
eiπs(1+yT (θ0))e−iπt(1+yT (θ0)) + eiπs(1−yT (θ0))e−iπt(1−yT (θ0))

]
dy.

We now use the Maclaurin series for the exponential function on each term
in the last line, and then integrate with respect to y. On multiplying and
dividing by a suitable power of 2, we obtain

eiπ(s−t)S ((s− t)T (θ0))

=

∞∑
j=0

∞∑
k=0

(2iπs)j

j!

(−2iπt)k

k!

1

T (θ0) (j + k + 1)

[(
1 + T (θ0)

2

)j+k+1

−
(

1 + T (θ0)

2

)j+k+1
]
.

(3.4)

Next, the asymptotic in Theorem 1.1 can also be recast in the form

(3.5) lim
n→∞

Kn

(
z0

(
1 + 2πis

n

)
, z0

(
1 + 2πit̄

n

))
Kn (z0, z0)

= eiπ(s−t)S ((s− t)T (θ0)) ,
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uniformly for s, t in compact sets. To establish this, one uses that

e2πis/n = 1 +
2πis

n
+O

(
1

n2

)
,

together with bounds such as∣∣∣K(1,0)
n (z, z)

∣∣∣ ≤ C2n
2,

uniformly for |z − z0| ≤ C1/n, for any given C1 > 0. This latter estimate
may easily be deduced from Cauchy’s estimates for derivatives, and the fact
that |Kn (z, z)| ≤ C3n for |z − z0| ≤ C1/n - as in the proof of Theorem
2.1, this follows from the Bernstein-Walsh growth lemma for polynomials.
Finally, we note that Taylor series expansion gives

Kn

(
z0

(
1 + 2πis

n

)
, z0

(
1 + 2πit̄

n

))
Kn (z0, z0)

=
∞∑

j,k=0

K
(j,k)
n (z0, z0)

Kn (z0, z0)

zj−k0

nj+k
(2πis)j

j!

(−2πit)k

k!
.

This, the Taylor series (3.4), and the uniform convergence (3.5) give the
result. �

References

[1] N. I. Akhiezer, On Polynomials Orthogonal on a Circular Arc, Dokl. Akad. Nauk
SSSR, 130(1960), 247-250 [in Russian]; Soviet Math. Dokl., 1(1960), 31-34.

[2] J. Baik, T. Kriecherbauer, K. T-R. McLaughlin, P.D. Miller, Uniform Asymptot-
ics for Polynomials Orthogonal with respect to a General Class of Discrete Weights
and Universality Results for Associated Ensembles, Princeton Annals of Mathematics
Studies, 2006.

[3] P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Ap-
proach, Courant Institute Lecture Notes, Vol. 3, New York University Pres, New
York, 1999.

[4] P. Deift, T. Kriecherbauer, K. T-R. McLaughlin, S. Venakides and X. Zhou, Uniform
Asymptotics for Polynomials Orthogonal with respect to Varying Exponential Weights
and Applications to Universality Questions in Random Matrix Theory, Communica-
tions in Pure and Applied Maths., 52(1999), 1335-1425.

[5] G. Freud, Orthogonal Polynomials, Akademiai Kiado, Budapest, 1971.
[6] L. Golinskii, Akhiezer’s Orthogonal Polynomials and Bernstein-Szeg̋o method for a

circular arc, J. Approx. Theory, 95(1998), 229-263.
[7] L. Golinskii, The Christoffel Function for Orthogonal Polynomials on a Circular Arc,

J. Approx. Theory, 101(1999), 165-174.
[8] A.B. Kuijlaars and M. Vanlessen, Universality for Eigenvalue Correlations from the

Modified Jacobi Unitary Ensemble, International Maths. Research Notices, 30(2002),
1575-1600.

[9] Eli Levin and D.S. Lubinsky, Universality Limits Involving Orthogonal Polynomials
on the Unit Circle, Computational Methods and Function Theory, 7(2007), 543-561.

[10] Eli Levin and D.S. Lubinsky, Universality Limits in the bulk for Varying Measures,
Advances in Mathematics, 219(2008), 743-779.



UNIVERSALITY LIMITS 15

[11] Eli Levin and D.S. Lubinsky, Applications of Universality Limits to Zeros and Re-
producing Kernels of Orthogonal Polynomials, Journal of Approximation Theory,
150(2008), 69-95.

[12] D.S. Lubinsky, A New Approach to Universality Limits at the Edge of the Spectrum,
Contemporary Mathematics, 458(2008), 281-290.

[13] D.S. Lubinsky, A New Approach to Universality Limits involving Orthogonal Polyno-
mials, Annals of Mathematics, 170(2009), 915-939.

[14] D.S. Lubinsky, Bulk Universality Holds in Measure for Compactly Supported Mea-
sures,J. d’Analyse de Mathematique, 116(2012), 219-253.

[15] A. Martinez-Finkelshtein, K. T.-R. McLaughlin, and E. B. Saff, Szegö orthogonal
polynomials with respect to an analytic weight: canonical representation and strong
asymptotics, Constructive Approximation 24(2006), 319-363.

[16] G. Mastroianni, V. Totik, Uniform spacing of zeros of orthogonal polynomials, Constr.
Approx. 32 (2010), 181—192.

[17] T. Ransford, Potential Theory in the Complex Plane, Cambridge University Press,
Cambridge, 1995.

[18] B. Simon, Orthogonal Polynomials on the Unit Circle, Parts 1 and 2, American Math-
ematical Society, Providence, 2005.

[19] B. Simon, Fine structure of the zeros of orthogonal polynomials, I. A tale of two
pictures, Electronic Transactions on Numerical Analysis 25 (2006), 328-268.

[20] B. Simon, Two Extensions of Lubinsky’s Universality Theorem, J. d’Analyse Mathe-
matique, 105 (2008), 345-362.

[21] H. Stahl and V. Totik, General Orthogonal Polynomials, Cambridge University Press,
Cambridge, 1992.

[22] V. Totik, Asymptotics for Christoffel Functions for General Measures on the Real
Line, J. d’Analyse Math., 81(2000), 283-303.

[23] V. Totik, Universality and fine zero spacing on general sets, Arkiv för Matematik,
47(2009), 361-391.

[24] V. Totik, Christoffel functions on curves and domains, Trans. Amer. Math. Soc. 362
(2010), 2053—2087.

1School of Mathematics, Georgia Institute of Technology, Atlanta, GA
30332-0160, USA., 1 lubinsky@math.gatech.edu


