ZERO DISTRIBUTION OF MÜNTZ EXTREMAL POLYNOMIALS **IN** $L_p[0,1]$

D. S. LUBINSKY AND E. B. SAFF

Abstract. Let $\{\lambda_j\}_{j=0}^{\infty}$ be a sequence of distinct positive numbers. Let $1 \leq$ $p \leq \infty$ and $T_{n,p} = T_{n,p} \{\lambda_0, \lambda_1, \lambda_2, \dots, \lambda_n\}$ (x) denote the L_p extremal Müntz polynomial in [0,1] with exponents $\lambda_0, \lambda_1, \lambda_2, \dots, \lambda_n$. We investigate the zero distribution of $\{T_{n,p}\}_{n=1}^{\infty}$. In particular, we show that if

$$\lim_{n \to \infty} \frac{\lambda_n}{n} = \alpha > 0,$$

 $\lim_{n\to\infty}\frac{\lambda_n}{n}=\alpha>0,$ then the normalized zero counting measure of $T_{n,p}$ converges weakly as $n\to\infty$

$$\frac{\alpha}{\pi} \frac{t^{\alpha - 1}}{\sqrt{t^{\alpha} \left(1 - t^{\alpha} \right)}} dt,$$

while if $\alpha = 0$ or ∞ , the limiting measure is a Dirac delta at 0 or 1 respectively.

1. Introduction and Results

Let $\lambda_1, \lambda_2, \ldots$ be a sequence of distinct positive numbers. An expression of the form

$$(1.1) \sum_{j=0}^{n} c_j x^{\lambda_j}$$

is called a Müntz polynomial. The name refers, of course, to the famous theorem of Müntz that if $\inf_j \lambda_j > 0$, these polynomials are dense in L_p spaces iff

$$\sum_{j=0}^{\infty} \frac{1}{\lambda_j} = \infty.$$

Müntz polynomials share many of the properties of ordinary algebraic polynomials. The most fundamental is that a polynomial of the form (1.1) has at most n distinct zeros in $(0, \infty)$, or is identically zero.

Müntz extremal polynomials are generalizations of classical orthogonal and Chebyshev polynomials. They have been investigated by amongst others, Borwein and Erdelyi [2], Milovanovic and his coworkers [3]. Let $1 \leq p \leq \infty$. We denote

Received by the editors February 16, 2006.

¹⁹⁹¹ Mathematics Subject Classification. Primary 41A10, 41A17, 42C99; Secondary 33C45. Key words and phrases. Zero Distribution, Müntz Extremal Polynomials, Müntz Orthogonal Polynomials.

Research of first author supported by NSF grant DMS0400446; research of second author supported by NSF grant DMS0532154.

This paper is in final form and no version of it will be submitted for publication elsewhere.

by $T_{n,p}(x) = T_{n,p} \{\lambda_0, \lambda_1, \lambda_2, \dots, \lambda_n\}(x)$ the linear combination of $\{x^{\lambda_j}\}_{j=0}^n$ with coefficient of x^{λ_n} equal to 1, satisfying

$$(1.2) ||T_{n,p} \{\lambda_0, \lambda_1, \lambda_2, \dots, \lambda_n\}||_{L_p[0,1]} = \min_{c_0 \cdots c_{n-1}} ||x^{\lambda_n} - \sum_{j=0}^{n-1} c_j x^{\lambda_j}||_{L_p[0,1]}.$$

It is known that $T_{n,p}$ exists and is unique, has exactly n distinct (and simple) zeros in (0,1), and the zeros of $T_{n,p}$ and $T_{n+1,p}$ interlace. Moreover, if we swap λ_n with some λ_j , the extremal polynomial changes only by a non-zero multiplicative constant. Thus when dealing with a fixed n, and studying zeros of extremal polynomials, we may assume that $\{\lambda_j\}_{j=0}^n$ are in increasing order. However, we shall not need to assume that $\{\lambda_j\}_{j=0}^\infty$ is increasing. Concerning the zeros as $n \to \infty$, an important result of Borwein [2, Thm. 4.1.1, p. 155] asserts that the corresponding Müntz polynomials are dense iff the maximum spacing between successive zeros of $T_{n,p}$ has limit 0 as $n \to \infty$. Saff and Varga [6] studied the related zero distribution of lacunary incomplete polynomials.

In this paper, we study the asymptotic zero distribution of $\{T_{n,p}\}_{n=1}^{\infty}$. Let ν_n denote the normalized zero counting measure of $T_{n,p}$, so that

$$\nu_n\left([a,b]\right) = \frac{1}{n} \times \text{Number of zeros of } T_{n,p} \text{ in } [a,b].$$

In the case of polynomials, where $\lambda_j = j$, $j \geq 0$, it is a classical result [5, pp. 169–170], [7, Thm. 3.4.1, p. 84 and Thm. 3.6.1, p. 98] that for $0 \leq a < b \leq 1$,

$$\lim_{n \to \infty} \nu_n\left([a, b]\right) = \int_a^b \frac{dx}{\pi \sqrt{x (1 - x)}}.$$

Equivalently we write

$$d\nu_n \xrightarrow{*} \frac{dx}{\pi\sqrt{x(1-x)}}, \qquad n \to \infty$$

and say that $d\nu_n$ converges weakly to the arcsine distribution on [0,1]. This type of result has been studied in detail for the case p=2 of orthogonal polynomials, and when there is a weight w in the norm in (1.2). The monograph of Stahl and Totik [7] gives a comprehensive account, while the monograph of Andrievskii and Blatt [1] considers discrepancy, or rate of convergence, to the limiting distribution.

In a loose sense, our conclusion is that when $\lim_{n\to\infty} \lambda_n/n$ exists, all the possible zero distributions are those provided by

$$\lambda_j = \alpha j, \qquad j \ge 0$$

for some $\alpha \in [0, \infty]$. Extremal polynomials for these exponents are essentially L_p extremal polynomials with the substitution of variable $x = t^{\alpha}$. Accordingly, we define for $0 < \alpha < \infty$, a probability measure on (0, 1),

(1.3)
$$d\mu_{\alpha}(t) = \frac{\alpha}{\pi} \frac{t^{\alpha - 1}}{\sqrt{t^{\alpha}(1 - t^{\alpha})}} dt.$$

For $\alpha = 0$, we set

$$(1.4) d\mu_0 = d\delta_0,$$

a unit mass at 0, and for $\alpha = \infty$, we set

$$(1.5) d\mu_{\infty} = d\delta_1,$$

a unit mass at 1. We prove:

Theorem 1.1. Let $1 \le p \le \infty$, $0 \le \alpha \le \infty$, and $\{\lambda_j\}_{j=0}^{\infty}$ denote a sequence of distinct positive numbers with

(1.6)
$$\lim_{j \to \infty} \frac{\lambda_j}{j} = \alpha.$$

Then if $0 \le a \le b \le 1$,

(1.7)
$$\lim_{n \to \infty} \nu_n \left([a, b] \right) = \mu_\alpha \left([a, b] \right),$$

that is.

$$d\nu_n \stackrel{*}{\longrightarrow} d\mu_\alpha, \qquad n \to \infty.$$

Remarks . (a) An interesting feature of the theorem is that asymptotic zero distribution has no relation to the density of Müntz polynomials – in stark contrast to the Borwein-Erdelyi result on spacing. Thus if $\lambda_n = n \log n, n \geq 2$, then the corresponding Müntz polynomials are dense, while the asymptotic zero distribution is a Dirac delta at 1. If $\lambda_n = n^2, n \geq 0$, then the limiting zero distribution is still a Dirac delta at 1, but the corresponding Müntz polynomials are not dense.

(b) We can somewhat weaken the hypothesis (1.6): roughly speaking we can ignore o(n) of the exponents in $\{\lambda_0, \lambda_1, \lambda_2, \dots, \lambda_n\}$. To make this more precise, assume $\alpha < \infty$. We write

(1.8)
$$\lim_{j \to \infty \text{ a.e. }} \frac{\lambda_j}{j} = \alpha$$

if for each $\varepsilon \in (0,1)$, there exists for large enough n, a set

$$(1.9) S_{n,\varepsilon} \subset \{0,1,2,\ldots,n\}$$

with at most εn elements such that

(1.10)
$$j \in \{0, 1, 2, \dots, n\} \setminus S_{n, \varepsilon} \Rightarrow \left| \frac{\lambda_j}{j} - \alpha \right| < \varepsilon.$$

In the case $\alpha = \infty$, we replace this by for each K > 0, there exists for large enough n, a set $S_{n,\varepsilon} \subset \{0,1,2,\ldots,n\}$ with at most εn elements such that

$$j \in \{0, 1, 2, \dots, n\} \setminus S_{n, \varepsilon} \Rightarrow \frac{\lambda_j}{j} > K.$$

Theorem 1.2. Let $1 \leq p \leq \infty$, $0 \leq \alpha \leq \infty$, and $\{\lambda_j\}_{j=0}^{\infty}$ denote a sequence of distinct positive numbers with

(1.11)
$$\lim_{j \to \infty} \frac{\lambda_j}{a.e.} \frac{\lambda_j}{j} = \alpha.$$

Then the conclusion (1.7) of Theorem 1.1 persists.

We shall also show that one cannot ignore more than o(n) exponents in $\{\lambda_j\}_{j=0}^n$ without affecting the zero distribution:

Theorem 1.3. Let $1 \leq p \leq \infty$ and $\varepsilon \in (0,1)$. Let $\{\lambda_j\}_{j=0}^{\infty}$, $\{\gamma_j\}_{j=0}^{\infty}$, $\{\rho_j\}_{j=0}^{\infty}$ denote sequences of distinct positive numbers with

(1.12)
$$\lim_{j \to \infty} \frac{\gamma_j}{j} = 0; \quad \lim_{j \to \infty} \frac{\rho_j}{j} = \infty.$$

Assume also that for large enough n, there is the disjoint union

$$\{\lambda_j\}_{j=0}^n := \{\gamma_j\}_{j=0}^{k(n)} \cup \{\rho_j\}_{j=0}^{\ell(n)},$$

where

$$\lim_{n \to \infty} \frac{k(n)}{n} = \varepsilon.$$

Then

$$(1.14) d\nu_n \stackrel{*}{\longrightarrow} \varepsilon d\mu_0 + (1 - \varepsilon) d\mu_\infty, n \to \infty$$

We are not sure if this result generalizes to the case where 0 and ∞ are replaced in (1.12) by other limits. What is clear is that for a general choice of $\{\lambda_j\}_{j=0}^{\infty}$, the asymptotic zero distribution can be quite complicated, and there need not be a weak limit. For example, by adjoining sufficiently large blocks of exponents $\{\alpha_j\}_{j=n_1}^{n_2}$, one may construct $\{\lambda_n\}_{n=0}^{\infty}$, such that every μ_{α} , $\alpha \in [0, \infty]$, is a weak limit of some subsequence of $\{\nu_n\}$. We prove the results in the next section.

2. Proofs

We begin with some notation. We abbreviate $T_{n,p} \{\lambda_0, \lambda_1, \lambda_2, \dots, \lambda_n\}$ as $T_{n,p} \{\lambda_0 \cdots \lambda_n\}$. Let $Z_p (\lambda_0 \cdots \lambda_n) [a,b]$ denote the total number of zeros of $T_{n,p} \{\lambda_0 \cdots \lambda_n\} (x)$ in [a,b]. We say that $\{\gamma_0, \gamma_1, \gamma_2, \dots, \gamma_m\}$ is a refinement of $\{\lambda_0, \lambda_1, \lambda_2, \dots, \lambda_n\}$ if

$$\{\lambda_0, \lambda_1, \lambda_2, \dots, \lambda_n\} \subset \{\gamma_0, \gamma_1, \gamma_2, \dots, \gamma_m\}.$$

The main tools of proof are interlacing properties of successive Chebyshev polynomials, monotonicity properties with respect to the exponents, and zero distribution for the specific choice $\{\alpha j\}_{j=0}^{\infty}$.

Lemma 2.1. Let $\{\gamma_j\}_{j=0}^m$ be distinct positive numbers and $\{\lambda_j\}_{j=0}^n$ be distinct positive numbers.

(a) Suppose that $\{\gamma_0, \gamma_1, \gamma_2, \dots, \gamma_m\}$ is a refinement of $\{\lambda_0, \lambda_1, \lambda_2, \dots, \lambda_n\}$. Then for $[a, b] \subset [0, 1]$,

$$(2.1) |Z_p(\lambda_0 \cdots \lambda_n)[a,b] - Z_p(\gamma_0 \cdots \gamma_m)[a,b]| \le 2(m-n).$$

(b) Suppose that $\{\gamma_0, \gamma_1, \gamma_2, \dots, \gamma_k\}$ and $\{\lambda_0, \lambda_1, \lambda_2, \dots, \lambda_n\}$ have ℓ exponents in common. Then for $[a, b] \subset [0, 1]$,

$$(2.2) |Z_p(\lambda_0 \cdots \lambda_n)[a,b] - Z_p(\gamma_0 \cdots \gamma_k)[a,b]| \le 2(n+k+2-2\ell).$$

Proof. (a) We may rewrite $\{\gamma_0, \gamma_1, \gamma_2, \dots, \gamma_m\}$ as $\{\lambda_0, \lambda_1, \lambda_2, \dots, \lambda_m\}$. Since any subset of $\{x^{\lambda_0}, x^{\lambda_1}, \dots, x^{\lambda_m}\}$ is a Chebyshev system on $[\varepsilon, 1]$ for any $0 < \varepsilon < 1$, the zeros of $T_{n,p} \{\lambda_0 \cdots \lambda_j\} (x)$ and $T_{n,p} \{\lambda_0 \cdots \lambda_{j+1}\} (x)$ interlace [4, Corollary 1.1, p. 2]. It then follows that for every interval [a, b],

$$|Z_p(\lambda_0 \cdots \lambda_j)[a,b] - Z_p(\lambda_0 \cdots \lambda_{j+1})[a,b]| \le 2.$$

Applying this for j = n, n + 1, ..., m gives (2.1).

(b) We may find a refinement of both $\{\gamma_0, \gamma_1, \gamma_2, \dots, \gamma_k\}$ and $\{\lambda_0, \lambda_1, \lambda_2, \dots, \lambda_n\}$ consisting of $n + k + 2 - \ell$ elements. Applying (a) to the refinement and each of the sets $\{\gamma_0, \gamma_1, \gamma_2, \dots, \gamma_k\}$ and $\{\lambda_0, \lambda_1, \lambda_2, \dots, \lambda_n\}$, and then combining the two inequalities gives the result.

Apart from interlacing, we shall also use the lexicographic property:

Lemma 2.2. Let $\{\lambda_j\}_{j=0}^n$ be a sequence of distinct positive numbers and $\{\gamma_j\}_{j=0}^n$ be a sequence of distinct positive numbers with

$$(2.3) \lambda_i \le \gamma_i, \quad 0 \le j \le n.$$

Then for $0 \le a \le 1$,

$$(2.4) Z_p(\lambda_0 \cdots \lambda_n)[a,1] \leq Z_p(\gamma_0 \cdots \gamma_n)[a,1].$$

Proof. We may assume that the two sets have n exponents in common. For then, one can apply the result for this special case n times, using monotonicity each time. Let $0 < \varepsilon < 1$. Then in $[\varepsilon, 1]$, the combined set of powers $\left\{x^{\lambda_j}\right\}_{j=0}^n \cup \left\{x^{\gamma_j}\right\}_{j=0}^n$ (with duplicates deleted, and exponents placed in increasing order) is a Descartes system. If $T_{n,p}^{\varepsilon} \left\{\lambda_0 \cdots \lambda_n\right\}(x)$ and $T_{n,p}^{\varepsilon} \left\{\gamma_0 \cdots \gamma_n\right\}(x)$ denote the corresponding Müntz extremal polynomials on $[\varepsilon, 1]$, it is known that the zeros of $T_{n,p}^{\varepsilon} \left\{\lambda_0 \cdots \lambda_n\right\}(x)$ lie to the left of those of $T_{n,p}^{\varepsilon} \left\{\gamma_0 \cdots \gamma_n\right\}(x)$, in the sense that the jth smallest zero of the former Müntz polynomial is \leq the jth smallest zero of the latter Müntz polynomial. For $p = \infty$, a proof of this is given in the book of Borwein and Erdelyi [2, Thm. 3.3.4, pp. 116-117]. For 1 , a proof is given in Pinkus and Ziegler <math>[4, Thm. 5.1, p. 13], while when p = 1, we can apply the remarks there (or a continuity argument involving $p \to 1+$). As $\varepsilon \to 0+$, $T_{n,p}^{\varepsilon} \left\{\gamma_0 \cdots \gamma_n\right\}(x)$ must converge uniformly to $T_{n,p} \left\{\gamma_0 \cdots \gamma_n\right\}(x)$ because of uniqueness of $T_{n,p} \left\{\gamma_0 \cdots \gamma_n\right\}(x)$, and the fact that the extremal error increases as $[\varepsilon, 1]$ grows to [0, 1]. Hence the zeros of $T_{n,p} \left\{\lambda_0 \cdots \lambda_n\right\}(x)$ lie to the left of those of $T_{n,p} \left\{\gamma_0 \cdots \gamma_n\right\}(x)$ and (2.4) follows.

The next result asserts essentially that if for "most" indices j, we have $\lambda_j \leq \gamma_j$, then the asymptotic proportion of zeros in [a,1] of extremal polynomials with exponents $\{\lambda_j\}$ does not exceed that for $\{\gamma_j\}$.

Lemma 2.3. Let $\{\lambda_j\}_{j=0}^{\infty}$ and $\{\gamma_j\}_{j=0}^{\infty}$ be sequences of distinct positive numbers with the following property: for each $\varepsilon > 0$, there exists for large enough n, a set

$$(2.5) S_{n,\varepsilon} \subset \{0,1,2,\ldots,n\}$$

with at most εn elements such that

$$(2.6) j \in \{0, 1, 2, \dots, n\} \setminus S_{n, \varepsilon} \Rightarrow \lambda_j \leq \gamma_j.$$

Then for $0 \le a \le 1$,

(2.7)
$$\limsup_{n \to \infty} \frac{1}{n} Z_p \left(\lambda_0 \cdots \lambda_n \right) [a, 1] \le \limsup_{n \to \infty} \frac{1}{n} Z_p \left(\gamma_0 \cdots \gamma_n \right) [a, 1]$$

and

(2.8)
$$\liminf_{n \to \infty} \frac{1}{n} Z_p \left(\lambda_0 \cdots \lambda_n \right) [a, 1] \le \liminf_{n \to \infty} \frac{1}{n} Z_p \left(\gamma_0 \cdots \gamma_n \right) [a, 1].$$

Proof. Let us fix $\varepsilon > 0$, n large, and $S_{n,\varepsilon}$ be as in the statement. We define for the given n, a modified set of exponents $\left\{\lambda_j^*\right\}_{j=0}^n$ by

$$\lambda_j^* = \begin{cases} \lambda_j, & j \in \{0, 1, 2, \dots, n\} \setminus S_{n, \varepsilon} \\ \gamma_j, & j \in S_{n, \varepsilon}. \end{cases}$$

Then

$$\lambda_j^* \le \gamma_j, \quad 0 \le j \le n.$$

By the previous lemma, for $0 \le a \le 1$,

$$Z_p(\lambda_0^* \cdots \lambda_n^*)[a,1] \leq Z_p(\gamma_0 \cdots \gamma_n)[a,1].$$

Also $\left\{\lambda_{j}^{*}\right\}_{j=0}^{n}$ and $\left\{\lambda_{j}\right\}_{j=0}^{n}$ have at least $1+n\left(1-\varepsilon\right)$ elements in common, so by Lemma 2.1(b),

$$|Z_p(\lambda_0^* \cdots \lambda_n^*)[a,1] - Z_p(\lambda_0 \cdots \lambda_n)[a,1]| \le 4\varepsilon n + 4.$$

Combining these inequalities gives

$$Z_p(\lambda_0 \cdots \lambda_n)[a,1] \le Z_p(\gamma_0 \cdots \gamma_n)[a,1] + 4\varepsilon n + 4.$$

Dividing by n and letting $n \to \infty$ gives

$$\limsup_{n\to\infty} \frac{1}{n} Z_p \left(\lambda_0 \cdots \lambda_n\right) [a,1] \leq \limsup_{n\to\infty} \frac{1}{n} Z_p \left(\gamma_0 \cdots \gamma_n\right) [a,1] + 4\varepsilon.$$

As $\varepsilon > 0$ is arbitrary, (2.7) follows. Similarly, (2.8) follows.

Next, we study the zero distribution for the comparison sequence $\{\alpha j\}_{j=0}^{\infty}$:

Lemma 2.4. Let $\alpha \in (0, \infty)$ and

$$(2.9) \gamma_j = \alpha j, j \ge 0.$$

Then for $0 \le a < b \le 1$,

(2.10)
$$\lim_{n \to \infty} \frac{1}{n} Z_p \left(\gamma_0 \cdots \gamma_n \right) [a, b] = \mu_{\alpha} \left([a, b] \right).$$

Proof. Suppose first $p < \infty$. Let $T_{n,p}^*$ denote the monic (ordinary) polynomial of degree n satisfying

$$\int_{0}^{1} \left| T_{n,p}^{*}\left(x\right) \right|^{p} \frac{1}{\alpha} x^{1/\alpha - 1} dx = \min_{\deg(P) \le n - 1} \int_{0}^{1} \left| x^{n} - P\left(x\right) \right|^{p} \frac{1}{\alpha} x^{1/\alpha - 1} dx.$$

The substitution $x = t^{\alpha}$ gives

$$\int_0^1 \left| T_{n,p}^*\left(t^\alpha\right) \right|^p dt = \min_{\deg(P) \le n-1} \int_0^1 \left| t^{\alpha n} - P\left(t^\alpha\right) \right|^p dt.$$

It follows from uniqueness that

$$(2.11) T_{n,p}^*\left(t^a\right) = T_{n,p}\left\{\gamma_0 \cdots \gamma_n\right\}\left(t\right).$$

We see then that the total multiplicity of zeros of $T_{n,p} \{ \gamma_0 \cdots \gamma_n \}$ in [a,b] is the total multiplicity of zeros of $T_{n,p}^*$ in $[a^{\alpha},b^{\alpha}]$. Since the weight $\frac{1}{\alpha}x^{1/\alpha-1}$ is positive a.e. in [0,1], classical results assert that the limiting zero distribution of $\{T_{n,p}^*\}_{n=0}^{\infty}$ is the arcsine distribution [1, Cor. 5.7, p. 261]. Hence as $n \to \infty$,

$$\lim_{n \to \infty} \frac{1}{n} \times \text{Number of zeros of } T_{n,p} \text{ in } [a,b]$$

$$= \lim_{n \to \infty} \frac{1}{n} \times \text{Number of zeros of } T_{n,p}^* \text{ in } [a^{\alpha}, b^{\alpha}]$$

$$= \int_{a^{\alpha}}^{b^{\alpha}} \frac{dx}{\pi \sqrt{x(1-x)}} = \frac{\alpha}{\pi} \int_a^b \frac{t^{\alpha-1}}{\sqrt{t^{\alpha}(1-t^{\alpha})}} dt = \int_a^b d\mu_{\alpha}(t).$$

Proof of Theorem 1.2. Our hypothesis is

$$\lim_{j \to \infty \text{ a.e.}} \frac{\lambda_j}{j} = \alpha.$$

Assume first that $0 < \alpha < \infty$. Let $\varepsilon \in (0, \alpha)$. We then obtain for large enough n, from (1.10),

$$j \in \{0, 1, 2, \dots, n\} \setminus S_{n,\varepsilon} \Rightarrow (\alpha - \varepsilon) j \leq \lambda_j \leq (\alpha + \varepsilon) j.$$

Applying Lemma 2.3, with $\gamma_j = (\alpha + \varepsilon) j$, $j \ge 0$, we deduce that

$$\limsup_{n \to \infty} \frac{1}{n} Z_p \left(\lambda_0 \cdots \lambda_n \right) [a, 1]$$

$$\leq \limsup_{n \to \infty} \frac{1}{n} Z_p \left(0, (\alpha + \varepsilon), 2 (\alpha + \varepsilon), \dots, n (\alpha + \varepsilon) \right) [a, 1]$$

and similarly applying Lemma 2.3 to $(\alpha - \varepsilon) j$, $j \ge 0$, and λ_j , $j \ge 0$ (with roles swapped),

$$\liminf_{n \to \infty} \frac{1}{n} Z_p \left(0, (\alpha - \varepsilon), 2 (\alpha - \varepsilon), \dots, n (\alpha - \varepsilon) \right) [a, 1]$$

$$\leq \liminf_{n \to \infty} \frac{1}{n} Z_p \left(\lambda_0 \cdots \lambda_n \right) [a, 1].$$

Applying Lemma 2.4 with $\gamma_j = (\alpha \pm \varepsilon) j$, $j \ge 0$, gives

$$\int_{a}^{1} d\mu_{\alpha-\varepsilon}(t) \leq \liminf_{n \to \infty} \frac{1}{n} Z_{p}(\lambda_{0} \cdots \lambda_{n}) [a, 1]$$

$$\leq \limsup_{n \to \infty} \frac{1}{n} Z_{p}(\lambda_{0} \cdots \lambda_{n}) [a, 1] \leq \int_{a}^{1} d\mu_{\alpha+\varepsilon}(t).$$

Letting $\varepsilon \to 0+$, and using dominated convergence gives

$$\lim_{n\to\infty}\frac{1}{n}Z_p\left(\lambda_0\cdots\lambda_n\right)\left[a,1\right]=\int_a^1d\mu_\alpha\left(t\right).$$

This gives the result when [a, b] = [a, 1]. For general [a, b], we use

$$\lim_{n \to \infty} \frac{1}{n} Z_p (\lambda_0 \cdots \lambda_n) [a, b]$$

$$= \lim_{n \to \infty} \frac{1}{n} Z_p (\lambda_0 \cdots \lambda_n) [a, 1] - \lim_{n \to \infty} \frac{1}{n} Z_p (\lambda_0 \cdots \lambda_n) (b, 1]$$

$$= \int_a^1 d\mu_\alpha (t) - \int_b^1 d\mu_\alpha (t) .$$

Note that because μ_{α} is absolutely continuous, the number of zeros in a neighborhood of the point b is negligible in the sense of asymptotic distribution. Finally, if $\alpha = 0$, the arguments above give for $0 < a \le 1$,

$$\limsup_{n \to \infty} \frac{1}{n} Z_p \left(\lambda_0 \cdots \lambda_n \right) [a, 1]$$

$$\leq \limsup_{n \to \infty} \frac{1}{n} Z_p \left(0, \varepsilon, 2\varepsilon, \dots, n\varepsilon \right) [a, 1] = \int_a^1 d\mu_{\varepsilon} \left(t \right).$$

Letting $\varepsilon \to 0+$ (and using some straightforward estimates) gives

$$\lim_{n\to\infty}\frac{1}{n}Z_p\left(\lambda_0\cdots\lambda_n\right)\left[a,1\right]=0=\int_a^1d\mu_0\left(t\right).$$

Since $\frac{1}{n}Z_p(\lambda_0\cdots\lambda_n)[0,1]=1$, we obtain

$$\lim_{n\to\infty}\frac{1}{n}Z_p\left(\lambda_0\cdots\lambda_n\right)\left[0,1\right]=1=\int_0^1d\mu_0\left(t\right).$$

The case $\alpha = \infty$ is similar.

Proof of Theorem 1.1. This is a special case of Theorem 1.2.

Proof of Theorem 1.3. Let 0 < a < b < 1. Because of (1.13) and interlacing properties, to the left of each zero of $T_{n,p} \{ \gamma_0 \cdots \gamma_{k(n)} \} (x)$ in [0,a], there is a zero of $T_{n,p} \{ \lambda_0 \cdots \lambda_n \} (x)$. Moreover,

$$Z_p(\lambda_0 \cdots \lambda_n)[0, a] \ge Z_p(\gamma_0 \cdots \gamma_{k(n)})[0, a]$$

so applying Theorem 1.1 to $\{\gamma_j\}_{j=0}^{\infty}$,

$$\lim_{n \to \infty} \inf \frac{1}{n} Z_p \left(\lambda_0 \cdots \lambda_n \right) [0, a] \ge \lim_{n \to \infty} \inf \frac{k(n)}{n} \frac{1}{k(n)} Z_p \left(\gamma_0 \cdots \gamma_{k(n)} \right) [0, a]$$

$$= \varepsilon \int_0^a d\mu_0 = \varepsilon.$$

Similarly,

$$\lim_{n \to \infty} \inf \frac{1}{n} Z_p \left(\lambda_0 \cdots \lambda_n \right) [b, 1] \ge \lim_{n \to \infty} \inf \frac{\ell(n)}{n} \frac{1}{\ell(n)} Z_p \left(\rho_0 \cdots \ell(n) \right) [b, 1]$$

$$= (1 - \varepsilon) \int_b^1 d\mu_\infty = 1 - \varepsilon.$$

Then it follows that

$$\limsup_{n \to \infty} \frac{1}{n} Z_p \left(\lambda_0 \cdots \lambda_n \right) (a, b)$$

$$\leq 1 - \liminf_{n \to \infty} \frac{1}{n} Z_p \left(\lambda_0 \cdots \lambda_n \right) [0, a] - \liminf_{n \to \infty} \frac{1}{n} Z_p \left(\lambda_0 \cdots \lambda_n \right) [b, 1] \leq 0.$$

So for 0 < a < b < 1,

$$\lim_{n \to \infty} \frac{1}{n} Z_p \left(\lambda_0 \cdots \lambda_n \right) (a, b) = 0.$$

Next, by (2.12) and (2.13).

$$\varepsilon \leq \liminf_{n \to \infty} \frac{1}{n} Z_p \left(\lambda_0 \cdots \lambda_n \right) [0, a]$$

$$\leq \limsup_{n \to \infty} \frac{1}{n} Z_p \left(\lambda_0 \cdots \lambda_n \right) [0, a]$$

$$\leq 1 - \liminf_{n \to \infty} \frac{1}{n} Z_p \left(\lambda_0 \cdots \lambda_n \right) (a, 1] \leq \varepsilon,$$

so

$$\lim_{n\to\infty} \frac{1}{n} Z_p \left(\lambda_0 \cdots \lambda_n\right) [0, a] = \varepsilon.$$

Similarly,

$$\lim_{n\to\infty}\frac{1}{n}Z_p\left(\lambda_0\cdots\lambda_n\right)[b,1]=1-\varepsilon.$$

It follows that as $n \to \infty$.

$$d\nu_n \stackrel{*}{\longrightarrow} \varepsilon d\delta_0 + (1 - \varepsilon) d\delta_1.$$

References

- [1] V.V. Andrievskii and H.P. Blatt, Discrepancy of Signed Measures and Polynomial Approximation, Springer, NY, 2002.
- P. Borwein and T. Erdelyi, Polynomials and Polynomial Inequalities, Springer, New York, 1995.
- [3] G. V. Milovanovic, D. S. Mitrinovic, and Th. M. Rassias, *Topics in Polynomials: Extremal Problems, Inequalities, Zeros*, World Scientific, Singapore, 1994.
- [4] A. Pinkus and Z. Ziegler, Interlacing Properties of the Zeros of Error Functions in Best L_p Approximations, J. Approx. Theory, 27(1979), 1–18.
- [5] E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, Springer, New York, 1997.
- [6] E. B. Saff and R. S. Varga, On Lacunary Incomplete Polynomials, Math. Zeitschrift, 177(1981), 297–314.
- [7] H. Stahl and V. Totik, General Orthogonal Polynomials, Cambridge University Press, Cambridge, 1992.

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160 $E\text{-}mail\ address$: lubinsky@math.gatech.edu

Center for Constructive Approximation, Department of Mathematics, Vanderbilt University, Nashville, TN 37240.

 $E ext{-}mail\ address: esaff@math.vanderbilt.edu}$