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ZERO DISTRIBUTION OF MÜNTZ EXTREMAL POLYNOMIALS

IN Lp [0, 1]

D. S. LUBINSKY AND E. B. SAFF

Abstract. Let {λj}
∞
j=0 be a sequence of distinct positive numbers. Let 1 ≤

p ≤ ∞ and Tn,p = Tn,p {λ0, λ1, λ2, . . . , λn} (x) denote the Lp extremal Müntz
polynomial in [0, 1] with exponents λ0, λ1, λ2, . . . , λn. We investigate the zero
distribution of {Tn,p}

∞
n=1. In particular, we show that if

lim
n→∞

λn

n
= α > 0,

then the normalized zero counting measure of Tn,p converges weakly as n → ∞
to

α

π

tα−1

p

tα (1 − tα)
dt,

while if α = 0 or ∞, the limiting measure is a Dirac delta at 0 or 1 respectively.

1. Introduction and Results

Let λ1, λ2, . . . be a sequence of distinct positive numbers. An expression of the
form

(1.1)

n
∑

j=0

cjx
λj

is called a Müntz polynomial. The name refers, of course, to the famous theorem
of Müntz that if infj λj > 0, these polynomials are dense in Lp spaces iff

∞
∑

j=0

1

λj
= ∞.

Müntz polynomials share many of the properties of ordinary algebraic polynomials.
The most fundamental is that a polynomial of the form (1.1) has at most n distinct
zeros in (0,∞), or is identically zero.

Müntz extremal polynomials are generalizations of classical orthogonal and Che-
byshev polynomials. They have been investigated by amongst others, Borwein
and Erdelyi [2], Milovanovic and his coworkers [3]. Let 1 ≤ p ≤ ∞. We denote
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by Tn,p (x) = Tn,p {λ0, λ1, λ2, . . . , λn} (x) the linear combination of
{

xλj

}n

j=0
with

coefficient of xλn equal to 1, satisfying

(1.2) ‖Tn,p {λ0, λ1, λ2, . . . , λn} ‖Lp[0,1] = min
c0···cn−1

‖xλn −
n−1
∑

j=0

cjx
λj‖Lp[0,1].

It is known that Tn,p exists and is unique, has exactly n distinct (and simple) zeros in
(0, 1), and the zeros of Tn,p and Tn+1,p interlace. Moreover, if we swap λn with some
λj , the extremal polynomial changes only by a non-zero multiplicative constant.
Thus when dealing with a fixed n, and studying zeros of extremal polynomials, we
may assume that {λj}

n
j=0 are in increasing order. However, we shall not need to

assume that {λj}
∞

j=0 is increasing. Concerning the zeros as n → ∞, an important

result of Borwein [2, Thm. 4.1.1, p. 155] asserts that the corresponding Müntz
polynomials are dense iff the maximum spacing between successive zeros of Tn,p

has limit 0 as n → ∞. Saff and Varga [6] studied the related zero distribution of
lacunary incomplete polynomials.

In this paper, we study the asymptotic zero distribution of {Tn,p}
∞

n=1. Let νn

denote the normalized zero counting measure of Tn,p, so that

νn ([a, b]) =
1

n
× Number of zeros of Tn,p in [a, b] .

In the case of polynomials, where λj = j, j ≥ 0, it is a classical result [5, pp. 169–
170], [7, Thm. 3.4.1, p. 84 and Thm. 3.6.1, p. 98] that for 0 ≤ a < b ≤ 1,

lim
n→∞

νn ([a, b]) =

∫ b

a

dx

π
√

x (1 − x)
.

Equivalently we write

dνn
∗

−→
dx

π
√

x (1 − x)
, n → ∞

and say that dνn converges weakly to the arcsine distribution on [0, 1]. This type
of result has been studied in detail for the case p = 2 of orthogonal polynomials,
and when there is a weight w in the norm in (1.2). The monograph of Stahl and
Totik [7] gives a comprehensive account, while the monograph of Andrievskii and
Blatt [1] considers discrepancy, or rate of convergence, to the limiting distribution.

In a loose sense, our conclusion is that when limn→∞ λn/n exists, all the possible
zero distributions are those provided by

λj = αj, j ≥ 0

for some α ∈ [0,∞]. Extremal polynomials for these exponents are essentially Lp

extremal polynomials with the substitution of variable x = tα. Accordingly, we
define for 0 < α < ∞, a probability measure on (0, 1),

(1.3) dµα (t) =
α

π

tα−1

√

tα (1 − tα)
dt.

For α = 0, we set

(1.4) dµ0 = dδ0,

a unit mass at 0, and for α = ∞, we set

(1.5) dµ∞ = dδ1,
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a unit mass at 1. We prove:

Theorem 1.1. Let 1 ≤ p ≤ ∞, 0 ≤ α ≤ ∞, and {λj}
∞

j=0denote a sequence of

distinct positive numbers with

(1.6) lim
j→∞

λj

j
= α.

Then if 0 ≤ a ≤ b ≤ 1,

(1.7) lim
n→∞

νn ([a, b]) = µα ([a, b]) ,

that is,

dνn
∗

−→ dµα, n → ∞.

Remarks . (a) An interesting feature of the theorem is that asymptotic zero distri-
bution has no relation to the density of Müntz polynomials – in stark contrast to
the Borwein-Erdelyi result on spacing. Thus if λn = n logn, n ≥ 2, then the cor-
responding Müntz polynomials are dense, while the asymptotic zero distribution is
a Dirac delta at 1. If λn = n2, n ≥ 0, then the limiting zero distribution is still a
Dirac delta at 1, but the corresponding Müntz polynomials are not dense.
(b) We can somewhat weaken the hypothesis (1.6): roughly speaking we can ignore
o (n) of the exponents in {λ0, λ1, λ2, . . . , λn}. To make this more precise, assume
α < ∞. We write

(1.8) lim
j→∞ a.e.

λj

j
= α

if for each ε ∈ (0, 1), there exists for large enough n, a set

(1.9) Sn,ε ⊂ {0, 1, 2, . . . , n}

with at most εn elements such that

(1.10) j ∈ {0, 1, 2, . . . , n} \Sn,ε ⇒

∣

∣

∣

∣

λj

j
− α

∣

∣

∣

∣

< ε.

In the case α = ∞, we replace this by for each K > 0, there exists for large enough
n, a set Sn,ε ⊂ {0, 1, 2, . . . , n} with at most εn elements such that

j ∈ {0, 1, 2, . . . , n} \Sn,ε ⇒
λj

j
> K.

Theorem 1.2. Let 1 ≤ p ≤ ∞, 0 ≤ α ≤ ∞, and {λj}
∞

j=0denote a sequence of

distinct positive numbers with

(1.11) lim
j→∞ a.e.

λj

j
= α.

Then the conclusion (1.7) of Theorem 1.1 persists.

We shall also show that one cannot ignore more than o (n) exponents in {λj}
n
j=0

without affecting the zero distribution:

Theorem 1.3. Let 1 ≤ p ≤ ∞ and ε ∈ (0, 1). Let {λj}
∞

j=0, {γj}
∞

j=0, {ρj}
∞

j=0

denote sequences of distinct positive numbers with

(1.12) lim
j→∞

γj

j
= 0; lim

j→∞

ρj

j
= ∞.
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Assume also that for large enough n, there is the disjoint union

(1.13) {λj}
n
j=0 := {γj}

k(n)
j=0 ∪ {ρj}

`(n)
j=0 ,

where

lim
n→∞

k (n)

n
= ε.

Then

(1.14) dνn
∗

−→ ε dµ0 + (1 − ε) dµ∞, n → ∞.

We are not sure if this result generalizes to the case where 0 and ∞ are replaced
in (1.12) by other limits. What is clear is that for a general choice of {λj}

∞

j=0, the

asymptotic zero distribution can be quite complicated, and there need not be a weak
limit. For example, by adjoining sufficiently large blocks of exponents {αj}

n2

j=n1
,

one may construct {λn}
∞

n=0, such that every µα, α ∈ [0,∞], is a weak limit of some
subsequence of {νn}. We prove the results in the next section.

2. Proofs

We begin with some notation. We abbreviate Tn,p {λ0, λ1, λ2, . . . , λn} as
Tn,p {λ0 · · ·λn}. Let Zp (λ0 · · ·λn) [a, b] denote the total number of zeros of
Tn,p {λ0 · · ·λn} (x) in [a, b]. We say that {γ0, γ1, γ2, . . . , γm} is a refinement of
{λ0,λ1, λ2, . . . , λn} if

{λ0, λ1, λ2, . . . , λn} ⊂ {γ0, γ1, γ2, . . . , γm} .

The main tools of proof are interlacing properties of successive Chebyshev polyno-
mials, monotonicity properties with respect to the exponents, and zero distribution
for the specific choice {αj}

∞

j=0.

Lemma 2.1. Let {γj}
m
j=0be distinct positive numbers and {λj}

n
j=0 be distinct pos-

itive numbers.

(a) Suppose that {γ0, γ1, γ2, . . . , γm} is a refinement of {λ0, λ1, λ2, . . . , λn}. Then

for [a, b] ⊂ [0, 1],

(2.1) |Zp (λ0 · · ·λn) [a, b] − Zp (γ0 · · · γm) [a, b]| ≤ 2 (m − n) .

(b) Suppose that {γ0, γ1, γ2, . . . , γk} and {λ0, λ1, λ2, . . . , λn} have ` exponents in

common. Then for [a, b] ⊂ [0, 1],

(2.2) |Zp (λ0 · · ·λn) [a, b] − Zp (γ0 · · · γk) [a, b]| ≤ 2 (n + k + 2 − 2`) .

Proof. (a) We may rewrite {γ0, γ1, γ2, . . . , γm} as {λ0, λ1, λ2, . . . , λm}. Since any
subset of

{

xλ0 , xλ1 , . . . , xλm
}

is a Chebyshev system on [ε, 1] for any 0 < ε < 1,
the zeros of Tn,p {λ0 · · ·λj} (x) and Tn,p {λ0 · · ·λj+1} (x) interlace [4, Corollary 1.1,
p. 2]. It then follows that for every interval [a, b],

|Zp (λ0 · · ·λj) [a, b] − Zp (λ0 · · ·λj+1) [a, b]| ≤ 2.

Applying this for j = n, n + 1, . . . , m gives (2.1).
(b) We may find a refinement of both {γ0, γ1, γ2, . . . , γk} and {λ0, λ1, λ2, . . . , λn}
consisting of n + k + 2 − ` elements. Applying (a) to the refinement and each of
the sets {γ0, γ1, γ2, . . . , γk} and {λ0, λ1, λ2, . . . , λn}, and then combining the two
inequalities gives the result. �

Apart from interlacing, we shall also use the lexicographic property:
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Lemma 2.2. Let {λj}
n
j=0be a sequence of distinct positive numbers and {γj}

n
j=0

be a sequence of distinct positive numbers with

(2.3) λj ≤ γj , 0 ≤ j ≤ n.

Then for 0 ≤ a ≤ 1,

(2.4) Zp (λ0 · · ·λn) [a, 1] ≤ Zp (γ0 · · · γn) [a, 1] .

Proof. We may assume that the two sets have n exponents in common. For then,
one can apply the result for this special case n times, using monotonicity each time.
Let 0 < ε < 1. Then in [ε, 1], the combined set of powers

{

xλj
}n

j=0
∪{xγj}

n
j=0 (with

duplicates deleted, and exponents placed in increasing order) is a Descartes system.
If T ε

n,p {λ0 · · ·λn} (x) and T ε
n,p {γ0 · · · γn} (x) denote the corresponding Müntz ex-

tremal polynomials on [ε, 1], it is known that the zeros of T ε
n,p {λ0 · · ·λn} (x) lie

to the left of those of T ε
n,p {γ0 · · · γn} (x), in the sense that the jth smallest zero

of the former Müntz polynomial is ≤ the jth smallest zero of the latter Müntz
polynomial. For p = ∞, a proof of this is given in the book of Borwein and Erdelyi
[2, Thm. 3.3.4, pp. 116–117]. For 1 < p ≤ ∞, a proof is given in Pinkus and
Ziegler [4, Thm. 5.1, p. 13], while when p = 1, we can apply the remarks there (or a
continuity argument involving p → 1+). As ε → 0+, T ε

n,p {γ0 · · · γn} (x) must con-
verge uniformly to Tn,p {γ0 · · · γn} (x) because of uniqueness of Tn,p {γ0 · · · γn} (x),
and the fact that the extremal error increases as [ε, 1] grows to [0, 1]. Hence the
zeros of Tn,p {λ0 · · ·λn} (x) lie to the left of those of Tn,p {γ0 · · · γn} (x) and (2.4)
follows. �

The next result asserts essentially that if for “most” indices j, we have λj ≤
γj , then the asymptotic proportion of zeros in [a, 1] of extremal polynomials with
exponents {λj} does not exceed that for {γj}.

Lemma 2.3. Let {λj}
∞

j=0 and {γj}
∞

j=0 be sequences of distinct positive numbers

with the following property: for each ε > 0, there exists for large enough n, a set

(2.5) Sn,ε ⊂ {0, 1, 2, . . . , n}

with at most εn elements such that

(2.6) j ∈ {0, 1, 2, . . . , n} \Sn,ε ⇒ λj ≤ γj .

Then for 0 ≤ a ≤ 1,

(2.7) lim sup
n→∞

1

n
Zp (λ0 · · ·λn) [a, 1] ≤ lim sup

n→∞

1

n
Zp (γ0 · · · γn) [a, 1]

and

(2.8) lim inf
n→∞

1

n
Zp (λ0 · · ·λn) [a, 1] ≤ lim inf

n→∞

1

n
Zp (γ0 · · · γn) [a, 1] .

Proof. Let us fix ε > 0, n large, and Sn,ε be as in the statement. We define for the

given n, a modified set of exponents
{

λ∗
j

}n

j=0
by

λ∗
j =

{

λj , j ∈ {0, 1, 2, . . . , n} \Sn,ε

γj , j ∈ Sn,ε.

Then

λ∗
j ≤ γj , 0 ≤ j ≤ n.
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By the previous lemma, for 0 ≤ a ≤ 1,

Zp (λ∗
0 · · ·λ

∗
n) [a, 1] ≤ Zp (γ0 · · · γn) [a, 1] .

Also
{

λ∗
j

}n

j=0
and {λj}

n
j=0 have at least 1 + n (1 − ε) elements in common, so by

Lemma 2.1(b),

|Zp (λ∗
0 · · ·λ

∗
n) [a, 1] − Zp (λ0 · · ·λn) [a, 1]| ≤ 4εn + 4.

Combining these inequalities gives

Zp (λ0 · · ·λn) [a, 1] ≤ Zp (γ0 · · · γn) [a, 1] + 4εn + 4.

Dividing by n and letting n → ∞ gives

lim sup
n→∞

1

n
Zp (λ0 · · ·λn) [a, 1] ≤ lim sup

n→∞

1

n
Zp (γ0 · · · γn) [a, 1] + 4ε.

As ε > 0 is arbitrary, (2.7) follows. Similarly, (2.8) follows. �

Next, we study the zero distribution for the comparison sequence {αj}
∞

j=0 :

Lemma 2.4. Let α ∈ (0,∞) and

(2.9) γj = αj, j ≥ 0.

Then for 0 ≤ a < b ≤ 1,

(2.10) lim
n→∞

1

n
Zp (γ0 · · · γn) [a, b] = µα ([a, b]) .

Proof. Suppose first p < ∞. Let T ∗
n,p denote the monic (ordinary) polynomial of

degree n satisfying
∫ 1

0

∣

∣T ∗
n,p (x)

∣

∣

p 1

α
x1/α−1dx = min

deg(P )≤n−1

∫ 1

0

|xn − P (x)|
p 1

α
x1/α−1dx.

The substitution x = tα gives
∫ 1

0

∣

∣T ∗
n,p (tα)

∣

∣

p
dt = min

deg(P )≤n−1

∫ 1

0

|tαn − P (tα)|
p
dt.

It follows from uniqueness that

(2.11) T ∗
n,p (ta) = Tn,p {γ0 · · · γn} (t) .

We see then that the total multiplicity of zeros of Tn,p {γ0 · · · γn} in [a, b] is the

total multiplicity of zeros of T ∗
n,p in [aα, bα]. Since the weight 1

αx1/α−1 is positive

a.e. in [0, 1], classical results assert that the limiting zero distribution of
{

T ∗
n,p

}∞

n=0
is the arcsine distribution [1, Cor. 5.7, p. 261]. Hence as n → ∞,

lim
n→∞

1

n
× Number of zeros of Tn,p in [a, b]

= lim
n→∞

1

n
× Number of zeros of T ∗

n,p in [aα, bα]

=

∫ bα

aα

dx

π
√

x (1 − x)
=

α

π

∫ b

a

tα−1

√

tα (1 − tα)
dt =

∫ b

a

dµα (t) .

�



ZEROS OF MÜNTZ POLYNOMIALS 7

Proof of Theorem 1.2. Our hypothesis is

lim
j→∞ a.e.

λj

j
= α.

Assume first that 0 < α < ∞. Let ε ∈ (0, α). We then obtain for large enough n,
from (1.10),

j ∈ {0, 1, 2, . . . , n} \Sn,ε ⇒ (α − ε) j ≤ λj ≤ (α + ε) j.

Applying Lemma 2.3, with γj = (α + ε) j, j ≥ 0, we deduce that

lim sup
n→∞

1

n
Zp (λ0 · · ·λn) [a, 1]

≤ lim sup
n→∞

1

n
Zp (0, (α + ε) , 2 (α + ε) , . . . , n (α + ε)) [a, 1]

and similarly applying Lemma 2.3 to (α − ε) j, j ≥ 0, and λj , j ≥ 0 (with roles
swapped),

lim inf
n→∞

1

n
Zp (0, (α − ε) , 2 (α − ε) , . . . , n (α − ε)) [a, 1]

≤ lim inf
n→∞

1

n
Zp (λ0 · · ·λn) [a, 1] .

Applying Lemma 2.4 with γj = (α ± ε) j, j ≥ 0, gives
∫ 1

a

dµα−ε (t) ≤ lim inf
n→∞

1

n
Zp (λ0 · · ·λn) [a, 1]

≤ lim sup
n→∞

1

n
Zp (λ0 · · ·λn) [a, 1] ≤

∫ 1

a

dµα+ε (t) .

Letting ε → 0+, and using dominated convergence gives

lim
n→∞

1

n
Zp (λ0 · · ·λn) [a, 1] =

∫ 1

a

dµα (t) .

This gives the result when [a, b] = [a, 1]. For general [a, b], we use

lim
n→∞

1

n
Zp (λ0 · · ·λn) [a, b]

= lim
n→∞

1

n
Zp (λ0 · · ·λn) [a, 1] − lim

n→∞

1

n
Zp (λ0 · · ·λn) (b, 1]

=

∫ 1

a

dµα (t) −

∫ 1

b

dµα (t) .

Note that because µα is absolutely continuous, the number of zeros in a neighbor-
hood of the point b is negligible in the sense of asymptotic distribution. Finally, if
α = 0, the arguments above give for 0 < a ≤ 1,

lim sup
n→∞

1

n
Zp (λ0 · · ·λn) [a, 1]

≤ lim sup
n→∞

1

n
Zp (0, ε, 2ε, . . . , nε) [a, 1] =

∫ 1

a

dµε (t) .

Letting ε → 0+ (and using some straightforward estimates) gives

lim
n→∞

1

n
Zp (λ0 · · ·λn) [a, 1] = 0 =

∫ 1

a

dµ0 (t) .
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Since 1
nZp (λ0 · · ·λn) [0, 1] = 1, we obtain

lim
n→∞

1

n
Zp (λ0 · · ·λn) [0, 1] = 1 =

∫ 1

0

dµ0 (t) .

The case α = ∞ is similar. �

Proof of Theorem 1.1. This is a special case of Theorem 1.2. �

Proof of Theorem 1.3. Let 0 < a < b < 1. Because of (1.13) and interlacing
properties, to the left of each zero of Tn,p

{

γ0 · · · γk(n)

}

(x) in [0, a], there is a zero
of Tn,p {λ0 · · ·λn} (x). Moreover,

Zp (λ0 · · ·λn) [0, a] ≥ Zp

(

γ0 · · · γk(n)

)

[0, a]

so applying Theorem 1.1 to {γj}
∞

j=0,

lim inf
n→∞

1

n
Zp (λ0 · · ·λn) [0, a] ≥ lim inf

n→∞

k (n)

n

1

k (n)
Zp

(

γ0 · · · γk(n)

)

[0, a]

= ε

∫ a

0

dµ0 = ε.(2.12)

Similarly,

lim inf
n→∞

1

n
Zp (λ0 · · ·λn) [b, 1] ≥ lim inf

n→∞

` (n)

n

1

` (n)
Zp (ρ0 · · · ` (n)) [b, 1]

= (1 − ε)

∫ 1

b

dµ∞ = 1 − ε.(2.13)

Then it follows that

lim sup
n→∞

1

n
Zp (λ0 · · ·λn) (a, b)

≤ 1 − lim inf
n→∞

1

n
Zp (λ0 · · ·λn) [0, a] − lim inf

n→∞

1

n
Zp (λ0 · · ·λn) [b, 1] ≤ 0.

So for 0 < a < b < 1,

lim
n→∞

1

n
Zp (λ0 · · ·λn) (a, b) = 0.

Next, by (2.12) and (2.13),

ε ≤ lim inf
n→∞

1

n
Zp (λ0 · · ·λn) [0, a]

≤ lim sup
n→∞

1

n
Zp (λ0 · · ·λn) [0, a]

≤ 1 − lim inf
n→∞

1

n
Zp (λ0 · · ·λn) (a, 1] ≤ ε,

so

lim
n→∞

1

n
Zp (λ0 · · ·λn) [0, a] = ε.

Similarly,

lim
n→∞

1

n
Zp (λ0 · · ·λn) [b, 1] = 1 − ε.

It follows that as n → ∞,

dνn
∗

−→ εdδ0 + (1 − ε) dδ1.

�
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