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ZERO DISTRIBUTION OF MUNTZ EXTREMAL POLYNOMIALS
IN L,[0,1]

D. S. LUBINSKY AND E. B. SAFF

ABSTRACT. Let {); }ji() be a sequence of distinct positive numbers. Let 1 <
p <ooand Th,p = Tn,p {A0, A1, A2,..., An} (z) denote the L, extremal Miintz
polynomial in [0, 1] with exponents Ao, A1, A2,..., An. We investigate the zero
distribution of {T p}o2 ;. In particular, we show that if
lim ﬁ =a>0,
n—oo n
then the normalized zero counting measure of Ty, ;, converges weakly as n — oo

to
a tafl

T/t (1 — %)
while if @ = 0 or oo, the limiting measure is a Dirac delta at 0 or 1 respectively.

)

1. INTRODUCTION AND RESULTS

Let A1, Ag,... be a sequence of distinct positive numbers. An expression of the
form
n
(L.1) Z c;x
j=0

is called a Miintz polynomial. The name refers, of course, to the famous theorem
of Miintz that if inf; A; > 0, these polynomials are dense in L, spaces iff

=1
— = Q.

Miintz polynomials share many of the properties of ordinary algebraic polynomials.
The most fundamental is that a polynomial of the form (1.1) has at most n distinct
zeros in (0, 00), or is identically zero.

Miintz extremal polynomials are generalizations of classical orthogonal and Che-
byshev polynomials. They have been investigated by amongst others, Borwein
and Erdelyi [2], Milovanovic and his coworkers [3]. Let 1 < p < co. We denote
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by Tnp () = Tpp {Xo, A1, A2s ..., An} (2) the linear combination of {2 }?:0 with
coefficient of z*» equal to 1, satisfying

n—1
(1.2) 1 T.p {Aos A1s A2, -5 An} ||Lp[o,1] = CO_I{lciilil ||17'\" - z% ijz/\j ||Lp[o,1]-

j=
It is known that T;, , exists and is unique, has exactly n distinct (and simple) zeros in
(0,1), and the zeros of T}, , and T}, 11 , interlace. Moreover, if we swap \,, with some
Aj, the extremal polynomial changes only by a non-zero multiplicative constant.
Thus when dealing with a fixed n, and studying zeros of extremal polynomials, we
may assume that {)\; }?:0 are in increasing order. However, we shall not need to
assume that {\; };’;0 is increasing. Concerning the zeros as n — oo, an important
result of Borwein [2, Thm. 4.1.1, p. 155] asserts that the corresponding Miintz
polynomials are dense iff the maximum spacing between successive zeros of T}, p
has limit 0 as n — oco. Saff and Varga [6] studied the related zero distribution of
lacunary incomplete polynomials.

In this paper, we study the asymptotic zero distribution of {Tmp}flo:l. Let v,

denote the normalized zero counting measure of T}, ,,, so that

1
v ([a,b]) = - % Number of zeros of T}, , in [a,b].

In the case of polynomials, where \; = j, j > 0, it is a classical result [5, pp. 169
170], [7, Thm. 3.4.1, p. 84 and Thm. 3.6.1, p. 98] that for 0 < a < b < 1,

lim v, ([a,b]) = /b L

e . VEl-1)
Equivalently we write

dv,, — L n — 00

m/z (1 —z)

and say that dv, converges weakly to the arcsine distribution on [0, 1]. This type
of result has been studied in detail for the case p = 2 of orthogonal polynomials,
and when there is a weight w in the norm in (1.2). The monograph of Stahl and
Totik [7] gives a comprehensive account, while the monograph of Andrievskii and
Blatt [1] considers discrepancy, or rate of convergence, to the limiting distribution.

In a loose sense, our conclusion is that when lim,,_, A, /n exists, all the possible
zero distributions are those provided by

Aj = ay, j=>0

for some a € [0, 00]. Extremal polynomials for these exponents are essentially L,
extremal polynomials with the substitution of variable x = t*. Accordingly, we
define for 0 < « < 00, a probability measure on (0, 1),

a tafl

1.3 dite, () = ———————=dt
(1.3) bo (1) = 7 s
For a« = 0, we set

(14) dﬂ/O — d607

a unit mass at 0, and for a = oo, we set
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a unit mass at 1. We prove:

Theorem 1.1. Let 1 < p < o0, 0 < a < 00, and {)\j};iodenote a sequence of
distinct positive numbers with

(1.6) lim ﬁ =a.
J—oo j
Then if 0<a<b<1,
(1.7) im_ v, ((a,b) = o ([a.B)
that is,
dv, — ditg, n — o0.

Remarks . (a) An interesting feature of the theorem is that asymptotic zero distri-
bution has no relation to the density of Miintz polynomials — in stark contrast to
the Borwein-Erdelyi result on spacing. Thus if A\,, = nlogn,n > 2, then the cor-
responding Miintz polynomials are dense, while the asymptotic zero distribution is
a Dirac delta at 1. If \,, = n?,n > 0, then the limiting zero distribution is still a
Dirac delta at 1, but the corresponding Miintz polynomials are not dense.

(b) We can somewhat weaken the hypothesis (1.6): roughly speaking we can ignore
o(n) of the exponents in {Ag, A1, A2,..., A\n}. To make this more precise, assume
a < co. We write

(1.8) lim ﬁ =«

j—oo ae. )

if for each € € (0, 1), there exists for large enough n, a set

(1.9) Sne C{0,1,2,...,n}

with at most en elements such that
s

(1.10) 7€{0,1,2,...,n}\Spe= |2 —a|<e.
J

In the case o = 0o, we replace this by for each K > 0, there exists for large enough
n, a set Sy C {0,1,2,...,n} with at most en elements such that

)\‘
je{0,172,...7n}\8n7(5:>7_] > K.

Theorem 1.2. Let1 < p < o0, 0 < a < 00, and {)\j};iodenote a sequence of
distinct positive numbers with

A
(1.11) lim 2L =aqa

j—oo a.e. ]

Then the conclusion (1.7) of Theorem 1.1 persists.

We shall also show that one cannot ignore more than o (n) exponents in {\; };.L:O
without affecting the zero distribution:

Theorem 1.3. Let 1 < p < oo and e € (0,1). Let {N;}72,, {v};2: {pj}
denote sequences of distinct positive numbers with

(1.12) lim 2 =0; lim 2 = o

Jj—00 ] j—oo ]

o0
=0
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Assume also that for large enough n, there is the disjoint union

n k(n L(n
(1.13) Yoo =% U,
where )
lim ﬂ =e.
n—oo N
Then
(1.14) dvp — & dpo + (1 — €) djioo, n — oo.

We are not sure if this result generalizes to the case where 0 and oo are replaced
in (1.12) by other limits. What is clear is that for a general choice of {\; };iov the
asymptotic zero distribution can be quite complicated, and there need not be a weak
limit. For example, by adjoining sufficiently large blocks of exponents {cj }?im,
one may construct {\, },, such that every pq, o € [0, 0], is a weak limit of some
subsequence of {v,,}. We prove the results in the next section.

2. PROOFS

We begin with some notation. We abbreviate 1), , {Xo, A1, A2,..., An} as
Top{ro---An}. Let Z, (Ao - Apn)[a,b] denote the total number of zeros of
Top{ro---An}(x) in [a,b]. We say that {v0,71,72,...,Vm} is a refinement of
{0, A1, Ay, A b if

{)\07)‘17)\27"'7)‘77,} - {’707’717727"'77177,}'

The main tools of proof are interlacing properties of successive Chebyshev polyno-
mials, monotonicity properties with respect to the exponents, and zero distribution
for the specific choice {aj}72.

Lemma 2.1. Let {v; };.n:O be distinct positive numbers and {\; };.L:O be distinct pos-
itive numbers.
(a) Suppose that {vo,v1,72,---,Vm} is a refinement of {\o, A1, A2,..., A\n}. Then
for [a,b] C [0,1],
(2.1) 1Zp (Mo -+ An) la, ] = Zp (Y0 -+ ym) [a, ] £ 2(m —m).
(b) Suppose that {vo,71,72,---,Ve} and {Xo, A1, A2, ..., An} have £ exponents in
common. Then for [a,b] C [0, 1],
(2.2) |Zp (Mo An) @b — Zp (vo- - vk) (@, b)) <2(n+ k+2—20).
Proof. (a) We may rewrite {vo,7v1,72,--->7¥m} as {Mo, A1, A2,..., A }. Since any
subset of {x’\o,x)‘l, ... ,:v’\m} is a Chebyshev system on [g,1] for any 0 < ¢ < 1,
the zeros of Ty, , { Ao -+ Aj} (2) and T}, {0 - - - Aj+1} (x) interlace [4, Corollary 1.1,
p. 2]. It then follows that for every interval [a, b],

1Zp (Mo -+ Aj) [a, b] = Zp (Mo -+ Ajy) [a, B]] < 2.

Applying this for j =n,n+1,...,m gives (2.1).

(b) We may find a refinement of both {vo,v1,72,-..,v} and {Xo, A1, A2, ..., An}
consisting of n + k 4+ 2 — £ elements. Applying (a) to the refinement and each of
the sets {v0,71,72,---, vk} and {Ag, A1, A2,..., A\n}, and then combining the two
inequalities gives the result. |

Apart from interlacing, we shall also use the lexicographic property:



ZEROS OF MUNTZ POLYNOMIALS 5

n

Lemma 2.2. Let {)\j}?zo be a sequence of distinct positive numbers and {’Yj}jzo

be a sequence of distinct positive numbers with

(23) )\j S Vi 0 Sj § n.
Then for 0 <a <1,
(2.4) Zp (Ao An)la, 1] < Zp (0 -+ ) [a, 1]

Proof. We may assume that the two sets have n exponents in common. For then,
one can apply the result for this special case n times, using monotonicity each time.
Let 0 < e < 1. Then in [, 1], the combined set of powers {2 }?:0 U{z }?:0 (with
duplicates deleted, and exponents placed in increasing order) is a Descartes system.
If T35 ,{ oA} (z) and T;; , {70 - yn} (z) denote the corresponding Miintz ex-
tremal polynomials on [, 1], it is known that the zeros of T} ,{Ao--- A} (2) lie
to the left of those of T} ,{70---7¥n} (), in the sense that the jth smallest zero
of the former Miintz polynomial is < the jth smallest zero of the latter Miintz
polynomial. For p = oo, a proof of this is given in the book of Borwein and Erdelyi
[2, Thm. 3.3.4, pp. 116-117]. For 1 < p < oo, a proof is given in Pinkus and
Ziegler [4, Thm. 5.1, p. 13], while when p = 1, we can apply the remarks there (or a
continuity argument involving p — 1+4). As e — 0+, T} , {70V} (¥) must con-
verge uniformly to T, , {70 - - - ¥} (z) because of uniqueness of T}, , {70 - - n} (2),
and the fact that the extremal error increases as [e,1] grows to [0,1]. Hence the
zeros of T, , {0+ A\n} () lie to the left of those of T), p {70 Vn} (x) and (2.4)
follows. ]

The next result asserts essentially that if for “most” indices j, we have A; <
~;, then the asymptotic proportion of zeros in [a, 1] of extremal polynomials with
exponents {\;} does not exceed that for {~;}.

Lemma 2.3. Let {)\j};io and {7]-};';0 be sequences of distinct positive numbers
with the following property: for each € > 0, there exists for large enough n, a set

(2.5) Sne C{0,1,2,...,n}

with at most en elements such that

(2.6) 7€{0,1,2,....,n}\Sne = A <nj.

Then for 0 <a <1,

1 1

(2.7) limsup —Z, (Ao - -+ An) [a, 1] < limsup —Z, (Y0 - - - V) [, 1]
n—oo N n—oo N

and
o1 .1

(2.8) liminf —Z, (Ao -+ ) [a, 1] <liminf —Z, (v - - vn) [a, 1] .
n—oo nN n—oo n

Proof. Let us fix € > 0, n large, and S, . be as in the statement. We define for the
given n, a modified set of exponents {)\;‘ }?:0 by

A= A, jE{O,l,Q,...,n}\SmE
! Vi» jesn,s-

Then
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By the previous lemma, for 0 < a <1,
Zp (Ao~ An) las 1 < Zp (0 - - ym) [a, 1]
Also {)\;}?:0 and {\; }?:0 have at least 1 4+ n (1 — &) elements in common, so by
Lemma 2.1(b),
|Zp (NG An) [a, 1] = Zp (Mo -+ M) [a, 1]] < 4den + 4.
Combining these inequalities gives
Zy (Mo M) e 1] < Zp (yo -+ vn) la, 1] + den + 4.

Dividing by n and letting n — oo gives

1 1
lim sup — —Zp (Ao M) [a, 1] < limsup EZP (o vn) [a, 1] + 4e.

n—oo n—oo

As e > 0 is arbitrary, (2.7) follows. Similarly, (2.8) follows. O
Next, we study the zero distribution for the comparison sequence {a;j };’;0 :

Lemma 2.4. Let a € (0,00) and
(2.9) vj=aj,  j=>0.

Then for 0 <a <b<1,

(2.10) lim Z (Yo Yn) [a,b] = pa ([a,b]) .

n—oo N

Proof. Suppose first p < oo. Let T}, denote the monic (ordinary) polynomial of
degree n satisfying

1
1 1
/ ‘T;p (:c)|p ZgVo 1y =  min / |x" — 1/0‘71dz.
0 ’ « deg(P)<n-—1
The substitution x = t* gives
1
Ty, )| dt = o — P (t*)[P dt.
[mera= w [ )

It follows from uniqueness that

(2.11) Thp () = Tap{r0---m} ().

We see then that the total multiplicity of zeros of T), , {70 - Vn} in [a,b] is the
total multiplicity of zeros of T); , in [a®,b*]. Since the weight — Lyl/e=1 ig positive
a.e. in [0, 1], classical results assert that the limiting zero dlstrlbutmn of {T,
is the arcsine distribution [1, Cor. 5.7, p. 261]. Hence as n — oo,

P}n 0

1
lim — x Number of zeros of T}, ,, in [a, D]
n—oo N

1
= lim — x Number of zeros of T; , in [a”, "]
n—oo n

[ A=t %‘”:/ﬁw
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Proof of Theorem 1.2. Our hypothesis is
~ lim ﬁ = .
Jj—oo a.e. j
Assume first that 0 < a < co. Let € € (0,). We then obtain for large enough n,
from (1.10),
7€{0,1,2,....n}\Sne = (@a—e)j <A <(a+¢e)j
Applying Lemma 2.3, with v; = (a+¢) j, j > 0, we deduce that
1
limsup —Z, (Ao - - - A\n) [a, 1]
n

n—oo

1
< limsupﬁZp(O,(a+s),2(a+s),...,n(a—l—e)) [a, 1]
and similarly applying Lemma 2.3 to (o« —¢)j, j > 0, and A;, j > 0 (with roles
swapped),
1
liminfﬁZp(O,(oz—e),Q(oz—6),...,n(a—6)) [a, 1]

n—oo

< liminf =2, (ho -+~ An) [0, 1].
n

n—oo

Applying Lemma 2.4 with v; = (ax¢)j, j > 0, gives

1
/ At —e (t) < liminf lZp Mo+ ) a, 1]

n—oo N

1 1
< lim sup gZp Mo An)a, 1] < / dtge (t) -

n—oo

Letting € — 0+, and using dominated convergence gives

1 1
lim —Z, (Ao M) a, 1] = / dpie, (1) .
n—oo n o

This gives the result when [a,b] = [a, 1]. For general [a, b], we use

1
lim —Z, (Ao M) [a, b]

n—oo N
1 1
= lim =Z, (Ao M) a,1] — lim —Z, (Ao~ An) (b, 1]
n—oo 1, n—oo n

_/aldua(t)—/bldua(t)-

Note that because pq is absolutely continuous, the number of zeros in a neighbor-
hood of the point b is negligible in the sense of asymptotic distribution. Finally, if
a = 0, the arguments above give for 0 < a <1,

1
lim sup EZP (Ao~ An)la, 1]

n—oo

1 1
<limsup —Z, (0,¢,2e,...,ne) [a,1] = / dp (¢) .
Letting ¢ — 0+ (and using some straightforward estimates) gives

Jim lZp()\o---)\n)[aJ]:0:/1du0(t).

n—oo N
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Since 17, (Ao -+ An) [0,1] = 1, we obtain

1 1
lim EZP M- A\)[0,1]=1= / dug (t) .
n—oo 0
The case a = oo is similar. ]
Proof of Theorem 1.1. This is a special case of Theorem 1.2. (]

Proof of Theorem 1.3. Let 0 < a < b < 1. Because of (1.13) and interlacing
properties, to the left of each zero of T, {'yo e ”yk(n)} (x) in [0, a], there is a zero
of To, p { Ao -+~ An} (x). Moreover,

Zp (Mo An) [0,a] = Zp (0 Yi(n)) [0, d]

so applying Theorem 1.1 to {v; };’;0,
| . k(n) 1
(2.12) - 5/ dpio = ¢.
0
Similarly,
liminf L2, (Ao - ) [b,1] > liminf S L2 (50 0(m)) [0.1]
lnn—l»g n P 0 no = lnnig n é(n) » \Po " ’
1
(2.13) =(1 —5)/ diteo =1 — €.
b

Then it follows that
1
limsup —Z, (Ao -+ An) (@, b)
n

n—oo

1 1
<1-—liminf —Z, (Ao An) [0,a] — liminf —Z, (Ag--- Ay) [b,1] < 0.
n—oo N n—oo N
Sofor0<a<b<1,
1
lim —Z, (Mo M) (a,b) = 0.

n—oo n

Next, by (2.12) and (2.13),

1
e <liminf —Z, (Ao --- An) [0, a]

n—oo N
1
<limsup —Z, (Ao - An) [0, a]
n—oo T
1
<1-—liminf —Z, (Ao - A\) (a,1] <e,
n—oo N
SO )
lim EZP Mo+ An)[0,a] = €.
Similarly,

1
lim —Z, (Mo - An) [, 1] =1—¢.

n—oo N,
It follows that as n — oo,

dvy, — edéy + (1 — €) dé;.
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