POLYNOMIALS BIORTHOGONAL TO DILATIONS OF
MEASURES, AND THEIR ASYMPTOTICS

D. S. LUBINSKY! AND A. SIDI2

ABSTRACT. We analyze polynomials P, that are biorthogonal to dilates of a
positive measure p, supported on (0, 00):

e o]
/ Py, (z)dp(op,j2) =0,1<j<mn.
0
We establish representations for P, in terms of the associated dilation polyno-
mial
n
Ru(y) =[] w+1/0n;).
j=1
In the case where 5
dp (t) =t%e~ " dt on (0,00),

we show that strong asymptotics for Ry, in the complex plane, as n — oo, lead
to strong asymptotics for P, via the method of steepest descent.
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1. INTRODUCTION

Let a > —1 and {Un,j}?zl be distinct exponents in (0,00). Then we may de-
termine a monic polynomial P, of degree m, determined by the biorthogonality
conditions

o0
/ P, (x)e ™%z =0,1 < j <mn.
0

In developing methods for convergence acceleration, and numerical integration of
singular integrands, the second author introduced some classes of polynomials of
this type [11], [12], [13], [14]. These include

(I) The polynomials P, = A%Q’A), for which 0, ; =7+ A, 1 <j <m;

(IT) The polynomials P, = G%a), for which {0;3}?:1 are the zeros of the Sidi

polynomials Dﬁ?’O);

(I1T) The polynomials P,, = M,(LO‘)7 for which {a;’b }?: | are the zeros of the Legendre

polynomials scaled to (0, 1).

We explored these polynomials, and their zero distribution, in an earlier paper [8].
In this paper, we consider the more general case when P, is determined by

orthogonality to dilates of a positive measure p. Thus we assume that p is a
positive measure supported on the real line, with all moments

' 0
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finite. We assume that for n > 1, we are given distinct positive numbers {o,, ;}
and determine a monic polynomial P, of degree n by the conditions

(12) [ P@dulonm =012 <n
0

Equivalently,

(1.3) / Pn< ! )d,u(t):o,lgjgn.
0 On,j

As in [8], P, is closely related to the polynomial

(1.4) R, (y) = H (y+ O';L;-) = Zrnyjyj.
j=1 §=0

n
j=1

We call R,, the dilation polynomial associated with P,. The following simple propo-
sition establishes the relationship between P,, and R,:

Theorem 1.1

Let p be a positive measure on (0,00) with infinitely many points in its support,
and finite moments {uj}. Let {O'n,j}?zl be distinct positive numbers. Let P, be a
monic polynomial of degree m, determined by the orthogonality relations (1.2), and
let R, be given by (1.4). Then P, exists, is unique, and

(1)
(1.5) Py(2) = (~1)" Y 1oyt (<)

=0 M
while
n 1 [>
(1.6) (1" R (=9) === [ Pty an o).
(II) There exists r > 0 such that
(-1)" / x dt
1.7 Pn - s Rn (—*) G (t) —
(1.7 @ =migr [ R(F)ews
where
(1.8) G(t) = .
=0 Hi
(III) Write 0; = 0y j, 1 <j <n. Then
1 0{1 0';2 o "
1 oy' 052 o, "
det | : :
1 U,‘Ll 0;2 o, "
1 .2 n
(19) P” (x) — E F"ll iz o in
“ 1 o;! o2 o
1 02_1 02_2 oyt
det .

-1 -2 —n+1
1 o," o o,
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(IV) If u has form
du (t) = to‘eftﬁdt, t € (0,00),
where a« > —1,8 > 0, then P, has n simple zeros in (0, 00).

We shall prove this simple result in section 2. In the special case where du (t) =
t*etdt, it is a combination of Proposition 1.1 and Theorem 1.5 in [8]. There we
denoted R,, by Q,,. In the general case, parts of Proposition 1.1 overlap with results
of Brezinski [2], Iserles, Norsett and Saff [5], [6] on biorthogonal polynomials in a
more general setting. Algebraic and asymptotic properties of related biorthogonal
polynomials have been explored in [7], [9], [10], [15].

The main focus of this paper is the asymptotic behavior of {P,}. These are
based on a simple new contour integral representation of P, :

Theorem 1.2 ,

Let B> 1, o > —1, and du(t) = tore=t’dt, t € (0,00). Let {(ij}?:l be distinct
positive numbers. Let P, be a monic polynomial of degree n, determined by the
orthogonality relations (1.2), and R, be given by (1.4). Let

s s
5
s > 0, and let T be the contour consisting of the rays I'; = {1"6“7 r > s}, .=
{re*i" > s}, and the circular arc I'y = {seie (0] < 7]}. Assume that T is
traversed in such a way that T's is traversed anticlockwise. Then for all complex z,

(1.11) P, (2) = B ()" /F et f-a2p, (—%) dt.

21

Let v,, denote the zero counting function for R,,, so that
1
(1.12) vy [a,b] = —(Number of zeros of R, in [a,D]).
n

Equivalently,

1
Vp = E 2215—1/0n,j7
j=
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where 0, denotes a unit mass at a. In [8, Thm. 1.2, p. 347], we showed that for
B = 1, the zero counting measures of P, (—4nz) converge weakly as n — oo, iff
vy, converges weakly as n — oo. Moreover, we related the limiting zero counting
distributions of R,, and P,. Note that

Ry () = exp (n / log (2 — 1) dv, (t)) ,

with the usual branch of the log, at least for z ¢ (—oc0,0). In this paper, we es-
tablish a stronger form of asymptotic. We shall make some assumptions about the
behavior of R,, as n — 00 :

Hypotheses on R,
(I) For all j,n,

(1.13) onj € [1,00).

(II) There is a probability distribution v on [—1,0], a sequence {\,} of non-negative
numbers, and functions D and E such that as n — oo,

(1.14) R, (z) = exp (n/log (z=t)dv(t)+\pyD(2)+E(2)+o0 (1)) ,
uniformly for z in compact subsets of C\[—1,0].

(III) For each € >0, as n — oo,

(1.15) An =0(n%).

(IV) exp (D) and exp (E) are analytic in C\ [—1,0].
We need the scaled monic polynomials

(1.16) Qn (2) = (—“;nlypn (_ul::z)

For u € C\(—00,0], and Z ¢ (—o0,0], we let
uf —1

(1.17) U (z,u) = /_01 log (2 — t) dv (t) + 5

The critical points of ¥ (z,-) determine the main part of the asymptotic for @Q,. In

applying steepest descent, the second derivative of W plays a role. Accordingly, we
need, that when % =0,

u

0% (z,u)
2 )
“ ou?

(1.18) = —/0 U gy () + B

_1 (2 — tu)?

The following function is useful in describing the asymptotics:

(1.19) H () = \/B* " exp (tﬁﬁ_ ! [a + 1_25D .

B(z,u) =

Following is our asymptotic result:

Theorem 1.3
Assume that B> 1 and o > —1. Let du(t) = t“exp (—t?) dt on (0,00) and ass-
sume that for n > 1, we are given distinct exponents {amj}?:l. Let {P,} denote
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the corresponding monic biorthogonal polynomials, and {R,} the associated expo-
nent polynomials. Assume the hypotheses (I)-(IV) above.

(a) For Rez >0, z # 0, there is a unique solution u =1 (z) of the equation

(1.20) uﬂ:/o © _dv(t)

1 2—ut

with larg (2)| < 35 and | (2)] < 1. Here ¢ is an analytic function of z.
(b) Uniformly for z in compact sets of Rez >0, z # 0,

Qn (2)

_ \/% exp (n\ll (2,0 () + AnD <w'§z)> +E (d}?z)» (1+0(1).

(1.21)

Remarks
(a) Let w,, denote the zero counting function of Q,,, so that

1
d =— .
Wy (t) - Z Oy
2:Qn (2)=0
It has support in (—o0,0). By taking absolute values and nth roots in the asymp-

totic above, we see that, at least for Re (z) > 0,
B
—1
L t‘du(t)JrRe (1/}(2)) .

0
nlin;o/log|z7t|dwn (t) :/llog e 5

It follows from this limit, that w,, converges weakly to a distribution w that satisfies,
at least for Rez > 0,

0 B
z P (2)" —1
lo z—tdwt:/ lo —t‘dut—i—Re — .
Jroglz=tiaw) = [ tog| = —tlav ) ( - )
1/8
(b) Since #“ = (% (14 0(1)), and because the convergence is locally uniform

in z, it follows that

o= () (-(3)")

has the same asymptotic representation as @,,.
(c) We expect that the same asymptotic holds more generally for z € C\(—o0,0].
We could not do this, because we could not show there is a unique critical point
when Rez < 0

We illustrate Theorem 1.3 with two examples from [8].

Example 1
Consider the polynomials P,, determined by the conditions

o0
/ P, (z) e~ (+8)2 pagy 0,1<j<n.
0
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In the case 8 = 1, these polynomials were considered in [8]. The associated dilation

polynomials are
:II@+U+M*)
j=1

Let
F(z)=log(l+2)—2z,2¢ (—00,—1).

We see that

R, (2) I 1 - ( 1 )
1.22 =e - -+ Fl——
(122) 2" P sz%y%—A J; (j+A)z
Here

1 "1 = 1

X = Zf - A T
—itA Pl = iG+A)

1
= logn—l—’y—AZ%—%—o(l),
— j(j+A4)

where v is Euler’s constant. Let us set

An = logn;
1
1 o0 oo
E(z) = 2|7 Z j—I—A Z <j+A )

j=1 Jj=1

As F(v) =0 (1)2), v — 0, the second series in the last line converges, uniformly
for z in compact subsets of C\(—o0,0]. Also let

V= 603
a unit mass at 0. Then we see from (1.22) that
1
R,(2) = exp <nlogz + % +E(2)+4o (1))

= exp(n/log (z=t)dv(t)+ D (2) + E(2) +0(1)).

Thus (1.14) holds. Moreover, the equation (1.20) for v = ¢ (z) becomes
uf =1.
Thus
P (z) =1 for all 2,
while from (1.17),
V(2,9 (2)) = log z,
and from (1.18),

Moreover,
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So the asymptotic (1.21) for @,, becomes,
Qn (2)
= 2"pzeP) (I1+o0(1)),

at least for Rez > 0, z # 0. The limiting zero distribution w satisfies

/log |z —t| dw (t) = log |#],

suggesting that w = §g. For 8 = 1, this was proved in [8].

Example 2

Let R,, denote the Legendre polynomial for [—1,0]. By translating asymptotics for
the Legendre polynomials [17, p. 194; p. 63] from [—1,1] to [—1,0], we see that
uniformly for z in compact subsets of C\ [—1, 0],

R, (2) = ¢ (2)" exp (E(2)) (1 +0(1)),
where

d)(z):i(%—i—l—i— (2z+1)2—1>,

and
exp (F (2)) = V2 ((22 +1)° - 1)_1/4 b (2)%.

It is well known that 4¢ is the conformal map of C\ [—1, 0] onto the exterior of the
unit ball, and

0 dt
¢ (z) =exp (/110g(2t)7ﬁ/m>,

dt

m/t(lﬂ)’te

Moreover, u = 1 (z) is the root of

6_Z¢I z\ 2z
u=—-——=(—) = .
(0] (u) u (2§+1)2_1

SO

dv (t) = (-1,0).

We see then that (1.21) becomes

_ HEE) (o s () @) 1
= JBG.o() p( [lg¢<¢(z)>+ 3

+E<w§2)) +0(1)>.

Throughout, C,C4,Cs, ... denote positive constants independent of n,x,t and
polynomials P of degree at most n. We write C = C(\),C # C(\) to indicate
dependence on, or independence of, a parameter A. The same symbol does not
necessarily denote the same constant in different occurrences. We denote the poly-
nomials of degree < n by P,.

This paper is organized as follows. In Section 2, we prove Theorem 1.1. In
Section 3, we prove Theorem 1.2. In Section 4, we present some preliminaries for
the proof of Theorem 1.3. In section 5, we analyze the critical points of ¥. We
prove Theorem 1.3 in Section 6.
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2. PROOF OF THEOREM 1.1

Proof of Theorem 1.1
Throughout the proof, we write o; = 0y, j, 1 < j < n. We first prove the existence
and uniqueness of

P, (z) = ijxj'
=0

The defining relations (1.3) are easily rewritten as the linear system

—1 —2 —n+1 -n
1 ‘711 012 0y o Dottg 01
— — —n —n
1 oy° o037 -+ oy P1iq o
(21) . = —Hn . ’
-1 -2 —n+1 -
1 On On T Op e Pn—1Hp—1 Jnn

recall that p, = 1. The matrix on the left-hand side is a Vandermonde matrix, and

all the {0, ;} are distinct, so the matrix is non-singular. Hence the system has a
n—1

unique solution for {p;};_.

(I) We see that

My

/ooo D gt (<) | da (1) = o R (=),

and by definition of R,,, this vanishes when y = a,;l, 1 < k < n. Then uniqueness
of P, gives (1.5). The last equation also gives (1.6).
(IT) Since p has infinitely many points in its support in [0, c0), necessarily,

s= li_rninfu;/j > 0.
Jj—o00

Then G of (1.8) has radius of convergence s > 0. For r < s, we have

s Ra (—%)
/ﬂ:r G (t) dt

21 t

271 |t|=r tj+1

= 2": Py (—a) o= 0 g
=0

n

= > ray (o)t = ﬂPﬂ ().
=0 :

n—1

(IIT) This follows by applying Cramer’s rule to solve (2.1) for {p;},_,. Alterna-

tively, one can compute the integral

[ (z)oe

by integrating the determinant in (1.9), and then observing that one obtains two
identical rows.
(IV) By a substitution, we can recast the orthogonality relations (1.2) as

[e.e]
(2.2) / P, (tl/ﬂ) £ Lemoltgt = 0,1 < k < n.
0
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If P, has less than n sign changes in (0, 00), then so also does P, (t}/#). Since all

n
{ok},_, are distinct, {e"’ft}kil is a Chebyshev system, so we can find a linear
combination h (t) that has sign changes at precisely the less than n sign changes of

P, (tY/8) in (0,00). Now (2.2) gives

o0
0 :/ P, (tl/ﬂ) £ L (¢) dt.
0

This is impossible, as the integrand has one sign in (0, co) except at the sign changes
of P, (t'/7). m

3. PROOF OF THEOREM 1.2

In the sequel 8 > 1 and a > —1, while du (t) = t*e=t’ dt. The moments are

o 1 n+a+1
3.1 . :/ tn-‘r(xe—tﬁdt -7 ( ) .
(3.1) = | Al

It is possible to derive (1.11) using results in Dzrbashian’s book [3], but it is actu-
ally easier to start with the standard Hankel loop integral for the reciprocal of the
gamma function. Let p > 0. Then [4, p. 13], for a > 0,

1 1 tp—a

Here C is a contour that starts at the lower edge of the negative real axis, cut from
—00 to -p, then traverses the circle t = pe’, =1 < 6 < 7 anticlockwise, and then
traverses the upper edge of the negative real axis, cut from —p to —oo.

In particular,

I B :i oty— gt
14 ]_"(J-i-g-i-l) 2 Je

dt.

Then (1.5) gives
_ ﬂ(_]_)’ﬂ o, t,—otl g T J
P,(z) = T om . et 7 ;:O Tn,j (_W> dt

o 6(_1)” ,LLn t - €

We make the substitution ¢ = u” in the last integral, giving

P, (z) = M/C e’ ufe1R, (—%) du.

271

Here C; is the image of the contour C under the map u = /7. Thus C; consists
of a circular arc t = p'/Pei?, —% <0 < %, and rays from p/PetE to oo, in the

left-half plane. Now the integrand is analytic in C\(—o0, 0] as a function of u, while
if u = re'?,
8

u

e r? cos,BO.

=e
This decays rapidly to 0 as r — oo, as long as 0 € (%, %) It follows that we can
deform the contour C; into the contour I' described in the statement of Theorem
1.2. 1
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For Q,, of (1.16), we deduce:

Lemma 3.1

_ O [ () paap (2
(3.2) Qu(z) = 3 /F (175) pp-o=2p, (%),
where
M n—pB+a+1
(33) o= (L=t o
o
Proof

We make the substitutions z — —u"—lz and t — ¢t-Fo— and s — s/ F=— in (1.11).

_ Hn—1
lLL'fL

I S I B (e L N T A T
Ulx)= K I ) M"} 27Ti/re s fin (t) o

4. PRELIMINARY RESULTS

Then we multiply by ( ) , obtaining

In the sequel, we let
(4.1) O, (z) =exp(\,D (2) + E(2)).
Recall that H was defined at (1.19).

Lemma 4.1

(a)

(4.2) ﬁ - (;)1/6 (1 + %% {a + 1;/3] +0 (n_2)) :
R
(b) Let 6, be defined by (3.3). Then

(4.4) 5 = \/Zrfne % exp (—; [a + 1_25D (140(1).

(¢) Uniformly for t in compact subsets of C\(—o0,0],
n (tﬂ - 1)
B

Hn

B
(45) 5n€(t“"*1) Pl — \Jorn exp (

Proof
(a) Using (3.1) and the asymptotic [1, p. 257, 6.1.47]

_JT(z+a) (a—b)(a+b-1) 1

1/8 2041 _ q
Mn n B -2
= (= 1+ —+——+0(n ,

we see that
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B
+ - +0(—].
(Nn—l) ﬁ 6 2 n
(b) This follows from (4.3), and Stirling’s formula. We omit the lengthy, but

straightforward, calculation.
(c) By (a) and (b) of the lemma,

Hn

5 e(tm)ﬁtﬁﬂfl

- i (¢ g e o ()] 5
= V2mnexp (Tl(tﬁﬁl)ﬂ(l))H(t).

|

Recall that U (z,u) was defined by (1.17), while €2,, was defined at (4.1). More-
over, the contours I'y,I'_, ' were defined in Theorem 1.2. We now write @,, as a
sum of three terms, of which the first will be the main one.

Lemma 4.2
Let z € C\[-1,0],m > 1, and s > 0. Let R > |z|, and Bg denote the ball center
0, radius R. Then

(4.6) Qn(z) =1+ I+ I3,
where
il d
(4.7) \/2?/ RAEN t)Q ) () (1+0(1)) ?t’
™ d
oy m=m [ e, (T H @) (40 1) T
(4.9) |I3] < Cl\/ﬁ(Q/el/ﬁ)ne_CanB.

The estimates hold uniformly for z in compact sets of C\[—1,0]. Cy and Cs are
independent of n and R.

Proof

We use the integral formula in Lemma 3.1:

wn \B
Qn (2) = 57"/ e(tm) tﬁ*a”]{n (%) dt.
.Ul uT

21

Here by our hypothesis (1.14) on R,,, and by Lemma 4.1,
Hn B
SR <§) G A
= V2rnexp (¥ (z,8) + 0 (1)) Qn (%) H(t),

uniformly for ¢ in compact subsets of |¢| > s, and z in a compact set. Then (4.6)
follows, with

pn \B
JA— (1727) ys—a2pp <5> dt.
271 (F+UF,)\BR t
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Here as all zeros of R, lie in [—1,0], for [t| > R > |z|, we have

z Iz \"
R, (7)‘ < (142 <on
A ()] = (14 i) =

el B
C5n2n/ 6—(;—11& leos(Bm), p—a—2 .
R

_ B
< 015n2n6 CanR ,

Then

|13]

IN

by (4.2) and some straightforward estimation. Here Cy and C3 do depend on 7,
but not on R or n, and may be taken to be the same for z in a compact set. Finally
apply (4.4) for §,,. B

5. THE CRITICAL POINTS OF W

In order to apply the method of steepest descent, we need to study the critical
points of ¥. We prove:

Theorem 5.1

For each z € C with Re(z) > 0, z # 0, there exists a unique u = 1 (z) such that

larg (¢ (2))] < 355 [¥ (2)] < 1, and

(5.1) %\IJ (z,u) =0.

¥ is an analytic function of z. Moreover, if Im (z) > 0, arg (¢ (2)) € [0, 53).
Observe from (1.17) that

o) 1 o 1
2 —Vv =— |- sl
(5:2) G == [ @+
We shall make the substitution
1
v=-
z
and analyze
0 1 5
5.3 F =— dv (t .
(5.3 ) == [ v () +u

We shall prove the result by first showing that for Re(v) > 0 > Im (v), F (v,-)
maps the boundary of the sector of the unit ball,

(5.4) D+—{rei9:7'€(0,1),0<9<27rﬂ},

onto a curve enclosing 0. We let v+ = 0D4 and F o« denote the image set
{F (v,u) : u € v}, for a given fixed v satisfying Re(v) > 0 > Im(v). Observe
that for such v, F (v,-) is a single valued analytic function for v € C\(—o0,0].

™

Indeed, as arg (v) € [-7,0), while for u € v, arg(u) € {0 ’T} C [0,Z], we have
arg (w) € -3, 2

’ 28
|. Then for t € [-1,0],
Re (1 — tuv) =1+ |t| Re (uv) # 0.
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It follows that F o~y is a piecewise smooth closed curve. We define the half open
quadrants as follows:

9, = {w:Re(w)>0,Im(w) > 0};
Q> = {w:Re(w)<0,Im(w)>0};
Q; = {w:Re(w)<0,Im(w) < 0};
Qs = {w:Re(w)>0,Im(w) <0}
The interior of Q; is Q(;. We also let
(5.5) D_{reie:re((),l),0>9>27rﬁ},

Our main lemma is:

Lemma 5.2
(a) Let v € Q4. Then there exists a unique ¢ (v) € Dy U {1} such that

(5.6) F (v,¢(v)) =0.

Moreover, ¢ is an analytic function of v € Q4.
(b) Let v € Q1. Then there exists a unique ¢ (v) € D_U{1} such that (5.6) holds.
Moreover, ¢ is an analytic function of v € Q.

Proof
(a) Let us first deal with the "trivial" case where v is a unit mass at 0. Then we
see that

F(v,u) = —1+4”,

and we can choose v = 1, that is u = ¢ (v) = 1 for all v. In the sequel, we assume
that v is not a unit mass at 0.

We let v, = [0,1]; 74 = {ew 10 e [0, %} }; Vg = {xeiﬁ cx €0, 1]} denote the
three arcs of . Write

v =pe? and u = re®?,
where 0 € [-%,0) and 6 € [0, %} Now if u # 0, then » > 0, so Re(uwv) =
precos (04 0) > 0, with strict inequality unless 0 = —7 and 6 = 0. In that
exceptional case, Im (uwv) = prsin (—%) # 0. Then

1 ° 1
dv(t)] < —dv (t
’/_1 1 —tuw V()’ - /_1|1—tuv| v (t)

0
/ 21 . 1/zdy(t)<1,
(0 It Re (w))? + (1t T ()

IN

(5.7)

as v is not a unit mass at 0. We shall use (5.7) repeatedly. Next, we consider the
location of the curves F(v,v;), j = 1,2,3.
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Step 1 F'(v,7,)
Now

F(U,O)z—/o dv (t) = -1,

-1
Moreover, by (5.7),

> 0.

0
ReF(v,l)zl—Re/ dv (¢)
1 1—-tv

Also, for u € (0,1],

T F (v, u) = /0 ulffm () g <o,

C1 |1+ [t ww)?

It follows that F(v,v;) = {F (v,u) : u € [0,1]} is a path in the lower half-plane,
starting at F (v,0) = —1 and ending at a point F (v, 1) in QY.

Step 2 F'(v,7,)
(iB0 _ /O dv (t)
1 — tuv

Here, using (5.7),
1—
'/ 1- tuv

where ¢ is independent of 6 € [0, 25] As €*P? lies on the unit circle and is in Oy,

|7 (v,e)] =

v

>e >0,

it follows that F' (v, 619) is a point in the quadrants Qq, Qs, or Q4, with modulus
at least . In particular, it cannot lie in Qjs.

Moreover,
0
i d
F<v7ezﬁ):i_/ Ltl)
—11—e"28ut
has
ImF(meiLB >1—‘/ > 0;
1 1 e’ 2ﬁvt
i 0 1+\t|pcos(%+o)
ReF( Tf):—/ dv (t) < 0.

2
-1 )1—e%vt‘

Thus F(v,7v5) is a path from F (v,1) in Qf to F (v,ei%) in Q9, that does not
intersect Qs, nor the ball center 0, radius ¢.
Step 3 F(v, 73)
Here for u = z¢'?% € 5, © € [0,1], we have

0

F (v,u) :mﬁi—/ L“)L

11 —ze'2Put

S0

0 1+ |t]xzpcos (% —i—a)
ReF(v,u):—/ : 5 dv (t) < 0.
-1 )1—.’1?61%1%‘
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Thus F (v, u) traces a path in the left-half plane from F' (1}, ei%) in Q9 to F (v,0) =
—1.

In summary, as we traverse 7 counterclockwise, F' (v, u) traces a path

(i) through the lower half-plane, starting at F'(v,0) = —1 and ending at a point
F(v,1) in QY;

(ii) then from F (v,1) to F (v, eiQLﬁ) in QY, not intersecting Qs, nor the ball center
0, radius ¢;

(iii) then in the open left-half plane, from F (v, ei%ﬁ) to F(v,0) = —1.

It follows that F'(v,~y) encloses 0 in its interior, so that the winding number about
0 is at least 1. It cannot be more than 1 - otherwise we would obtain contradictions
to (i), (ii), or (iii). So

1 dt

— —=1.
21 Jpw,y) T

The substitution ¢t = F (v, u) leads to

1 D F (v,
L ke,
2mi ), F(v,u)

Since F (v,-) is analytic inside 7, and continuous on 7, it follows that F (v,-) has
a simple zero inside . That is, there is a unique u = @ (v) satisfying (5.6). The
uniqueness of the solution, and the local mapping theorem (or implicit function

theorem) then yield local, and hence global, analyticity of .
(b) This follows from the identity

F (v,a) = F (v,u).
[ |
Proof of Theorem 5.1

Thus far, we have shown that for v € Q; U Qy, there exists a unique ¢ (v) satisfying
(5.6). We must still treat the case where v € (0,00). For such v, we see that

O dv(t)
11+t =

F(v,0) = -1, F(v,l):l—/

We have strict inequality in the second inequality unless v is a unit mass at 0. It
follows that F (v,u) = 0 has a root u € (0, 1]. Moreover,

OF (v,u) . O wlt
LR R LT EAA
ou S (1 — ut)? 0

so the root u of F (v,u) = 0 is unique. Note that as F' (v, u) will be non-real for

non-real u, the root will also be unique when u ranges over D, U D_.

Now recall that we set v =
formally onto itself, we can se

%. Since v maps the open right-half z—plane con-
t
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and obtain a unique root u = 1 (z) of the equation
OV (u, z) B
ou  Ju=y(2)

The analyticity of ¢ follows from that of ¢. Here if Imz > 0, Imv < 0, so
arg (z) = argp (v) € [0, 35), by Lemma 5.2(a). B

6. PROOF OF THEOREM 1.3
We can prove the asymptotic for Imz > 0, since P,, has real zeros. Thus we
assume that
z = pe'®, with o € [O, g} and p > 0.
Then, writing
Y (z) = setfo,
we have s € (0, 1], and

m
0y € [0, —).

0€0.33)

Recall that in Lemma 4.2, we split @,, as a sum of three terms. The main contri-
bution will come from I;. We now further divide

(6.1) Iy =111 + Lis + Lis,
where
1.
2mn Gotm 2 n\Il(z seie) 2 60
(62)  In=" /9_ e 0 (879) H (se™®) (1+ 0 (1)) do;
(6.3)
V2mn

Iy = e ), (S5 ) H (s¢) (1+0 (1) db;

27 /\7\[90—71,%5,00-&-71,%5]

(6.4) Iis = \/%/ e (zse) (L) H (5¢) (1+0(1))d6.
[=nn\T

2w setd
Here
O<e< 1
6
and
(6.5) J= {max{;ﬁ,ag},n].

T

The parameter 7 satisfies (1.10), but will be fixed below to be close enough to 7.

We start with the central term:
Lemma 6.1
Let 0 <e< %. Then

I

_ _H®E)  aweaee) ? o
(6.6) IETI0) Qn <¢ ) (L+o0(1)).
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Proof
Let us fix z = pe and abbreviate ¥ (u) = W (z,u) in this proof. Recall that
o’ (sewﬂ) = 0. By a Taylor series expansion, for |[§ — 6| < n=1/37¢

nv (sew) = nv (sewo) + % (sew - S€i90)2 nv” (sew”) +0 <n |sei‘9 — setfo |3)

= no (sei‘g") + % (sei‘g — 86190)2 nv” (sew”) +0 (n_3€) .

(6.7)
The order term may be taken uniform for z in compact sets. Now let

f(0) = Rel(se’)

’ 8 cos B9 — 1
z s” cos
(6.8) = /_Sog’w—t‘dy(t)q-#.
We see that
/ P Ot 5
f(0) = =sin (o —0) —————dv (t) — s” sin 30,
’ ]
’ °
") = —Zcos(oc—0) Sdv (t)
’ -1 |58 — 1|
2 0 2
*2(*31“(”’9» / . 7dv (t) — Bs” cos B0
-1 |sezi9 7t|
Then
(6.9) F7(0) < 0for 0] < — and |0 — 0] < =
. T 2p -2
In particular, as 0 < 6y < %7 we have
(6.10) f// (90) <0.

Note too that
f(6) = —Im (\IJ/ (sew) sew) ;

1" (0) = —Re (\I/” (se') (sei‘g)2 + 0’ (se'?) sew)
so in particular, recalling that v (z) = se?,
(6.11) 0> £ (60) = — Re (\1/ (%) (sei9o)2) = —Re (B (2 ().

Here B (z,u) is given by (1.18). For |§ — | < n~ 3¢, we have
1 i0 1002 " i0
3 (se — se 0) n¥ (se 0)
72 (Seieo)z \I]// (Seieo) (9 o 90)2 + O (TL |0 7 90|3)
n

(6.12) =SB 000 +0 (7).
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Next, recalling that €2, was defined at (4.1),
z z z
% () = e (WD (55) + 2 (57))
exp </\nD (Le) + 0 ()\nn_%_s) + FE (%) +0 (n_%_‘e))
setvo setvo

_ o —-1/3

= Q, (SeTh) (1+0 (n / ))
Moreover, recalling the form (1.19) of H,

H (sem) =H (sew“) (1 +0 (nil/g)) .

Combining the last two relations, together with (6.7) and (6.12), we see that

90+n7%7€ n¥(z,se'? Z 1
/0 e (=, )Qn (@) H (se 9) do

1
o—n~ 3¢

00+n7%75 2
- enwwz”m( i )Hw(z)) / | e EPERENIT0T (1 4o (1)) db.
Y (2) 0 -

o—n 3
The crucial point here is that Re B (2, (z)) > 0, so that by rotating the line
segment,

1
3
oy
~
~ [\
<
o
|
2 3
4
Ql\)
Q.
<
+
QS
7 N
N———

Then we obtain (6.6). W
Next, we estimate the tail in the main integral, using the notation defined in the
previous proof:

Lemma 6.2

(6.13) T15] < Cre"ReYEY () exp (_02n1/3—2e) _

Proof
We use the notation of the previous proof. We see that for some constant C}
independent of n, 6,

z
U ()| < exp(Cir).
‘ se? /)| — exp (C1An)
Then from (6.3),
[T12] < sz/ﬁexp(cﬂ\n)/ . . e 0 dp.
I\ [eo—n—é—e,aﬁn—é—s]
Here, from (6.9), f'(0) is decreasing for [0] < 75 and |0 — 0] < 7, so f'(0) is
decreasing in the interval {max {—%, o— g} , %} (Recall that o € [0, %} .) Note
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that if n > % is close enough to %, we have

f<s(ons (5 w)

for the right-hand side is greater than f (%) It is also less than f (6y). Choose

such an n. For 6 € {90 + n_%_a,n}, we have from (6.7), at least for large enough
n’

nf(0) < nf(00+n 3=

)
< nfwo)——Re(B(w(z)))( ) o)
(

Re (B (v (2))) nl/3-2¢

< nf(6) — 5

provided € < %, as we assumed. A similar estimate holds for 8 € [max {—%, o— g} ,00 — n*%*ﬂ .
Then

|1-12| < C’Q\/ﬁexp (Cl)\n) enRe W (z,(2)) exp (_ Re (B (;ZJ (z)))n1/3—25> )

Because of our growth assumption (1.15) on A, the stated estimate follows. H
Now we deal with I3 given by (6.4):

Lemma 6.3
(6.14) [I13] < Cre"ReVE()) exp (_C2n1/3_25) _

Proof
Let us first assume that v is not a unit mass at 0. Observe that [—n, 7] \J C (—o0,0).
For 6 € (0, 7], a simple calculation shows that

f(0)=f(=0)

0 2(070)
= / log |4

/0 log (1 N 42 || Ksina) (SiIlQG)) v (1)

|£ez(a+9) _ t‘
s

71(04_0) dv (t)

S o=

>

Since [—n,n]\J omits 0, we see there exists A > 0 such that for § > 0 with
f0)=f(=0) = A.

Then straightforward estimation gives

Cy/neC2An—nh /n e qg

0

[ 113

IN

IA

Clx/ﬁecgkn—nA \/\77 enRe \Il(z,seie)de
0
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and (6.14) follows in a stronger form, from the previous lemmas. Finally, if v = §o,
a unit mass at 0, then

z uf—1
1 = log —
(z,u) =log  + 5
SO
oV (z,u) _ 1 LA
ou U

and this vanishes when u = 1. So in this case u = ¢ (2) = 1, and 0y = 0. We then
have symmetry of the integrals about the real line, and I13 can be estimated by a
constant multiple of |I;5]. B

Lemma 6.4
For some C1,Cy > 0, Iy of (4.8) admits the estimate
(6.15) |I5] < CrenRe¥(@YE) axp (—Cyn) .

Proof
We split I5 of (4.8) into integrals over the upper and lower half rays:

(6.16) Ly = \/%/F N V=0, (f) H@) 1 +0(1) %,

2m t
Let us suppose first that
(6.17) lo—n| < g

(We shall discuss this condition later). Then for r > s, =5 = gei("_”) lies in the

ein
right-half plane, so that |

2 — t’ decreases as r increases for t € [—1,0]. Hence

rein

0 Py 0 Z
ol < [ ve] 3 o
/_1 8 | ein v(t) < /_1 % Isem v
B —1
— ReW (szezn) . S COSﬁn ’
B
SO
) < o)+ )
Thus
2mn o i
I < n\I/(z,t)Qn (,) H (t ‘ 1 1)) —
|2+| < 5 /F+6 1 ()(+0())|t|
V?m/wwuwm)/‘e_ﬂﬁ_gyﬁﬁlgn(zﬁ>wﬂ(mmﬂdr
- . ret
< C; en¥ (25| p=1/2Carn

Now, as we saw in the proof of Lemma 6.2,
a = ReVU (z, sei") — ReV (z, sewO)
f(m) = f(60) <0,
SO

(6.18) |Io4| < Cge ¢4

¥ (z,(2) ‘ .
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Next, we attend to the condition (6.17). Since o € [0, ],
n<o-n<T-n<z.
2 2
As our only restrictions on n are % <n< %, and 8 > 1, we can choose 7 to satisfy
(6.17) unless 8 =1 and o = 0, that is unless z lies in (0, 00). We now attend to this
case. We use the fact that in this case s = 1 (z) also is in (0, 00) (as was shown in
the proof of Theorem 5.1). We have, for r > s,

/log - +|t\‘du(t)+%

1 rein
0 B

z ¥ cos -1
/ log ;+ |t\‘dy(t)+%

B cos fn — 1
B

Re ¥ (z, rei”) =

-1

0 z
< /1og g—|—|t\‘du(t)+

-1
8 cos pn — sP
B
8 |cos Bn| + s”
-G

We can now proceed much as above, to obtain (6.15). H

= U(z,8)+

= V(29 (2)

Proof of Theorem 1.3
From Lemmas 4.2 and 6.1 to 6.4,

Qn(z) =T+ Lo+ s+ 1L+ I3

__H®E)  awewe) z .
B (20 () o (wz)) (1+oL)

O (e RVt o g (grem G

Recall here that 0 < ¢ < %. Now R may be chosen so large that

2n6702nRﬁ < em Re \I/(z,w(z))fn.

Then the result follows. W
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