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Abstract. We analyze polynomials Pn that are biorthogonal to dilates of a
positive measure µ, supported on (0,∞):∫ ∞

0
Pn (x) dµ (σn,jx) = 0, 1 ≤ j ≤ n.

We establish representations for Pn in terms of the associated dilation polyno-
mial

Rn (y) =

n∏
j=1

(y + 1/σn,j) .

In the case where
dµ (t) = tαe−t

β
dt on (0,∞) ,

we show that strong asymptotics for Rn in the complex plane, as n→∞, lead
to strong asymptotics for Pn, via the method of steepest descent.

Research supported by NSF grant DMS1001182 and US-Israel BSF grant 2008399

1. Introduction

Let α > −1 and {σn,j}nj=1 be distinct exponents in (0,∞). Then we may de-
termine a monic polynomial Pn of degree n, determined by the biorthogonality
conditions ∫ ∞

0

xαPn (x) e−σn,jxdx = 0, 1 ≤ j ≤ n.

In developing methods for convergence acceleration, and numerical integration of
singular integrands, the second author introduced some classes of polynomials of
this type [11], [12], [13], [14]. These include
(I) The polynomials Pn = Λ

(α,∆)
n , for which σn,j = j + ∆, 1 ≤ j ≤ n;

(II) The polynomials Pn = G
(α)
n , for which

{
σ−1
n,j

}n
j=1

are the zeros of the Sidi

polynomials D(0,0)
n ;

(III) The polynomials Pn = M
(α)
n , for which

{
σ−1
n,j

}n
j=1

are the zeros of the Legendre

polynomials scaled to (0, 1).
We explored these polynomials, and their zero distribution, in an earlier paper [8].
In this paper, we consider the more general case when Pn is determined by

orthogonality to dilates of a positive measure µ. Thus we assume that µ is a
positive measure supported on the real line, with all moments

(1.1) µj =

∫ ∞
0

xj dµ (x) , j = 0, 1, 2, ...,
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finite. We assume that for n ≥ 1, we are given distinct positive numbers {σn,j}nj=1,
and determine a monic polynomial Pn of degree n by the conditions

(1.2)
∫ ∞

0

Pn (x) dµ (σn,jx) = 0, 1 ≤ j ≤ n.

Equivalently,

(1.3)
∫ ∞

0

Pn

(
t

σn,j

)
dµ (t) = 0, 1 ≤ j ≤ n.

As in [8], Pn is closely related to the polynomial

(1.4) Rn (y) =

n∏
j=1

(
y + σ−1

n,j

)
=

n∑
j=0

rn,jy
j .

We call Rn the dilation polynomial associated with Pn. The following simple propo-
sition establishes the relationship between Pn and Rn:

Theorem 1.1
Let µ be a positive measure on (0,∞) with infinitely many points in its support,
and finite moments

{
µj
}
. Let {σn,j}nj=1 be distinct positive numbers. Let Pn be a

monic polynomial of degree n, determined by the orthogonality relations (1.2), and
let Rn be given by (1.4). Then Pn exists, is unique, and
(I)

(1.5) Pn (x) = (−1)
n

n∑
j=0

rn,j
µn
µj

(−x)
j
,

while

(1.6) (−1)
n
Rn (−y) =

1

µn

∫ ∞
0

Pn (ty) dµ (t) .

(II) There exists r > 0 such that

(1.7) Pn (x) = µn
(−1)

n

2πi

∫
|t|=r

Rn

(
−x
t

)
G (t)

dt

t

where

(1.8) G (t) =

∞∑
j=0

tj

µj
.

(III) Write σj = σn,j , 1 ≤ j ≤ n. Then

(1.9)
Pn (x)

µn
=

det


1 σ−1

1 σ−2
1 · · · σ−n1

1 σ−1
2 σ−2

2 · · · σ−n2
...

...
...

. . .
...

1 σ−1
n σ−2

n · · · σ−nn
1
µ0

x
µ1

x2

µ2
· · · xn

µn



det


1 σ−1

1 σ−2
1 · · · σ−n+1

1

1 σ−1
2 σ−2

2 · · · σ−n+1
2

...
...

...
. . .

...
1 σ−1

n σ−2
n · · · σ−n+1

n


.
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(IV) If µ has form

dµ (t) = tαe−t
β

dt, t ∈ (0,∞) ,

where α > −1, β > 0, then Pn has n simple zeros in (0,∞).
We shall prove this simple result in section 2. In the special case where dµ (t) =

tαe−tdt, it is a combination of Proposition 1.1 and Theorem 1.5 in [8]. There we
denoted Rn by Qn. In the general case, parts of Proposition 1.1 overlap with results
of Brezinski [2], Iserles, Norsett and Saff [5], [6] on biorthogonal polynomials in a
more general setting. Algebraic and asymptotic properties of related biorthogonal
polynomials have been explored in [7], [9], [10], [15].
The main focus of this paper is the asymptotic behavior of {Pn}. These are

based on a simple new contour integral representation of Pn :

Theorem 1.2
Let β ≥ 1, α > −1, and dµ (t) = tαe−t

β

dt, t ∈ (0,∞) . Let {σn,j}nj=1 be distinct
positive numbers. Let Pn be a monic polynomial of degree n, determined by the
orthogonality relations (1.2), and Rn be given by (1.4). Let

(1.10)
π

2β
< η <

π

β
,

s > 0, and let Γ be the contour consisting of the rays Γ+ =
{
reiη : r ≥ s

}
, Γ− ={

re−iη : r ≥ s
}
, and the circular arc Γs =

{
seiθ : |θ| ≤ η

}
. Assume that Γ is

traversed in such a way that Γs is traversed anticlockwise. Then for all complex z,

(1.11) Pn (z) =
β2 (−1)

n
µn

2πi

∫
Γ

et
β

tβ−α−2Rn

(
−z
t

)
dt.

Let νn denote the zero counting function for Rn, so that

(1.12) νn [a, b] =
1

n
(Number of zeros of Rn in [a, b] ).

Equivalently,

νn =
1

n

n∑
j=1

δ−1/σn,j ,
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where δa denotes a unit mass at a. In [8, Thm. 1.2, p. 347], we showed that for
β = 1, the zero counting measures of Pn (−4nx) converge weakly as n → ∞, iff
νn converges weakly as n → ∞. Moreover, we related the limiting zero counting
distributions of Rn and Pn. Note that

Rn (z) = exp

(
n

∫
log (z − t) dνn (t)

)
,

with the usual branch of the log, at least for z /∈ (−∞, 0). In this paper, we es-
tablish a stronger form of asymptotic. We shall make some assumptions about the
behavior of Rn as n→∞ :

Hypotheses on Rn
(I) For all j, n,

(1.13) σn,j ∈ [1,∞).

(II) There is a probability distribution ν on [−1, 0], a sequence {λn} of non-negative
numbers, and functions D and E such that as n→∞,

(1.14) Rn (z) = exp

(
n

∫
log (z − t) dν (t) + λnD (z) + E (z) + o (1)

)
,

uniformly for z in compact subsets of C\ [−1, 0].
(III) For each ε > 0, as n→∞,
(1.15) λn = o (nε) .

(IV) exp (D) and exp (E) are analytic in C\ [−1, 0] .
We need the scaled monic polynomials

(1.16) Qn (z) =

(
−
µn−1

µn

)n
Pn

(
− µn
µn−1

z

)
.

For u ∈ C\(−∞, 0], and z
u /∈ (−∞, 0], we let

(1.17) Ψ (z, u) =

∫ 0

−1

log
( z
u
− t
)
dν (t) +

uβ − 1

β
.

The critical points of Ψ (z, ·) determine the main part of the asymptotic for Qn. In
applying steepest descent, the second derivative of Ψ plays a role. Accordingly, we
need, that when ∂Ψ(z,u)

∂u = 0,

B (z, u) = u2 ∂
2Ψ (z, u)

∂u2

= −
∫ 0

−1

uzt

(z − tu)
2 dν (t) + βuβ .(1.18)

The following function is useful in describing the asymptotics:

(1.19) H (t) =
√
βtβ−α−1 exp

(
tβ − 1

β

[
α+

1− β
2

])
.

Following is our asymptotic result:

Theorem 1.3
Assume that β ≥ 1 and α > −1. Let dµ (t) = tα exp

(
−tβ

)
dt on (0,∞) and ass-

sume that for n ≥ 1, we are given distinct exponents {σn,j}nj=1. Let {Pn} denote
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the corresponding monic biorthogonal polynomials, and {Rn} the associated expo-
nent polynomials. Assume the hypotheses (I)-(IV) above.

(a) For Re z ≥ 0, z 6= 0, there is a unique solution u = ψ (z) of the equation

(1.20) uβ =

∫ 0

−1

z

z − utdν (t)

with |argψ (z)| < π
2β and |ψ (z)| ≤ 1. Here ψ is an analytic function of z.

(b) Uniformly for z in compact sets of Re z ≥ 0, z 6= 0,

Qn (z)

=
H (ψ (z))√
B (z, ψ (z))

exp

(
nΨ (z, ψ (z)) + λnD

(
z

ψ (z)

)
+ E

(
z

ψ (z)

))
(1 + o (1)) .

(1.21)

Remarks
(a) Let ωn denote the zero counting function of Qn, so that

dωn (t) =
1

n

∑
x:Qn(x)=0

δx.

It has support in (−∞, 0). By taking absolute values and nth roots in the asymp-
totic above, we see that, at least for Re (z) ≥ 0,

lim
n→∞

∫
log |z − t| dωn (t) =

∫ 0

−1

log

∣∣∣∣ z

ψ (z)
− t
∣∣∣∣ dν (t) + Re

(
ψ (z)

β − 1

β

)
.

It follows from this limit, that ωn converges weakly to a distribution ω that satisfies,
at least for Re z ≥ 0,∫

log |z − t| dω (t) =

∫ 0

−1

log

∣∣∣∣ z

ψ (z)
− t
∣∣∣∣ dν (t) + Re

(
ψ (z)

β − 1

β

)
.

(b) Since µn
µn−1

=
(
n
β

)1/β

(1 + o (1)), and because the convergence is locally uniform

in z, it follows that

Q#
n (z) =

(
− µn
µn−1

)n
Pn

(
−
(
n

β

)1/β

z

)
,

has the same asymptotic representation as Qn.
(c) We expect that the same asymptotic holds more generally for z ∈ C\(−∞, 0].
We could not do this, because we could not show there is a unique critical point
when Re z < 0
We illustrate Theorem 1.3 with two examples from [8].

Example 1
Consider the polynomials Pn determined by the conditions∫ ∞

0

Pn (x) e−(j+∆)xβxαdx = 0, 1 ≤ j ≤ n.
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In the case β = 1, these polynomials were considered in [8]. The associated dilation
polynomials are

Rn (x) =

n∏
j=1

(
x+ (j + ∆)

−1
)
.

Let
F (z) = log (1 + z)− z, z /∈ (−∞,−1) .

We see that

(1.22)
Rn (z)

zn
= exp

1

z

n∑
j=1

1

j + ∆
+

n∑
j=1

F

(
1

(j + ∆) z

) .

Here
n∑
j=1

1

j + ∆
=

n∑
j=1

1

j
−∆

n∑
j=1

1

j (j + ∆)

= log n+ γ −∆

∞∑
j=1

1

j (j + ∆)
+ o (1) ,

where γ is Euler’s constant. Let us set

λn = log n;

D (z) =
1

z
;

E (z) =
1

z

γ −∆

∞∑
j=1

1

j (j + ∆)

+

∞∑
j=1

F

(
1

(j + ∆) z

)
.

As F (v) = O
(
v2
)
, v → 0, the second series in the last line converges, uniformly

for z in compact subsets of C\(−∞, 0]. Also let

ν = δ0,

a unit mass at 0. Then we see from (1.22) that

Rn (z) = exp

(
n log z +

log n

z
+ E (z) + o (1)

)
= exp(n

∫
log (z − t) dν (t) + λnD (z) + E (z) + o (1)).

Thus (1.14) holds. Moreover, the equation (1.20) for u = ψ (z) becomes

uβ = 1.

Thus
ψ (z) = 1 for all z,

while from (1.17),
Ψ (z, ψ (z)) = log z,

and from (1.18),
B (z, ψ (z)) = β.

Moreover,
H (ψ (z)) =

√
β.
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So the asymptotic (1.21) for Qn becomes,

Qn (z)

= znn
1
z eE(z) (1 + o (1)) ,

at least for Re z ≥ 0, z 6= 0. The limiting zero distribution ω satisfies∫
log |z − t| dω (t) = log |z| ,

suggesting that ω = δ0. For β = 1, this was proved in [8].

Example 2
Let Rn denote the Legendre polynomial for [−1, 0]. By translating asymptotics for
the Legendre polynomials [17, p. 194; p. 63] from [−1, 1] to [−1, 0], we see that
uniformly for z in compact subsets of C\ [−1, 0],

Rn (z) = φ (z)
n

exp (E (z)) (1 + o (1)) ,

where

φ (z) =
1

4

(
2z + 1 +

√
(2z + 1)

2 − 1

)
,

and

exp (E (z)) =
√

2
(

(2z + 1)
2 − 1

)−1/4

φ (z)
1/2

.

It is well known that 4φ is the conformal map of C\ [−1, 0] onto the exterior of the
unit ball, and

φ (z) = exp

(∫ 0

−1

log (z − t) dt

π
√
t (1 + t)

)
,

so

dν (t) =
dt

π
√
t (1 + t)

, t ∈ (−1, 0) .

Moreover, u = ψ (z) is the root of

uβ =
z

u

φ′

φ

( z
u

)
=

2z

u

√(
2 zu + 1

)2 − 1
.

We see then that (1.21) becomes

Qn (z)

=
H (ψ (z))√
B (z, ψ (z))

exp

(
n

[
log φ

(
z

ψ (z)

)
+
ψ (z)

β − 1

β

]
+ E

(
z

ψ (z)

)
+ o (1)

)
.

Throughout, C,C1, C2, ... denote positive constants independent of n, x, t and
polynomials P of degree at most n. We write C = C(λ), C 6= C(λ) to indicate
dependence on, or independence of, a parameter λ. The same symbol does not
necessarily denote the same constant in different occurrences. We denote the poly-
nomials of degree ≤ n by Pn.
This paper is organized as follows. In Section 2, we prove Theorem 1.1. In

Section 3, we prove Theorem 1.2. In Section 4, we present some preliminaries for
the proof of Theorem 1.3. In section 5, we analyze the critical points of Ψ. We
prove Theorem 1.3 in Section 6.
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2. Proof of Theorem 1.1

Proof of Theorem 1.1
Throughout the proof, we write σj = σn,j , 1 ≤ j ≤ n. We first prove the existence
and uniqueness of

Pn (x) =

n∑
j=0

pjx
j .

The defining relations (1.3) are easily rewritten as the linear system

(2.1)


1 σ−1

1 σ−2
1 · · · σ−n+1

1

1 σ−1
2 σ−2

2 · · · σ−n+1
2

...
...

...
. . .

...
1 σ−1

n σ−2
n · · · σ−n+1

n




p0µ0

p1µ1
...

pn−1µn−1

 = −µn


σ−n1

σ−n2
...

σ−nn

 ,
recall that pn = 1. The matrix on the left-hand side is a Vandermonde matrix, and
all the {σn,j} are distinct, so the matrix is non-singular. Hence the system has a
unique solution for {pj}n−1

j=0 .
(I) We see that ∫ ∞

0

 n∑
j=0

rn,j
µn
µj

(−ty)
j

 dµ (t) = µnRn (−y) ,

and by definition of Rn, this vanishes when y = σ−1
k , 1 ≤ k ≤ n. Then uniqueness

of Pn gives (1.5). The last equation also gives (1.6).
(II) Since µ has infinitely many points in its support in [0,∞), necessarily,

s = lim inf
j→∞

µ
1/j
j > 0.

Then G of (1.8) has radius of convergence s > 0. For r < s, we have

1

2πi

∫
|t|=r

Rn
(
−xt
)

t
G (t) dt

=

n∑
j=0

rn,j (−x)
j 1

2πi

∫
|t|=r

G(t)

tj+1
dt

=

n∑
j=0

rn,j (−x)
j
µ−1
j =

(−1)
n

µn
Pn (x) .

(III) This follows by applying Cramer’s rule to solve (2.1) for {pj}n−1
j=0 . Alterna-

tively, one can compute the integral∫ ∞
0

Pn

(
x

σk

)
dµ (x)

by integrating the determinant in (1.9), and then observing that one obtains two
identical rows.
(IV) By a substitution, we can recast the orthogonality relations (1.2) as

(2.2)
∫ ∞

0

Pn

(
t1/β

)
t
α+1
β −1e−σ

β
k tdt = 0, 1 ≤ k ≤ n.
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If Pn has less than n sign changes in (0,∞), then so also does Pn
(
t1/β

)
. Since all

{σk}nk=1 are distinct,
{
e−σ

β
k t
}n
k=1

is a Chebyshev system, so we can find a linear

combination h (t) that has sign changes at precisely the less than n sign changes of
Pn
(
t1/β

)
in (0,∞). Now (2.2) gives

0 =

∫ ∞
0

Pn

(
t1/β

)
t
α+1
β −1h (t) dt.

This is impossible, as the integrand has one sign in (0,∞) except at the sign changes
of Pn

(
t1/β

)
. �

3. Proof of Theorem 1.2

In the sequel β ≥ 1 and α > −1, while dµ (t) = tαe−t
β

dt. The moments are

(3.1) µn =

∫ ∞
0

tn+αe−t
β

dt =
1

β
Γ

(
n+ α+ 1

β

)
.

It is possible to derive (1.11) using results in Dzrbashian’s book [3], but it is actu-
ally easier to start with the standard Hankel loop integral for the reciprocal of the
gamma function. Let ρ > 0. Then [4, p. 13], for a > 0,

1

Γ (a)
=

1

2πi

∫
C
ett−adt.

Here C is a contour that starts at the lower edge of the negative real axis, cut from
−∞ to -ρ, then traverses the circle t = ρeiθ,−π < θ < π anticlockwise, and then
traverses the upper edge of the negative real axis, cut from −ρ to −∞.
In particular,

1

µj
=

β

Γ
(
j+α+1
β

) =
β

2πi

∫
C
ett−

j+α+1
β dt.

Then (1.5) gives

Pn (x) =
β (−1)

n
µn

2πi

∫
C
ett−

α+1
β

n∑
j=0

rn,j

(
− x

t1/β

)j
dt

=
β (−1)

n
µn

2πi

∫
C
ett−

α+1
β Rn

(
− x

t1/β

)
dt.

We make the substitution t = uβ in the last integral, giving

Pn (x) =
β2 (−1)

n
µn

2πi

∫
C1
eu

β

uβ−α−1Rn

(
−x
u

)
du.

Here C1 is the image of the contour C under the map u = t1/β . Thus C1 consists
of a circular arc t = ρ1/βeiθ,−πβ < θ < π

β , and rays from ρ1/βe±i
π
β to ∞, in the

left-half plane. Now the integrand is analytic in C\(−∞, 0] as a function of u, while
if u = reiθ, ∣∣∣euβ ∣∣∣ = er

β cos βθ.

This decays rapidly to 0 as r →∞, as long as θ ∈
(
π
2β ,

π
β

)
. It follows that we can

deform the contour C1 into the contour Γ described in the statement of Theorem
1.2. �
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For Qn of (1.16), we deduce:

Lemma 3.1

(3.2) Qn (z) =
δn
2πi

∫
Γ

e

(
t
µn
µn−1

)β
tβ−α−2Rn

(z
t

)
dt,

where

(3.3) δn = β2

(
µn−1

µn

)n−β+α+1

µn.

Proof
We make the substitutions z → − µn

µn−1
z and t→ t µn

µn−1
and s→ s/ µn

µn−1
in (1.11).

Then we multiply by
(
−µn−1µn

)n
, obtaining

Qn (z) =

[(
µn−1

µn

)n
µn

]
β2

2πi

∫
Γ

e

(
t
µn
µn−1

)β (
t
µn
µn−1

)β−α−2

Rn

(z
t

) µn
µn−1

dt.

�

4. Preliminary Results

In the sequel, we let

(4.1) Ωn (z) = exp (λnD (z) + E (z)) .

Recall that H was defined at (1.19).

Lemma 4.1
(a)

(4.2)
µn
µn−1

=

(
n

β

)1/β (
1 +

1

n

1

β

[
α+

1− β
2

]
+O

(
n−2

))
;

(4.3)
(

µn
µn−1

)β
=
n

β
+

1

β

[
α+

1− β
2

]
+O

(
1

n

)
.

(b) Let δn be defined by (3.3). Then

(4.4) δn =
√

2πβne−
n
β exp

(
− 1

β

[
α+

1− β
2

])
(1 + o (1)) .

(c) Uniformly for t in compact subsets of C\(−∞, 0],

(4.5) δne

(
t
µn
µn−1

)β
tβ−α−1 =

√
2πn exp

(
n
(
tβ − 1

)
β

+ o (1)

)
H (t) .

Proof
(a) Using (3.1) and the asymptotic [1, p. 257, 6.1.47]

zb−a
Γ (z + a)

Γ (z + b)
= 1 +

(a− b) (a+ b− 1)

2z
+O

(
1

z2

)
,

we see that
µn
µn−1

=

(
n

β

)1/β
(

1 +

2α+1
β − 1

2n
+O

(
n−2

))
,
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µn
µn−1

)β
=
n

β
+

1

β

[
α+

1− β
2

]
+O

(
1

n

)
.

(b) This follows from (4.3), and Stirling’s formula. We omit the lengthy, but
straightforward, calculation.
(c) By (a) and (b) of the lemma,

δne

(
t
µn
µn−1

)β
tβ−α−1

=
√

2πβntβ−α−1 exp

(
tβ
[
n

β
+

1

β

[
α+

1− β
2

]
+O

(
1

n

)]
− 1

β

[
α+

1− β
2

]
− n

β
+ o (1)

)
=
√

2πn exp

(
n
(
tβ − 1

)
β

+ o (1)

)
H (t) .

�
Recall that Ψ (z, u) was defined by (1.17), while Ωn was defined at (4.1). More-

over, the contours Γs,Γ−,Γ+ were defined in Theorem 1.2. We now write Qn as a
sum of three terms, of which the first will be the main one.

Lemma 4.2
Let z ∈ C\ [−1, 0] ,m ≥ 1, and s > 0. Let R ≥ |z|, and BR denote the ball center
0, radius R. Then

(4.6) Qn (z) = I1 + I2 + I3,

where

(4.7) I1 =

√
2πn

2πi

∫
Γs

enΨ(z,t)Ωn

(z
t

)
H (t) (1 + o (1))

dt

t
;

(4.8) I2 =

√
2πn

2πi

∫
(Γ+∪Γ−)∩BR

enΨ(z,t)Ωn

(z
t

)
H (t) (1 + o (1))

dt

t
;

(4.9) |I3| ≤ C1

√
n
(

2/e1/β
)n

e−C2nR
β

.

The estimates hold uniformly for z in compact sets of C\ [−1, 0]. C1 and C2 are
independent of n and R.
Proof
We use the integral formula in Lemma 3.1:

Qn (z) =
δn
2πi

∫
Γs∪Γ+∪Γ−

e

(
t
µn
µn−1

)β
tβ−α−2Rn

(z
t

)
dt.

Here by our hypothesis (1.14) on Rn, and by Lemma 4.1,

δnRn

(z
t

)
e

(
t
µn
µn−1

)β
tβ−α−1

=
√

2πn exp (nΨ (z, t) + o (1)) Ωn

(z
t

)
H (t) ,

uniformly for t in compact subsets of |t| ≥ s, and z in a compact set. Then (4.6)
follows, with

I3 =
δn
2πi

∫
(Γ+∪Γ−)\BR

e

(
t
µn
µn−1

)β
tβ−α−2Rn

(z
t

)
dt.
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Here as all zeros of Rn lie in [−1, 0], for |t| ≥ R ≥ |z|, we have∣∣∣Rn (z
t

)∣∣∣ ≤ (1 +
|z|
|t|

)n
≤ 2n.

Then

|I3| ≤ Cδn2n
∫ ∞
R

e
−
(

µn
µn−1

r
)β
|cos(βη)|

rβ−α−2dr

≤ C1δn2ne−C2nR
β

,

by (4.2) and some straightforward estimation. Here C1 and C2 do depend on η,
but not on R or n, and may be taken to be the same for z in a compact set. Finally
apply (4.4) for δn. �

5. The Critical Points of Ψ

In order to apply the method of steepest descent, we need to study the critical
points of Ψ. We prove:

Theorem 5.1
For each z ∈ C with Re (z) ≥ 0, z 6= 0, there exists a unique u = ψ (z) such that
|arg (ψ (z))| < π

2β ; |ψ (z)| < 1, and

(5.1)
∂

∂u
Ψ (z, u) = 0.

ψ is an analytic function of z. Moreover, if Im (z) ≥ 0, arg (ψ (z)) ∈ [0, π2β ).
Observe from (1.17) that

(5.2)
∂

∂u
Ψ (z, u) =

1

u

[
−
∫ 0

−1

1

1− tuz
dν (t) + uβ

]
.

We shall make the substitution

v =
1

z
and analyze

(5.3) F (v, u) = −
∫ 0

−1

1

1− tuv dν (t) + uβ .

We shall prove the result by first showing that for Re (v) ≥ 0 > Im (v), F (v, ·)
maps the boundary of the sector of the unit ball,

(5.4) D+ =

{
reiθ : r ∈ (0, 1) , 0 < θ <

π

2β

}
,

onto a curve enclosing 0. We let γ = ∂D+ and F ◦ γ denote the image set
{F (v, u) : u ∈ γ}, for a given fixed v satisfying Re (v) ≥ 0 > Im (v). Observe
that for such v, F (v, ·) is a single valued analytic function for u ∈ C\(−∞, 0].

Indeed, as arg (v) ∈ [−π2 , 0), while for u ∈ γ, arg(u) ∈
[
0, π2β

]
⊆
[
0, π2

]
, we have

arg (uv) ∈
[
−π2 ,

π
2

]
. Then for t ∈ [−1, 0] ,

Re (1− tuv) = 1 + |t|Re (uv) 6= 0.
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It follows that F ◦ γ is a piecewise smooth closed curve. We define the half open
quadrants as follows:

Q1 = {w : Re (w) ≥ 0, Im (w) > 0} ;

Q2 = {w : Re (w) ≤ 0, Im (w) > 0} ;

Q3 = {w : Re (w) ≤ 0, Im (w) < 0} ;

Q4 = {w : Re (w) ≥ 0, Im (w) < 0}

The interior of Qj is Q0
j . We also let

(5.5) D− =

{
reiθ : r ∈ (0, 1) , 0 > θ > − π

2β

}
,

Our main lemma is:

Lemma 5.2
(a) Let v ∈ Q4. Then there exists a unique ϕ (v) ∈ D+ ∪ {1} such that

(5.6) F (v, ϕ (v)) = 0.

Moreover, ϕ is an analytic function of v ∈ Q4.
(b) Let v ∈ Q1. Then there exists a unique ϕ (v) ∈ D− ∪ {1} such that (5.6) holds.
Moreover, ϕ is an analytic function of v ∈ Q1.

Proof
(a) Let us first deal with the "trivial" case where ν is a unit mass at 0. Then we
see that

F (v, u) = −1 + uβ ,

and we can choose u = 1, that is u = ϕ (v) = 1 for all v. In the sequel, we assume
that ν is not a unit mass at 0.

We let γ1 = [0, 1]; γ2 =
{
eiθ : θ ∈

[
0, π2β

]}
; γ3 =

{
xei

π
2β : x ∈ [0, 1]

}
denote the

three arcs of γ. Write

v = ρeiσ and u = reiθ,

where σ ∈ [−π2 , 0) and θ ∈
[
0, π2β

]
. Now if u 6= 0, then r > 0, so Re (uv) =

ρr cos (θ + σ) ≥ 0, with strict inequality unless σ = −π2 and θ = 0. In that
exceptional case, Im (uv) = ρr sin

(
−π2
)
6= 0. Then∣∣∣∣∫ 0

−1

1

1− tuv dν (t)

∣∣∣∣ ≤ ∫ 0

−1

1

|1− tuv|dν (t)

≤
∫ 0

−1

1[
(1 + |t|Re (uv))

2
+ (|t| Im (uv))

2
]1/2 dν (t) < 1,

(5.7)

as ν is not a unit mass at 0. We shall use (5.7) repeatedly. Next, we consider the
location of the curves F (v, γj), j = 1, 2, 3.
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Step 1 F (v, γ1)
Now

F (v, 0) = −
∫ 0

−1

dν (t) = −1;

Moreover, by (5.7),

ReF (v, 1) = 1− Re

∫ 0

−1

dν (t)

1− tv > 0.

Also, for u ∈ (0, 1],

ImF (v, u) =

∫ 0

−1

u |t| Im (v)

|1 + |t|uv|2
dν (t) < 0.

It follows that F (v, γ1) = {F (v, u) : u ∈ [0, 1]} is a path in the lower half-plane,
starting at F (v, 0) = −1 and ending at a point F (v, 1) in Q0

4.
Step 2 F (v, γ2)
Here, using (5.7), ∣∣F (v, eiθ)∣∣ =

∣∣∣∣eiβθ − ∫ 0

−1

dν (t)

1− tuv

∣∣∣∣
≥ 1−

∣∣∣∣∫ 0

−1

dν (t)

1− tuv

∣∣∣∣ > ε > 0,

where ε is independent of θ ∈
[
0, π2β

]
. As eiβθ lies on the unit circle and is in Q1,

it follows that F
(
v, eiθ

)
is a point in the quadrants Q1,Q2, or Q4, with modulus

at least ε. In particular, it cannot lie in Q3.

Moreover,

F
(
v, ei

π
2β

)
= i−

∫ 0

−1

dν (t)

1− ei
π
2β vt

has

ImF
(
v, ei

π
2β

)
≥ 1−

∣∣∣∣∫ 0

−1

dν (t)

1− ei
π
2β vt

∣∣∣∣ > 0;

ReF
(
v, ei

π
2β

)
= −

∫ 0

−1

1 + |t| ρ cos
(
π
2β + σ

)
∣∣∣1− ei π2β vt∣∣∣2 dν (t) < 0.

Thus F (v, γ2) is a path from F (v, 1) in Q0
4 to F

(
v, ei

π
2β

)
in Q0

2, that does not

intersect Q3, nor the ball center 0, radius ε.
Step 3 F (v, γ3)

Here for u = xei
π
2β ∈ γ3, x ∈ [0, 1], we have

F (v, u) = xβi−
∫ 0

−1

dν (t)

1− xei
π
2β vt

so

ReF (v, u) = −
∫ 0

−1

1 + |t|xρ cos
(
π
2β + σ

)
∣∣∣1− xei π2β vt∣∣∣2 dν (t) < 0.
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Thus F (v, u) traces a path in the left-half plane from F
(
v, ei

π
2β

)
inQ0

2 to F (v, 0) =

−1.

In summary, as we traverse γ counterclockwise, F (v, u) traces a path
(i) through the lower half-plane, starting at F (v, 0) = −1 and ending at a point
F (v, 1) in Q0

4;

(ii) then from F (v, 1) to F
(
v, ei

π
2β

)
in Q0

2, not intersecting Q3, nor the ball center

0, radius ε;

(iii) then in the open left-half plane, from F
(
v, ei

π
2β

)
to F (v, 0) = −1.

It follows that F (v, γ) encloses 0 in its interior, so that the winding number about
0 is at least 1. It cannot be more than 1 - otherwise we would obtain contradictions
to (i), (ii), or (iii). So

1

2πi

∫
F (v,γ)

dt

t
= 1.

The substitution t = F (v, u) leads to

1

2πi

∫
γ

∂
∂uF (v, u)

F (v, u)
du = 1.

Since F (v, ·) is analytic inside γ, and continuous on γ, it follows that F (v, ·) has
a simple zero inside γ. That is, there is a unique u = ϕ (v) satisfying (5.6). The
uniqueness of the solution, and the local mapping theorem (or implicit function
theorem) then yield local, and hence global, analyticity of ϕ.
(b) This follows from the identity

F (v̄, ū) = F (v, u).

�

Proof of Theorem 5.1
Thus far, we have shown that for v ∈ Q1∪Q4, there exists a unique ϕ (v) satisfying
(5.6). We must still treat the case where v ∈ (0,∞). For such v, we see that

F (v, 0) = −1; F (v, 1) = 1−
∫ 0

−1

dν (t)

1 + |t| v ≥ 0.

We have strict inequality in the second inequality unless ν is a unit mass at 0. It
follows that F (v, u) = 0 has a root u ∈ (0, 1]. Moreover,

∂F (v, u)

∂u
= βuβ−1 +

∫ 0

−1

v |t|
(1− uvt)2 dν (t) > 0,

so the root u of F (v, u) = 0 is unique. Note that as F (v, u) will be non-real for
non-real u, the root will also be unique when u ranges over D+ ∪D−.

Now recall that we set v = 1
z . Since v maps the open right-half z−plane con-

formally onto itself, we can set

ψ (z) = ϕ (v) = ϕ

(
1

z

)
,
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and obtain a unique root u = ψ (z) of the equation

∂Ψ (u, z)

∂u |u=ψ(z)
= 0.

The analyticity of ψ follows from that of ϕ. Here if Im z ≥ 0, Im v ≤ 0, so
argψ (z) = argϕ (v) ∈ [0, π2β ), by Lemma 5.2(a). �

6. Proof of Theorem 1.3

We can prove the asymptotic for Im z ≥ 0, since Pn has real zeros. Thus we
assume that

z = ρeiσ, with σ ∈
[
0,
π

2

]
and ρ > 0.

Then, writing
ψ (z) = seiθ0 ,

we have s ∈ (0, 1], and

θ0 ∈ [0,
π

2β
).

Recall that in Lemma 4.2, we split Qn as a sum of three terms. The main contri-
bution will come from I1. We now further divide

(6.1) I1 = I11 + I12 + I13,

where

(6.2) I11 =

√
2πn

2π

∫ θ0+n−
1
3
−ε

θ0−n−
1
3
−ε

enΨ(z,seiθ)Ωn

( z

seiθ

)
H
(
seiθ

)
(1 + o (1)) dθ;

(6.3)

I12 =

√
2πn

2π

∫
J\[θ0−n−

1
3
−ε,θ0+n−

1
3
−ε]

enΨ(z,seiθ)Ωn

( z

seiθ

)
H
(
seiθ

)
(1 + o (1)) dθ;

(6.4) I13 =

√
2πn

2π

∫
[−η,η]\J

enΨ(z,seiθ)Ωn

( z

seiθ

)
H
(
seiθ

)
(1 + o (1)) dθ.

Here

0 < ε <
1

6
and

(6.5) J=
[
max

{
− π

2β
, σ − π

2

}
, η

]
.

The parameter η satisfies (1.10), but will be fixed below to be close enough to π
2β .

We start with the central term:

Lemma 6.1
Let 0 < ε < 1

6 . Then

I11

=
H (ψ (z))√
B (z, ψ (z))

enΨ(z,ψ(z))Ωn

(
z

ψ (z)

)
(1 + o (1)) .(6.6)
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Proof
Let us fix z = ρeiσ and abbreviate Ψ (u) = Ψ (z, u) in this proof. Recall that
Ψ′
(
seiθ0

)
= 0. By a Taylor series expansion, for |θ − θ0| ≤ n−1/3−ε,

nΨ
(
seiθ

)
= nΨ

(
seiθ0

)
+

1

2

(
seiθ − seiθ0

)2
nΨ′′

(
seiθ0

)
+O

(
n
∣∣seiθ − seiθ0∣∣3)

= nΨ
(
seiθ0

)
+

1

2

(
seiθ − seiθ0

)2
nΨ′′

(
seiθ0

)
+O

(
n−3ε

)
.

(6.7)

The order term may be taken uniform for z in compact sets. Now let

f (θ) = Re Ψ
(
seiθ

)
=

∫ 0

−1

log
∣∣∣ z

seiθ
− t
∣∣∣ dν (t) +

sβ cosβθ − 1

β
.(6.8)

We see that

f ′ (θ) =
ρ

s
sin (σ − θ)

∫ 0

−1

|t|∣∣ z
seiθ
− t
∣∣2 dν (t)− sβ sinβθ;

f ′′ (θ) = −ρ
s

cos (σ − θ)
∫ 0

−1

|t|∣∣ z
seiθ
− t
∣∣2 dν (t)

−2
(ρ
s

sin (σ − θ)
)2
∫ 0

−1

|t|2∣∣ z
seiθ
− t
∣∣4 dν (t)− βsβ cosβθ.

Then

(6.9) f ′′ (θ) < 0 for |θ| ≤ π

2β
and |σ − θ| ≤ π

2
.

In particular, as 0 ≤ θ0 <
π
2β , we have

(6.10) f ′′ (θ0) < 0.

Note too that

f ′ (θ) = − Im
(
Ψ′
(
seiθ

)
seiθ

)
;

f ′′ (θ) = −Re
(

Ψ′′
(
seiθ

) (
seiθ

)2
+ Ψ′

(
seiθ

)
seiθ

)
so in particular, recalling that ψ (z) = seiθ0 ,

(6.11) 0 > f ′′ (θ0) = −Re
(

Ψ′′
(
seiθ0

) (
seiθ0

)2)
= −Re (B (z, ψ (z))) .

Here B (z, u) is given by (1.18). For |θ − θ0| ≤ n−
1
3−ε, we have

1

2

(
seiθ − seiθ0

)2
nΨ′′

(
seiθ0

)
= −n

2

(
seiθ0

)2
Ψ′′
(
seiθ0

)
(θ − θ0)

2
+O

(
n |θ − θ0|3

)
= −n

2
B (z, ψ (z)) (θ − θ0)

2
+O

(
n−3ε

)
.(6.12)
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Next, recalling that Ωn was defined at (4.1),

Ωn

( z

seiθ

)
= exp

(
λnD

( z

seiθ

)
+ E

( z

seiθ

))
= exp

(
λnD

( z

seiθ0

)
+O

(
λnn

− 1
3−ε
)

+ E
( z

seiθ0

)
+O

(
n−

1
3−ε
))

= Ωn

( z

seiθ0

)
(1 +O

(
n−1/3

)
).

Moreover, recalling the form (1.19) of H,

H
(
seiθ

)
= H

(
seiθ0

) (
1 +O

(
n−1/3

))
.

Combining the last two relations, together with (6.7) and (6.12), we see that∫ θ0+n−
1
3
−ε

θ0−n−
1
3
−ε

enΨ(z,seiθ)Ωn

( z

seiθ

)
H
(
seiθ

)
dθ

= enΨ(z,ψ(z))Ωn

(
z

ψ (z)

)
H (ψ (z))

∫ θ0+n−
1
3
−ε

θ0−n−
1
3
−ε

e−
n
2B(z,ψ(z))(θ−θ0)2 (1 + o (1)) dθ.

The crucial point here is that ReB (z, ψ (z)) > 0, so that by rotating the line
segment, ∫ θ0+n−

1
3
−ε

θ0−n−
1
3
−ε

e−
n
2B(z,ψ(z))(θ−θ0)2 (1 + o (1)) dθ

=

√
2

nB (z, ψ (z))

∫ ∞
−∞

e−y
2

dy + o

(
1√
n

)

=

√
2π

nB (z, ψ (z))
(1 + o (1)) .

Then we obtain (6.6). �
Next, we estimate the tail in the main integral, using the notation defined in the

previous proof:

Lemma 6.2

(6.13) |I12| ≤ C1e
nRe Ψ(z,ψ(z)) exp

(
−C2n

1/3−2ε
)
.

Proof
We use the notation of the previous proof. We see that for some constant C1

independent of n, θ, ∣∣∣Ωn ( z

seiθ

)∣∣∣ ≤ exp (C1λn) .

Then from (6.3),

|I12| ≤ C2

√
n exp (C1λn)

∫
J\
[
θ0−n−

1
3
−ε,θ0+n−

1
3
−ε
] enf(θ)dθ.

Here, from (6.9), f ′ (θ) is decreasing for |θ| ≤ π
2β and |σ − θ| ≤

π
2 , so f

′ (θ) is

decreasing in the interval
[
max

{
− π

2β , σ −
π
2

}
, π2β

]
. (Recall that σ ∈

[
0, π2

]
.) Note
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that if η > π
2β is close enough to

π
2β , we have

f (η) < f

(
θ0 +

1

2

(
π

2β
− θ0

))
,

for the right-hand side is greater than f
(
π
2β

)
. It is also less than f (θ0). Choose

such an η. For θ ∈
[
θ0 + n−

1
3−ε, η

]
, we have from (6.7), at least for large enough

n,

nf (θ) ≤ nf
(
θ0 + n−

1
3−ε
)

≤ nf (θ0)− n

2
Re (B (ψ (z)))

(
n−

1
3−ε
)2

+O
(
n−3ε

)
≤ nf (θ0)− Re (B (ψ (z)))

2
n1/3−2ε.

provided ε < 1
6 , as we assumed. A similar estimate holds for θ ∈

[
max

{
− π

2β , σ −
π
2

}
, θ0 − n−

1
3−ε
]
.

Then

|I12| ≤ C2

√
n exp (C1λn) enRe Ψ(z,ψ(z)) exp

(
−Re (B (ψ (z)))

2
n1/3−2ε

)
.

Because of our growth assumption (1.15) on λn, the stated estimate follows. �
Now we deal with I13 given by (6.4):

Lemma 6.3

(6.14) |I13| ≤ C1e
nRe Ψ(z,ψ(z)) exp

(
−C2n

1/3−2ε
)
.

Proof
Let us first assume that ν is not a unit mass at 0. Observe that [−η, η] \J ⊂ (−∞, 0).
For θ ∈ (0, η], a simple calculation shows that

f (θ)− f (−θ)

=

∫ 0

−1

log

∣∣∣∣∣ ρsei(σ−θ) − tρ
se
i(σ+θ) − t

∣∣∣∣∣ dν (t)

=
1

2

∫ 0

−1

log

(
1 +

4ρs |t| (sinσ) (sin θ)∣∣ρ
se
i(σ+θ) − t

∣∣2
)
dν (t)

> 0

Since [−η, η] \J omits 0, we see there exists ∆ > 0 such that for θ ≥ 0 with
−θ ∈ [−η, η] \J ,

f (θ)− f (−θ) ≥ ∆.

Then straightforward estimation gives

|I13| ≤ C1

√
neC2λn−n∆

∫ η

0

enf(θ)dθ

≤ C1

√
neC2λn−n∆

∫ η

0

enRe Ψ(z,seiθ)dθ
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and (6.14) follows in a stronger form, from the previous lemmas. Finally, if ν = δ0,
a unit mass at 0, then

Ψ (z, u) = log
z

u
+
uβ − 1

β
,

so
∂Ψ (z, u)

∂u
= − 1

u
+ uβ−1

and this vanishes when u = 1. So in this case u = ψ (z) = 1, and θ0 = 0. We then
have symmetry of the integrals about the real line, and I13 can be estimated by a
constant multiple of |I12|. �

Lemma 6.4
For some C1, C2 > 0, I2 of (4.8) admits the estimate

(6.15) |I2| ≤ C1e
nRe Ψ(z,ψ(z)) exp (−C2n) .

Proof
We split I2 of (4.8) into integrals over the upper and lower half rays:

(6.16) I2± =

√
2πn

2πi

∫
Γ±∩BR

enΨ(z,t)Ωn

(z
t

)
H (t) (1 + o (1))

dt

t
.

Let us suppose first that

(6.17) |σ − η| ≤ π

2
.

(We shall discuss this condition later). Then for r ≥ s, z
reiη = ρ

r e
i(σ−η) lies in the

right-half plane, so that
∣∣ z
reiη − t

∣∣ decreases as r increases for t ∈ [−1, 0]. Hence∫ 0

−1

log
∣∣∣ z

reiη
− t
∣∣∣ dν (t) ≤

∫ 0

−1

log
∣∣∣ z

seiη
− t
∣∣∣ dν (t)

= Re Ψ
(
z, seiη

)
− sβ cosβη − 1

β
,

so

Re Ψ
(
z, reiη

)
≤ Re Ψ

(
z, seiη

)
+
(
rβ − sβ

) cosβη

β
.

Thus

|I2+| ≤
√

2πn

2π

∫
Γ+

∣∣∣enΨ(z,t)Ωn

(z
t

)
H (t)

∣∣∣ (1 + o (1))
|dt|
|t|

≤
√

2πn

2π

∣∣∣enΨ(z,seiη)
∣∣∣ ∫ ∞
s

e−n(rβ−sβ) |cos βη|β

∣∣∣Ωn ( z

reiη

)∣∣∣ ∣∣H (reiη)∣∣ dr
≤ C1

∣∣∣enΨ(z,seiη)
∣∣∣n−1/2eC2λn .

Now, as we saw in the proof of Lemma 6.2,

a = Re Ψ
(
z, seiη

)
− Re Ψ

(
z, seiθ0

)
= f (η)− f (θ0) < 0,

so

(6.18) |I2+| ≤ C3e
−nC4

∣∣∣enΨ(z,ψ(z))
∣∣∣ .
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Next, we attend to the condition (6.17). Since σ ∈
[
0, π2

]
,

−η ≤ σ − η ≤ π

2
− η < π

2
.

As our only restrictions on η are π
2β < η < π

β , and β ≥ 1, we can choose η to satisfy
(6.17) unless β = 1 and σ = 0, that is unless z lies in (0,∞). We now attend to this
case. We use the fact that in this case s = ψ (z) also is in (0,∞) (as was shown in
the proof of Theorem 5.1). We have, for r ≥ s,

Re Ψ
(
z, reiη

)
=

∫ 0

−1

log
∣∣∣ z

reiη
+ |t|

∣∣∣ dν (t) +
rβ cosβη − 1

β

≤
∫ 0

−1

log
∣∣∣z
r

+ |t|
∣∣∣ dν (t) +

rβ cosβη − 1

β

≤
∫ 0

−1

log
∣∣∣z
s

+ |t|
∣∣∣ dν (t) +

rβ cosβη − 1

β

= Ψ (z, s) +
rβ cosβη − sβ

β

= Ψ (z, ψ (z))− rβ |cosβη|+ sβ

β
.

We can now proceed much as above, to obtain (6.15). �

Proof of Theorem 1.3
From Lemmas 4.2 and 6.1 to 6.4,

Qn (z) = I11 + I12 + I13 + I2 + I3

=
H (ψ (z))√
B (z, ψ (z))

enΨ(z,ψ(z))Ωn

(
z

ψ (z)

)
(1 + o (1))

+O
(
enRe Ψ(z,ψ(z))e−C2n

1/3−2ε
)

+O
(

2ne−C2nR
β
)
.

Recall here that 0 < ε < 1
6 . Now R may be chosen so large that

2ne−C2nR
β

≤ enRe Ψ(z,ψ(z))−n.

Then the result follows. �
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[17] G. Szegő, Orthogonal Polynomials, 4th edn., American Mathematical Society Colloquium
Publications, Vol. 23, American Math. Soc. Providence, 1975.

1School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160,
USA., lubinsky@math.gatech.edu, 2Department of Computer Science, Technion-Israel
Institute of Technology, Haifa 32000, Israel, asidi@cs.technion.ac.il


