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Abstract. We analyze polynomials Pn that are biorthogonal to exponentials�
e��n;jx

	n
j=1

, in the sense thatZ 1

0
Pn (x) e

��n;jxx�dx = 0, 1 � j � n:

Here � > �1. We show that the zero distribution of Pn as n ! 1 is closely
related to that of the associated exponent polynomial

Qn (y) =

nY
j=1

(y + 1=�n;j) =

nX
j=0

qn;jy
j :

More precisely, we show that the zero counting measures of fPn (�4nx)g1n=1
converge weakly i¤ the zero counting measures of fQng1n=1 converge weakly.
A key step is relating the zero distribution of such a polynomial to that of the
composite polynomial

nX
j=0

qn;j�n;jx
j ;

under appropriate assumptions on f�n;jg.
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1. Polynomials biorthogonal to exponentials

Let � > �1 and f�n;jgnj=1 be distinct exponents in (0;1). Then we may deter-
mine a monic polynomial Pn of degree n by the biorthogonality conditions

(1.1)
Z 1

0

Pn (x) e
��n;jxx�dx = 0, 1 � j � n:

In developing methods for convergence acceleration, and numerical integration of
singular integrands, the second author introduced some classes of polynomials of
this type [15], [16], [17], [18]. These include polynomials Pn that correspond to the
following choices of exponents:
(I) �n;j = j + �, 1 � j � n, some � > �1;
(II)

�
��1n;j

	n
j=1

are the zeros of Sidi polynomials, which will be discussed in Example
1 of Section 2;
(III)

�
��1n;j

	n
j=1

are the zeros of Legendre polynomials scaled to (0; 1). We shall
discuss these special choices in greater detail in Section 2.
The �rst case arises from polynomials that are, in a certain sense, dual to the

Sidi polynomials. The latter arise in numerical quadrature of integrals of the form
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2 D. S. LUBINSKY1 AND A. SIDI2R 1
0
f (x)w (x) dx, where the weight w has an algebraic or logarithmic singularity at

0 or 1.
In the last two cases, the polynomial Pn arises as the denominator of a rational

approximation to H (z) =
R1
0

w(x)
x�z dx, where w is an appropriate weight function.

The rational approximation itself is determined by applying various convergence
acceleration methods to the asymptotic expansion as z !1 of H (z), and its poles
and residues are respectively the abscissas and weights in the quadrature rule. The
resulting quadrature rules are especially useful in approximation of integrals of the
form

R1
0
f (x)w (x) dx.

Apart from their practical use, the polynomials fPng clearly have intrinsic inter-
est. Indeed, there is a growing body of research that deals with polynomials that
possess some generalized type of orthogonality. The term "biorthogonality" is often
used to describe this, although these are usually di¤erent from the classical theory
of biorthogonal polynomials, which involves two di¤erent sequences of polynomials.
In much of the research of recent decades, the second sequence of polynomials is re-
placed by a sequence of functions that need not be polynomials at all. For example,
the Sidi polynomials D(0;0)

n are determined by the biorthogonality relationZ 1

0

D(0;0)
n (x) (log x)

j
dx = 0, 0 � j < n:

Their properties and generalizations have been studied in [9], [10], [11], [15], [18].
An elegant and general theory of biorthogonal polynomials was developed by

Iserles and Norsett [5]. They considered the more general situationZ
Pn (x) d� (x; �j) = 0, 1 � j � n:

Under appropriate conditions on the measure �, they obtained existence and unique-
ness of Pn, Rodrigues-type formulae, simplicity of the zeros, interlacing properties,
and explicit representations. Their original motivation came from numerical so-
lution of di¤erential equations, but the methods and results also were useful in
analysing how various transformations map polynomials with zeros in one given re-
gion, into polynomials with zeros in another given region [6], [7]. Still more general
biorthogonal polynomials were investigated by Brezinski in the monograph [3]. We
emphasize that this list is incomplete. Biorthogonal polynomials in continuous or
discrete settings have been studied by many authors, though they typically have a
di¤erent �avor from that we consider here.
It turns out that Pn of (1.1) is closely related to the monic polynomial

(1.2) Qn (y) =
nY
j=1

�
y + ��1n;j

�
=

nX
j=0

qn;jy
j :

We call Qn the associated exponent polynomial for Pn.
One of our main tools is a simple relationship between Pn and Qn involving a

certain type of composition of polynomials. Given

(1.3) R (x) =
nX
j=0

rjx
j and S (x) =

nX
j=0

sjx
j ;
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we de�ne their composition

(1.4) (R#S) (x) =
nX
j=0

rjsj�
n
j

� xj :
This operation arises in a classical theorem of Szeg½o on zeros of composite poly-
nomials. See for example [12, p. 65], [13, p. 191]. We also need the explicit
representation for the Laguerre polynomials

(1.5) L(�)n (x) =
1

n!

nX
j=0

�
n

j

�
� (�+ n+ 1)

� (�+ j + 1)
(�x)j = (�1)n

n!
xn + :::;

see [14, p. 201], [22, p. 101], where equivalent formulae are presented.

Proposition 1.1
Let � > �1, f�n;jgnj=1 be n distinct positive numbers, and Pn be a monic polyno-
mial of degree n determined by the relations (1.1), and Qn be given by (1.2). Then
Pn exists, is unique, and is given by

(1.6) Pn (x) = (�1)n n!
�
Qn#L

(�)
n

�
(x) =

nX
j=0

(�1)n�j qn;j
� (�+ n+ 1)

� (�+ j + 1)
xj :

Moreover, Pn has n simple zeros in (0;1).
Proof
Observe that if Pn is given by the last expression in the right-hand side of (1.6),

(�1)n

� (�+ n+ 1)

Z 1

0

Pn (x) e
��n;kxx�dx =

nX
j=0

qn;j
� (�+ j + 1)

(�1)j
Z 1

0

x�+je��n;kxdx

= ����1n;k

nX
j=0

qn;j (��n;k)�j

= ����1n;k Qn

�
���1n;k

�
= 0:

This gives the orthogonality relations, as well as establishing the existence of Pn of
course. The �rst identity in (1.6) then also follows. Uniqueness of Pn follows from
the fact that fe��n;jxgnj=1 is a Chebyshev system. Indeed, suppose P �n is a di¤erent
such monic polynomial. We can �nd a linear combination h (x) of fe��n;jxgnj=1
changing sign exactly at the at most n� 1 sign changes of Pn�P �n in (0;1). Then

0 =

Z 1

0

x� (Pn � P �n) (x)h (x) dx;

which is impossible as the integrand is positive except at at most n � 1 points. A
similar argument shows that Pn has n simple zeros in (0;1). �

Let �n denote the zero counting function for Qn, so that

�n [a; b] =
1

n
(Number of zeros of Qn in [a; b] ).

Equivalently,

�n =
1

n

nX
j=1

��1=�n;j ;
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where �a denotes a unit mass at a. We also let �n denote the zero counting function
of Pn (�4nx), so that

�n [a; b] =
1

n
(Number of zeros of Pn (�4nx) in [a; b] ).

Note that we are e¤ectively contracting the zeros of Pn, and if we denote these by
fxn;jgnj=1 ;

�n =
1

n

nX
j=1

��xn;j=4n:

Recall the de�nition of weak convergence: we write

�n
��! �, n!1;

if for every continuous function f with compact support,

lim
n!1

Z
f d�n =

Z
f d�:

Our main result is

Theorem 1.2
Assume that for some B > 0 and all n � 1, we are given distinct exponents
f�n;jgnj=1 in [B;1). Let fPng denote the corresponding monic biorthogonal poly-
nomials, and fQng the associated exponent polynomials. Let f�ng denote the zero
counting measures of fQng ; and let f�ng denote the zero counting measures of
fPn (�4nx)g. The following are equivalent:
(a) There exists a measure � such that

(1.7) �n
��! �; n!1:

(b) There exists a measure � such that

(1.8) �n
��! �, n!1:

Moreover, assuming the weak convergence, both � and � have support in [�1=B; 0] ;
and � will have a point mass at 0 of size � i¤ � does. Uniformly for z in compact
subsets of Cn[�1=B; 0];

(1.9) lim
n!1

jPn (�4nz)j1=n = (4n) = exp
 Z 0

�1=B
log jz � tj d� (t)

!
:

Thus when the zero counting measures of fQng converge weakly, to a measure
without a mass point at 0, then the same is true of the zero counting measures
for fPn (�4nx)g. More information is presented in the following theorems, proved
using an extension of a classic result of Van Assche, Fano and Ortolani [1]. They
are necessarily complicated to formulate, because the mass point at 0 forces us to
distinguish between lower order, and higher order, coe¢ cients of fPng.

Theorem 1.3
Assume the hypotheses of Theorem 1.2 and that �n

��! �; n ! 1, where � has a
point mass at 0 of size � 2 [0; 1]. Write

(1.10) Pn (�4nz) = (�4n)n =
nX
k=0

pn;kz
k:
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(I) Assume � > 0 and let 0 < �0 < �. Then as n!1;

(1.11) max
k��0n

1

n
log qn;k ! �1;

(1.12) max
k��0n

qn;k
qn;k+1

! 0;

(1.13) max
k��0n

1

n
log pn;k ! �1;

and

(1.14) max
k��0n

pn;k
pn;k+1

! 0:

(II) Assume � < 1.
(a) There is a concave and di¤erentiable function g:(0; 1) ! R, and a function f
de�ned by f = eg

0
with the following properties: as k; n!1 with

(1.15) k=n! 1� (1� �) d 2 (�; 1) ;
we have

(1.16)
1

n (1� �) log qn;k ! g (d) ;

(1.17)
qn;k
qn;k+1

! eg
0(d) = f (d) :

Let
(1.18)

G (d) = g (d)� d ln 4� 1

1� � f(1� (1� �) d) log (1� (1� �) d)� (1� (1� �) d)g ;

(1.19) F (d) =
1� (1� �) d

4
f (d) :

Then as k; n!1 with (1.15) holding, we have

(1.20)
1

n (1� �) log pn;k ! G (d) ;

(1.21)
pn;k
pn;k+1

! F (d) :

Concerning the measures � and �, we prove:

Theorem 1.4
Assume the hypotheses and notation of Theorem 1.3 and that � < 1: The func-
tions f and F are strictly decreasing functions on (0; 1) with ranges (0;1). Their
inverses f�1 and F�1 are related to

�� =
� � ��0
1� � and �� =

�� ��0
1� �

by

(1.22) f�1 (x) =

Z 0

�1=B

y

y � xd�
� (y) , x 2 (0;1) :



6 D. S. LUBINSKY1 AND A. SIDI2

(1.23) F�1 (x) =

Z 0

�1=B

y

y � xd�
� (y) , x 2 (0;1) :

We close this section with some more representations of Pn. Recall the con�uent
hypergeometric function

(1.24) 1F1 (1;�+ 1; z) =
1X
j=0

zj

(1 + �)j
;

where (a)n = a (a+ 1) ::: (a+ n� 1) denotes the Pochhammer symbol.

Theorem 1.5
Let � > �1, f�n;jgnj=1 be n distinct positive numbers, and let Pn be the monic
polynomial of degree n determined by the relations (1.1), and Qn be given by (1.2).
Then
(I)

(1.25) Pn (x) = (�1)n
� (�+ n+ 1)

� (�+ 1)

1

2�i

Z
jtj=1

Qn (t)

t
1F1

�
1;�+ 1;�x

t

�
dt:

(II)

(1.26) Qn (y) =
(�1)n

� (�+ n+ 1)

Z 1

0

e�tt�Pn (�yt) dt:

(III)

(1.27) x�Pn (x) =
(�1)n � (�+ n+ 1)

2�i

Z +i1

�i1
esxs���1Qn

�
�s�1

�
ds;

where  > 0 and the contour of integration is the line Re s = :
(IV) Abbreviate �n;j as �j, 1 � j � n. Then

Pn (x)

� (�+ n+ 1)
=

det

2666664
1 ��11 ��21 � � � ��n1
1 ��12 ��22 � � � ��n2
...

...
...

. . .
...

1 ��1n ��2n � � � ��nn
1

�(�+1)
x

�(�+2)
x2

�(�+3) � � � xn

�(�+n+1)

3777775

det

26664
1 ��11 ��21 � � � ��n+11

1 ��12 ��22 � � � ��n+12
...

...
...

. . .
...

1 ��1n ��2n � � � ��n+1n

37775
:

(1.28)

This paper is organized as follows. In Section 2, we discuss some examples. In
Section 3, we state an extension of a result of Van Assche, Fano and Ortolani, and a
consequence for zero distribution of composite polynomials. In Section 4, we prove
the results of Section 3. In Section 5, we prove Theorems 1.2 through Theorem 1.5,
and the corollaries of Section 2.
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2. Examples

Example 1
In developing methods for convergence acceleration, and numerical integration of
singular integrands, the second author introduced [15], [18] the Sidi polynomials

(2.1) D(�;�)
n (t) =

nX
j=0

(�1)n�j
�
n

j

�
(� + j + 1)

�+n
tj :

Here �; � > �1. When � is a non-negative integer, they admit the Rodrigues-type
representation

D(�;�)
n (t) = (�1)n t���1

�
t
d

dt

��+n �
t�+1 (1� t)n

�
:

For all �; � > �1, they satisfy the biorthogonality relation

(2.2)
Z 1

0

D(�;�)
n (t)

�
log t�1

��+k
t�dt = 0, 0 � k � n� 1:

In the special case � = � = 0, the authors established the asymptotic behavior as
n!1 of D(0;0)

n by steepest descent, and deduced their zero distribution [9]. This
inspired the �rst author to consider with H. Stahl and I. Soran, biorthogonality
relations where log t�1 is replaced by a positive, possibly non-integer power of t
[10], [11].
The biorthogonality relation (2.2) leads to dual monic polynomials �(�;�)n satis-

fying the relations [18, p. 368]

(2.3)
Z 1

0

D(�;�)
m (t) �(�;�)n

�
log t�1

�
t�
�
log t�1

��
dt = 0 if m 6= n:

Equivalently,Z 1

0

�(�;�)n

�
log t�1

�
t�+k

�
log t�1

��
dt = 0, 0 � k � n� 1;

or

(2.4)
Z 1

0

�(�;�)n (x) e�(k+�+1)xx�dx = 0, 0 � k � n� 1:

Thus �(�;�)n (x) is orthogonal to the system of exponentials
�
e�(k+�)x

	n
k=1

with

weight x�. Observe that for Pn = �
(�;�)
n , we have

Qn (y) =
nY
k=1

�
y +

1

k + �

�
and hence the zero counting measures f�ng converge weakly to a unit mass at 0 :

�n
�! �0 as n!1:

Then Theorems 1.2-1.4 and the aforementioned theorem of Szeg½o on composite
polynomials give:
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Corollary 2.1
(a) All zeros of �(�;�)n lie in the interval

�
0;
�
4n+ 2�+ 2 12

�
= (1 + �)

�
.

(b) The zero counting measures f�ng of
n
�
(�;�)
n (�4nx)

o
satisfy

�n
�! �0 as n!1:

Moreover, uniformly for z in compact subsets of Cn[�1; 0];

(2.5) lim
n!1

����(�;�)n (�4nz)
���1=n = (4n) = jzj :

It would be instructive to investigate the behavior of �(�;�)n under di¤erent scal-
ings.
Example 2
In the same context of numerical integration and convergence acceleration, the
second author introduced [16] the polynomials

(2.6) G(�)n (x) =

nX
j=0

(�1)n�j
�
n

j

�
(j + 1)

n

�(j + �+ 1)
xj :

These admit the Rodrigues type formula

G(�)n (x) = Cn
1

x

�
x
d

dx

�n h
xL(�)n (x)

i
;

where Cn is an appropriate constant, and the biorthogonality relation [17]Z 1

0

G(�)n (x) e��n;kxx�dx = 0, 1 � k � n;

where f�n;kgnk=1 are the reciprocals of the roots of the polynomials D
(0;0)
n above,

that is,

(2.7) D(0;0)
n

�
��1n;k

�
= 0, 1 � k � n:

Thus in this case Qn (y) is a constant multiple of D
(0;0)
n (�y). It is known [9,

Theorem 1.3, p. 345] that the zero counting measure �n of Qn (y) = CD
(0;0)
n (�y)

converges weakly to an absolutely continuous measure �, which may be de�ned by

�0 (�x) = � 1

�h0
�
h[�1] (x)

� ; x 2 (0; 1) ;
where h[�1] is the inverse of the function

h (y) =
sin y

y
ey cot y�1; y 2 [0; �] :

It is shown there that

�0 (x) =
1

�
p
2 (1 + x)

(1 + o (1)) ; x! (�1)+;

�0 (x) =
1

jxj jlog jxjj2
(1 + o (1)) ; x! 0� :

Corollary 2.2
(a) All zeros of G(�)n lie in the interval

�
0; 4n+ 2�+ 2 12

�
.
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(b) The zero counting measures f�ng of
n
G
(�)
n (�4nx)

o
converge weakly to a mea-

sure � with support in [�1; 0], and without a mass point at 0; satisfying (1.23),
where

(2.8) F (x) =
(1� x)2

4x
exp

�
� 1

1� x

�
; x 2 (0; 1) :

Example 3
A third class of polynomials with a biorthogonality relation that arises in numerical
integration is [20]

(2.9) M (�)
n (x) =

nX
j=0

(�1)n�j
�
n

j

�
(j + 1)n

�(j + �+ 1)
xj :

Its Rodrigues type formula is

M (�)
n (x) = Cn

�
d

dx

�n h
xnL(�)n (x)

i
;

where again Cn is an appropriate constant. Here the biorthogonality relation is

(2.10)
Z 1

0

M (�)
n (x) e��n;kxx�dx = 0, 1 � k � n;

where
n
��1n;k

on
k=1

are the roots of the Legendre polynomial for [0; 1]. That is,

Qn

�
���1n;k

�
= 0, 1 � k � n;

where for a suitable constant C;

Qn (�y) = C
�
d

dy

�n
[y (1� y)]n :

Corollary 2.3
(a) All zeros of M (�)

n lie in the interval
�
0; 4n+ 2�+ 2 12

�
.

(b) The zero counting measures f�ng of
n
M

(�)
n (�4nx)

o
converge weakly to a

measure � with support in [�1; 0], and without a mass point at 0; satisfying (1.23),
where

(2.11) F (x) =
(1� x)3

4x (2� x) ; x 2 (0; 1) :

3. Composite Polynomials

We begin with a statement of a result of an extension of a classic result of Van
Assche, Fano and Ortolani [1]. They considered the case where the measure � has
no mass point at 0:

Theorem 3.1
Let A > 0. For n � 1, let

Vn (x) =
nY
j=1

(x� �n;j) =
nX
j=0

vn;jx
j ;
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where all �n;j 2 [�A; 0). Assume that the zero counting measures f�ng of fVng
satisfy

�n
�! � as n!1;

where � has a point mass of size � at 0.
(I) Assume � > 0 and let 0 < �0 < �. Then as n!1;

(3.1) max
k��0n

1

n
log vn;k ! �1;

(3.2) max
k��0n

vn;k
vn;k+1

! 0:

(II) Assume � < 1.
(a) Then there is a concave and di¤erentiable function g:(0; 1)! R, and a function
f de�ned by f = eg

0
with the following properties: as k; n!1 with

(3.3)
k

n
! 1� (1� �) d 2 (�; 1) ;

we have

(3.4)
1

n (1� �) log vn;k ! g (d) ;

(3.5)
vn;k
vn;k+1

! eg
0(d) = f (d) :

(III) Assume � < 1 and let

(3.6) �� =
� � ��0
1� � :

The function f is strictly decreasing and continuous on (0; 1) with range (0;1).
Its inverse f�1 is related to �� by

(3.7) f�1 (x) =

Z 0

�A

y

y � xd�
� (y) , x 2 (0;1) :

Moreover,

(3.8) g (d) = � (1� d) log f (d) +
Z 0

�A
log [f (d)� y] d�� (y) ; d 2 (0; 1) :

All the assertions of this theorem go through if we assume the hypotheses holds only
for some subsequence fVngn2S, provided all the limits are then restricted to that
subsequence.

We also used �n for the zero counting measure of Qn, but expect that no con-
fusion should arise - especially as we shall deduce Theorem 1.2 by taking Vn = Qn.
From this result, we shall deduce a result on zero distribution of composite poly-
nomials:

Theorem 3.2
Let A � 1. For n � 1, let

(3.9) Wn (x) =
nY
j=1

(x� !n;j) =
nX
j=0

wn;jx
j ;
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where all !n;j 2 [�A; 0). Assume that fVng are as in Theorem 3.1 and the coe¢ -
cients of Vn and Wn are connected by the relation

(3.10) wn;k = vn;k�n;k;

where as n; k !1 with (3.3) holding, we have

(3.11)
1

n (1� �) log�n;k ! h (d) :

Moreover, we assume that if � 2
�
0; 12
�
, there exists C > 1 such that whenever

k=n 2 (�; 1� �)

(3.12) C�1 <
�n;k
�n;k+1

< C:

Then
(I) The zero counting measures f!ng of fWng satisfy

!n
�! ! as n!1;

where ! has a point mass of size � at 0.
(II) Assume � > 0 and let 0 < �0 < �. Then as n!1;

(3.13) max
k��0n

1

n
logwn;k ! �1;

(3.14) max
k��0n

wn;k
wn;k+1

! 0 :

(III) Assume � < 1 and let f; g denote the functions of Theorem 3.1. Let

(3.15) G = g + h;

(3.16) F = f exp (h0) :

Then as k; n!1 with (3.3) holding, we have

(3.17)
1

n (1� �) logwn;k ! G (d) ;

(3.18)
wn;k
wn;k+1

! eG
0(d) = F (d) :

(IV) Assume � < 1 and let

(3.19) !� =
! � ��0
1� � :

The function F is strictly decreasing on (0; 1) with range (0;1). Its inverse F�1
is related to !� by

(3.20) F�1 (x) =

Z 0

�A

y

y � xd!
� (y) , x 2 (0;1) :

Moreover,

(3.21) G (d) = � (1� d) logF (d) +
Z 0

�A
log [F (d)� y] d!� (y) ; d 2 (0; 1) :



12 D. S. LUBINSKY1 AND A. SIDI2

One can place hypotheses on the ratio of successive �n;j , instead of (3.11):

Theorem 3.3
Assume the hypotheses of Theorem 3.2, except that instead of (3.11), we assume
that as k; n!1 with (3.3) holding, we have,

(3.22)
�n;k
�n;k+1

! J (d) :

Instead of (3.16), de�ne F by

(3.23) F = fJ

and instead of (3.15), de�ne G by

(3.24) G = g +

Z
log J:

Then all the conclusions of Theorem 3.2 persist.
We note that there is an extensive literature on zeros of composite polynomials,

especially as regarding location of zeros [5], [6], [8], but the above are probably the
�rst results on their zero distribution.

4. Proof of Theorems 3.1, 3.2 and 3.3

Throughout we assume the hypotheses of Theorem 3.1. The greatest integer � x
is denoted by [x]. We begin with

Lemma 4.1
(a) For 0 < d < �;

(4.1)
�
max
k�dn

vn;k

�1=n
! 0 as n!1:

(b) For d > �, there exists n0 and a constant C = C (d) > 0 with

(4.2)
�
min
k�dn

vn;k

�1=n
� C, n � n0:

Proof
(a) Let " 2 (0; 1), d < �0 < �. As � has a point mass of size � at 0, there exists
n0 = n0 (") such that for n � n0, Vn has � �0n zeros in [�"; 0). From the de�nition
of the coe¢ cients in Vn;

(4.3) vn;k = (�1)n�k
X

1�j1<j2<:::<jn�k�n
�n;j1�n;j2 :::�n;jn�k :

Here all the �n;j lie in [�A; 0), while all vn;k > 0: If k � dn(< �0n), then by the
pidgeonhole principle, at least (n� k) �

�
n�

�
�0n
��
=
�
�0n
�
� k of the terms in

the products in (4.3) must lie in [0; "]. Hence

vn;k �
X

1�j1<j2<:::<jn�k�n
"[�

0n]�kAn�[�
0n]

= "[�
0n]�kAn�[�

0n]
�

n

n� k

�
� "[�

0n]�[dn] (2A)
n
:
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Then

lim sup
n!1

�
max
k�dn

vn;k

�1=n
� "�

0�d2A:

Here the left-hand side, d and �0 are independent of ", and so we may let " ! 0+
to get the result.
(b) Let �00 > �. Then there exists "0 2 (0; 1) such that

� [0; "0] < �
00

and hence for some 0 < "1 < "0 and n0, we have for n � n0;
�n [0; "1] � �00:

If k > �00n, we see that at least one of the terms in the sum in (4.3) has all
j�n;ji j � "0. For example the term with the n� k largest zeros (in absolute value)
satis�es this. Then

min
k�dn

vn;k � "n�k0 � "n0 ;

so (4.2) follows. �

Next, we record a classic:

Lemma 4.2
If

R (x) =

nX
j=0

rjx
j

is a polynomial with all real zeros, then

rj+1rj�1 �
j

j + 1
r2j :

In particular, if all rj�1rj+1 > 0, then
��� rj+1rj

��� decreases as j increases.
Proof
See for example [8, p. 337, proof of Lemma 3]. �

Lemma 4.3
(a) For 0 < d < �;

(4.4) max
k�dn

vn;k
vn;k+1

! 0 as n!1:

(b) For d > �, there exists n0 and a constant C = C (d) > 0 with

(4.5) min
k�dn

vn;k
vn;k+1

� C, n � n0:

Proof
(a) By Lemma 4.2, and the fact that Vn is monic,

1

vn;k
=

vn;n
vn;k

=

n�1Y
`=k

vn;`+1
vn;`

�
�
vn;k+1
vn;k

�n�k
:
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Hence

� log v1=nn;k �
n� k
n

log
vn;k+1
vn;k

:

By Lemma 4.1, the left-hand side tends to 1 uniformly for k � dn, and so the
same is true of the right-hand side. Since n � k � n (1� d) and 1 � d > 0, we
deduce (4.4).
(b) Suppose d > �0 > �. Let j = j (n) =

�
�0n
�
. Then Lemma 4.2 gives for k � dn;

vn;k+1
vn;j

=
kY
`=j

vn;`+1
vn;`

�
�
vn;k+1
vn;k

�k+1�j
so

log v
1=n
n;k+1 � log v

1=n
n;j �

k + 1� j
n

log
vn;k+1
vn;k

:

Here by Lemma 4.1(b),
v
1=n
n;j = v

1=n
n;[�0n] � C

while we have from (4.3) the trivial bound

vn;k+1 � An�k�1
�

n

n� k � 1

�
� (2A)n .

Since
k � j �

�
d� �0

�
n;

we deduce that
max
k�dn

log
vn;k+1
vn;k

is bounded above independent of n, and then (4.5) follows. �
The next step is to factor out that part of Vn with the small zeros. Choose

0 < mn � �n such that
(4.6) lim

n!1
mn=n = �

and the smallest mn zeros of Vn approach 0 as n!1. More precisely, if we order
the absolute values of the zeros of Vn in increasing order, we are choosing mn such
that

(4.7) "n := j�n;mn
j ! 0 as n!1:

This is possible, because � has a mass point of size � at 0. Next, write

(4.8) Vn (x) = V
�
n (x)Sn (x)

where Sn has degree mn, is monic, and has as its zeros the mn smallest zeros (in
absolute value) of Vn. Write

(4.9) V �n (x) =

n�mnX
j=0

v�n;jx
j :

Note that all zeros of V �n are non-positive, so all v
�
n;j � 0.
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Lemma 4.4
Let r � 0 and � > 0.
(a) As n!1;

(4.10) sup
k�mn+�n

�
1

n
log vn;k �

1

n
log v�n;k�mn

�
! 0:

(b) As n!1; if k = k (n) � mn + �n;���� vn;kvn;k+1
� r
����

� o (1) + max

(����� v�n;k�mn

v�n;k+1�mn

� r
����� ;
����� v

�
n;k�mn+[�n]

v�n;k+1�mn+[�n]

� r
�����
)
:(4.11)

Proof
(a) Write

Sn (x) =

mnX
j=0

sn;jx
j :

Since Sn has all its zeros in [�"n; 0), we see from the obvious analogue of (4.3) that

(4.12) sn;j �
�

mn

mn � j

�
"mn�j
n :

Next, for k � mn;

(4.13) vn;k =

mnX
j=0

sn;jv
�
n;k�j

while Lemma 4.2 applied to V �n implies that for 0 � j � mn;

v�n;k�j � v�n;k�mn

 
v�n;k�mn+1

v�n;k�mn

!mn�j

:

Since sn;mn = 1, and all sn;j � 0, v�n;k�j � 0; we deduce that

v�n;k�mn
� vn;k � v�n;k�mn

mnX
j=0

�
mn

mn � j

� 
"n
v�n;k�mn+1

v�n;k�mn

!mn�j

= v�n;k�mn

 
1 + "n

v�n;k�mn+1

v�n;k�mn

!mn

:

Then

0 � 1

n
log vn;k �

1

n
log v�n;k�mn

� mn

n
log

 
1 + "n

v�n;k�mn+1

v�n;k�mn

!

� �"n
v�n;k�mn+1

v�n;k�mn

� �"n sup
j�mn+�n

v�n;j�mn+1

v�n;j�mn

;
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recall (4.6). Since in the sup, j�mn

n�mn
� �n

n�mn
! �

1�� > 0, Lemma 4.3(b) applied to
the polynomials fV �n g (for which �� does not have a mass point at 0) shows that
the sup in the last right-hand side remains bounded as n!1. Then (4.10) follows
as "n ! 0 as n!1.
(b) Let � 2 (0; �). We have

vn;k � rvn;k+1

=

0@mn�[�n]�1X
j=0

+

mnX
j=mn�[�n]

1A sn;j �v�n;k�j � rv�n;k+1�j� :
= : �1 +�2:

Now in �1, we have j < mn� �n, and by (4.12),
sn;j � 2mn"mn�j

n :

Also ��v�n;k�j � rv�n;k+1�j�� =v�n;k�mn

�
 
v�n;k�mn+1

v�n;k�mn

!mn�j

+ r

 
v�n;k�mn+1

v�n;k�mn

!mn�j+1

� Cmn�j+1 (1 + r) ;

where C does not depend on k; n; j, but only on �. Here, as in (a), we are using
Lemma 4.3(b) applied to the polynomials fV �n g. Then for large enough n,

�1 � 2mn (1 + r)C

mn�[�n]�1X
j=0

(C"n)
mn�j

� 2�n (1 + r)C (C"n)
[�n]

and in particular,

�
1=n
1 = o (1) = o

�
v
1=n
n;k�1

�
;

in view of Lemma 4.1(b). Then also

(4.14) �1 = o (vn;k�1) :

Next,

j�2j

� sup
mn�j�mn��n

����� v�n;k�jv�n;k+1�j
� r
�����

mnX
j=mn�[�n]

sn;jv
�
n;k+1�j

� vn;k+1 sup
mn�j�mn�[�n]

����� v�n;k�jv�n;k+1�j
� r
����� ;

recall (4.13). By Lemma 4.2,
v�n;k�j
v�n;k+1�j

is monotone in j, so

j�2j � vn;k+1max
(����� v�n;k�mn

v�n;k�mn+1

� r
����� ;
����� v

�
n;k�mn+[�n]

v�n;k�mn+[�n]+1

� r
�����
)
:

Together with (4.14), this gives the result. �
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Next, we apply the result of Van-Assche, Fano and Ortolani to the polynomials
fV �n g :

Lemma 4.5
There is a concave and di¤erentiable function g:(0; 1)! R and a function f de�ned
by f = eg

0
with the following properties: as j; n!1 with j

n�mn
! c 2 (0; 1), we

have

(4.15)
1

n�mn
log v�n;j ! g (1� c) ;

(4.16)
v�n;j
v�n;j+1

! eg
0(1�c) = f (1� c) :

The function f is strictly decreasing on (0; 1) with range (0;1). Its inverse f�1
is related to the measure

(4.17) �� =
� � ��0
1� �

by

(4.18) f�1 (x) =

Z 0

�A

y

y � xd�
� (y) , x 2 (0;1) :

Moreover,

(4.19) g (d) = � (1� d) log f (d) +
Z 0

�A
log [f (d)� y] d�� (y) ; d 2 (0; 1) :

Proof
Let ��n denote the zero counting measure of V

�
n . Since we formed V

�
n from Vn by

removing the mn zeros of Sn, it follows that

��n =
1

n�mn
(n�n �mn�n) ;

where �n denotes the zero counting measure of Sn. Then clearly

��n !
� � ��0
1� � = ��:

Since �� does not have a mass point at 0, the result now follows from the classical
result of Van Assche, Fano and Ortolani [1, Theorem 1, p. 1598]. We note that V �n
has degree n�mn and that in [1, Theorem 1, p. 1598], the coe¢ cients are indexed
in a reverse order to (4.9). Moreover, we also use that as

j

n�mn
! c, so

n�mn � j
n�mn

! 1� c:

�

Proof of Theorem 3.1
(I) This follows from Lemma 4.1 and 4.3.
(II) Suppose k; n!1 with

(4.20)
k

n
! 1� (1� �) d 2 (�; 1) :
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Then j = k �mn satis�es

j

n�mn
=

k=n�mn=n

1�mn=n

! 1� (1� �) d� �
1� � = 1� d:

From Lemma 4.4 and then Lemma 4.5, as n!1;
1

n (1� �) log vn;k = (1 + o (1))
1

n�mn
log v�n;k�mn

+ o (1)

= (1 + o (1))
1

n�mn
log v�n;j + o (1)

= g (d) + o (1) :

Next, from Lemma 4.4, given a real number r;���� vn;kvn;k+1
� r
����

� o (1) + max

(����� v�n;k�mn

v�n;k�mn+1

� r
����� ;
����� v

�
n;k�mn+[�n]

v�n;k�mn+[�n]+1

� r
�����
)
:(4.21)

Here if (4.20) holds, we have by (4.16) of Lemma 4.5

v�n;k�mn

v�n;k�mn+1

! f (d)

and
v�n;k�mn+[�n]

v�n;k�mn+[�n]+1

! f

�
d� �

1� �

�
;

so choosing r = f (d) above,���� vn;kvn;k+1
� f (d)

����
� o (1) +

����f �d� �

1� �

�
� f (d)

���� :
Now from (4.18), it is clear that the inverse f�1 of f is continuous, so the same is
true of f . Then as the left-hand side is independent of �; we can let � ! 0+ to
deduce

vn;k
vn;k+1

! f (d) :

(III) This follows from Lemma 4.5. �

Proof of Theorem 3.2
We �rst show that any weak subsequential limit ! of f!ng has a mass point of size
exactly � at 0. Observe that

wn;k
wn;k+1

=
vn;k
vn;k+1

=
�n;k
�n;k+1

and let � 2
�
0; 12
�
. From our hypothesis (3.12) on f�n;jg there exists C > 1 such

that
1

C
� wn;k
wn;k+1

=
vn;k
vn;k+1

� C, when k=n 2 (�; 1� �) :
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By Lemma 4.2, wn;k=wn;k+1 is a monotone function of k, so it follows from Lemma
4.3(a), that if d < �;

(4.22) sup
k�dn

wn;k
wn;k+1

! 0 as n!1:

Similarly that lemma gives if d > �; then for some n0 and n � n0;

(4.23) inf
k�dn

wn;k
wn;k+1

� C > 0:

Now choose an in�nite subsequence of integers S such that as n ! 1 through
S, the zero counting measures f!ng of Wn converge weakly to some measure !.
Assume ! has a mass point of size �1 at 0. We may apply Theorem 3.1 (or Lemmas
4.1 and 4.3) to this subsequence fWngn2S . Those results and (4.22), (4.23) show
that necessarily �1 = �. Next, Theorem 3.1 applied to this subsequence, provides
a concave function G such that as n!1 through S with (4.20) holding, we have

(4.24)
1

n (1� �) logwn;k ! G (d) ;

(4.25)
wn;k
wn;k+1

! eG
0(d) = F (d) :

Moreover if

!� =
! � ��0
1� � ;

then

(4.26) F�1 (x) =

Z 0

�A

y

y � xd!
� (y) , x 2 (0;1) ;

(4.27) G (d) = � (1� d) logF (d) +
Z 0

�A
log [F (d)� y] d!� (y) ; d 2 (0; 1) :

Now by our hypotheses (3.10) and (3.11), and by Theorem 3.1, as k; n!1, with
(3.3) holding, we have

1

n (1� �) logwn;k

=
1

n (1� �) log vn;k +
1

n (1� �) log�n;k

! g (d) + h (d) :

Then the function G arising above from f!ngn2S satis�es

G = g + h

and so is independent of the subsequence. Hence the function F arising above from
f!ngn2S must also be independent of the subsequence, and

logF = G0 = g0 + h0:
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Note here that h = G�g must be di¤erentiable. Now we prove that ! is independent
of the subsequence. Suppose that ! and !1 are weak limits of di¤erent subsequences
of f!ng. Since F above is independent of the subsequence, we obtainZ 0

�A

y

y � xd
�
! � !1

�
(y) = 0, x 2 (0;1) :

For z 2 Cn [�A; 0] ; de�ne

	(z) =

Z 0

�A

y

y � z d
�
! � !1

�
(y) :

We see that 	 = 0 in (0;1), and hence as it is analytic outside [�A; 0], we deduce
that 	 is identically 0. Finally, the Perron-Stieltjes inversion formula gives for each
[a; b] � (�A; 0) ;

0 = lim
"!0+

1

�

Z b

a

Im	 (x+ i") dx =
�
! � !1

�
([a; b]) :

Then the uniqueness follows. Thus we have established (I), (II), (III), while (IV)
follows from (4.26-7). �

Proof of Theorem 3.3
Here by hypothesis, and (4.25), as k=n!1 with (3.3) holding, we have

F (d) = lim
wn;k
wn;k+1

= lim
vn;k
vn;k+1

�n;k
�n;k+1

= f (d) J (d) :

That is F = fJ , and, taking logs,

G0 = g0 + log J:

�

5. Proof of the results of Sections 1 and 2

From Proposition 1.1,

(5.1) (�4n)�n Pn (�4nz) =
nX
j=0

pn;jz
j =

nX
j=0

�n;jqn;jz
j ;

where

(5.2) �n;j =
� (�+ n+ 1)

� (�+ j + 1)
(4n)

j�n
:

Lemma 5.1
Assume the hypotheses of Theorem 1.2.
(a)

(5.3)
�n;k
�n;k+1

=
�+ k + 1

4n
:

(b) Let d; � � 0. As k; n!1 with k=n! 1� (1� �) d 2 (�; 1) ;

(5.4)
�n;k
�n;k+1

! 1� (1� �) d
4

:
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(c) All zeros of Pn lie in the interval
�
0;
�
4n+ 2�+ 2 12

�
=B
�
:

Proof
(a), (b) These are immediate.
(c) We use a classical theorem of Szeg½o [2, p. 23], [12, p. 66], [13, p. 191]. If R
has all its zeros in jzj < r and S has all its zeros in jzj � s, then R#S has all its
zeros in jzj � rs. In our case Pn is a constant multiple of Qn#L(�)n . Here Qn has
all its zeros in [�1=B; 0) while all zeros of L(�)n are positive, with the largest zero
bounded above by [22, p.128]

2n+ �+ 1 +

�
(2n+ �+ 1)

2
+
1

4
� �2

�1=2
< 4n+ 2�+ 2

1

2
:

Then all zeros of Pn lie in the disk jzj <
�
4n+ 2�+ 2 12

�
=B. Since all zeros of Pn

are positive, we obtain the result. �

Proof of Theorem 1.2
Assume �rst that �n

�! � as n ! 1. It follows from the lemma above that the

zero counting measure �n of Pn (�4nx) has support in
�
�
�
1 +

(2�+2 12 )
4n

�
=B; 0

�
.

Moreover, (5.4) above shows that as k; n!1 with (3.3) holding,

�n;k
�n;k+1

! J (d) =
1� (1� �) d

4
:

Then all the hypotheses of Theorem 3.3 hold, withWn and Vn taken as Pn and Qn,
respectively. By Theorem 3.3, �n

�! � as n!1, and � will have a mass point at
0 of size � if � does.

Conversely, if we assume that �n
�! � as n ! 1, then we can apply Theorem

3.3 with the roles of Pn (�4nx) and Qn reversed. Indeed, with the notation (5.1),
we have

Qn (x) =

nX
j=0

pn;j�
�1
n;jx

j :

Here ��1n;j satis�es similar hypotheses to those of �n;j . �

Proof of Theorems 1.3 and 1.4
Taking Vn = Qn in Theorem 3.1, we obtain (1.11), (1.12), (1.16), (1.17), (1.21),
and (1.22). Theorem 3.3 gives (1.13), (1.14), (1.20), (1.21), and (1.23). Next, in
Theorem 3.3, we may take

F (d) = f (d) J (d) = f (d)
1� (1� �) d

4
:

Then

G (x) = g (x) +

Z
log J (x) dx

= g (x)� x ln 4� 1

1� � f(1� (1� �)x) log (1� (1� �)x)� (1� (1� �)x)g :
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�

Proof of Theorem 1.5
(I) Cauchy�s integral formula and (1.6) give

(�1)n

� (n+ �+ 1)
Pn (x) =

nX
j=0

(�x)j

� (�+ j + 1)

1

2�i

Z
jtj=1

Qn (t)

tj+1
dt

=
1

2�i

Z
jtj=1

Qn (t)

t

nX
j=0

(�x=t)j

� (�+ j + 1)
dt:

Since
1

2�i

Z
jtj=1

Qn (t)

tn+k
dt = 0, k � 2;

we can then replace the partial sum

nX
j=0

(�x=t)j

� (�+ j + 1)
=

1

� (�+ 1)

nX
j=0

(�x=t)j

(�+ 1)j

of 1
�(�+1) 1F1

�
1;�+ 1;�x

t

�
by the complete series, taking also account of its en-

tirety.
(II) This follows easily from Proposition 1.1.
(III) As in the proof of Proposition 1.1,

(�1)n

� (�+ n+ 1)

Z 1

0

Pn (x) e
�sxx�dx = s���1Qn

�
�s�1

�
;

that is, s���1Qn
�
�s�1

�
is the Laplace transform of (�1)n

�(�+n+1)x
�Pn (x). Then

(1.27) follows by the standard inversion formula for Laplace transforms.
(IV) Recall our abbreviation �k = �n;k. Let

!j;k =

Z 1

0

xj+�e��kxdx = �
�(�+j+1)
k � (j + �+ 1) :

Then by integrating, we see that

P#n (x) = det

2666664
!0;1 !1;1 !2;1 � � � !n;1
!0;2 !1;2 !2;2 � � � !n;2
...

...
...

. . .
...

!0;n !1;n !2;n � � � !n;n
1 x x2 � � � xn

3777775
satis�es the biorthogonality relations (1.1). Substituting in the formula for the
moments !j;k and extracting a factor of �

�(�+2)
j from the jth row, and � (�+ k)

from the kth column shows that P#n admits the representation (1.28), apart from
a constant. By comparing leading coe¢ cients, we see that the monic polynomial
Pn has the form (1.28). Of course, the denominator determinant in (1.28) is a
Vandermonde determinant, and so is non-vanishing. �

Proof of Corollary 2.1
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Here

Qn (y) =
nY
k=1

�
y +

1

k + �

�
has all its zeros in [� 1

1+� ; 0), so we may choose B = 1+� in Theorem 1.2. Lemma

5.1(c) shows that all zeros of �(�;�)n lie in
�
0;
�
4n+ 2�+ 2 12

�
= (1 + �)

�
. We have

already noted that for this case �n
�! �0 as n ! 1. Theorem 1.2 shows that also

�n
�! �0 as n!1. �

Proof of Corollary 2.2
Write

(�1)nG(�)n (�4nz) =
nX
j=0

�
n

j

�
(j + 1)

n

� (j + �+ 1)
(4nz)

j

=
nX
j=0

gn;jz
j :

Recall thatGn is biorthogonal to the exponentials fe��n;kxgnk=1, where nowD
(0;0)
n

�
��1n;k

�
=

0 and

D(0;0)
n (t) =

nX
j=0

(�1)n�j
�
n

j

�
(j + 1)

n
tj :

Indeed this follows from Proposition 1.1 and the de�nitions of G(�)n and D(0;0)
n , as

well as a transformation x ! �x. Since all the zeros of D(0;0)
n lie in (0; 1) [9], so

we may choose B = 1 in Theorem 1.2. The authors proved in 1994 [9] that the
zero counting measures of D(0;0)

n (�x) converge to an absolutely continuous measure
�0 (�x) dx, where

(5.5) �0 (�x) = � 1

�h0
�
h[�1] (x)

� , x 2 (0; 1) ;
and

(5.6) h (y) =
sin y

y
ey cot y�1; y 2 [0; �]

is a strictly decreasing function. By Theorem 1.2, the zero counting measures
of Gn (�4nx) converge weakly to a measure with support in [�1; 0], having no
mass point at 0. We can directly compute that as k; n ! 1 in such a way that
k=n! 1� d,

gn;k
gn;k+1

=
k + 1

n� k

�
1� 1

k + 2

�n
k + �+ 1

4n

! (1� d)2

4d
exp

�
� 1

1� d

�
= F (d) :

�

Note that

G0 (d) = lnF (d) = 2 ln (1� d)� ln (4d)� 1

1� d ;



24 D. S. LUBINSKY1 AND A. SIDI2

so

G (d) = 2 [� (1� d) ln (1� d) + (1� d)]� d ln 4� d ln d+ d+ ln (1� d)
= �2 (1� d) ln (1� d)� d ln d� 2d ln 2� d+ f2 + ln (1� d)g :

If we ignore the the term in brackets fg in the last line, we obtain the function that
corresponds to zeros of Laguerre polynomials [1, p. 1612]. Moreover, if we examine

D(�;�)
n (t) =

nX
j=0

(�1)n�j
�
n

j

�
(� + j + 1)

�+n
tj

=
nX
j=0

(�1)n�j dn;jtj ;

then we see that as k; n!1 in such a way that k=n! 1� d,
dn;k
dn;k+1

=
k + 1

n� k

�
1� 1

k + � + 2

�n
(1 + o (1))

! 1� d
d

exp

�
� 1

1� d

�
:

This is independent of �; �, and since we know that for � = � = 0, the asymptotic
zero distribution is given by (5.5-5.6), the same zero distribution holds for all �; �. �

Proof of Corollary 2.3
Write

(�1)nM (�)
n (�4nx) =

nX
j=0

�
n

j

�
(j + 1)n

�(j + �+ 1)
(4nx)

j

=

nX
j=0

mn;jx
j :

Recall that M (�)
n is biorthogonal to the exponentials fe��n;kxgnk=1, where now

Qn

�
���1n;k

�
= 0, 1 � k � n; and Qn (�x) is the Legendre polynomial for [0; 1].

It is known that all zeros of fQng lie in (0; 1), and hence all zeros of Qn (�x) lie
in (�1; 0). Thus we may choose B = 1 in Theorem 1.2. Moreover [21], the zero
counting measures for the Legendre polynomial on [0; 1] converge weakly to

dx

�
p
x (1� x)

on (0; 1) ;

so a corresponding statement is true for f�ng on [�1; 0]. By Theorem 1.2, the f�ng
converge weakly to a measure � on [�1; 0] with no mass point at 0. Moreover, if
n; k !1 with k=n! 1� d;

mn;k

mn;k+1
=
k + 1

n� k
k + 1

k + n+ 1

k + �+ 1

4n

! (1� d)3

4d (2� d) = F (d) :

�
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