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Abstract

Let ψ : [0, 1] → R be a strictly increasing continuous function. Let Pn be a
polynomial of degree n determined by the biorthogonality conditions

∫ 1

0
Pn (x)ψ (x)j dx = 0, j = 0, 1, . . . , n− 1.

We study the distribution of zeros of Pn as n → ∞, and related potential
theory.

1. Introduction and Results

Let ψ : [0, 1] → [ψ (0) , ψ (1)] be a strictly increasing continuous function,
with inverse ψ[−1]. Then we may uniquely determine a monic polynomial
Pn of degree n by the biorthogonality conditions

∫ 1

0
Pn (x)ψ (x)j dx =

{

0, j = 0, 1, 2, . . . , n− 1,
In 6= 0, j = n

. (1)
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Pn will have n simple zeros in (0, 1), so we may write

Pn (x) =

n
∏

j=1

(x− xjn) . (2)

The proof of this is the same as for classical orthogonal polynomials. Our
goal in this paper is to investigate the zero distribution of Pn as n → ∞.
Accordingly, we define the zero counting measures

µn =
1

n

n
∑

j=1

δxjn , (3)

that place mass 1
n at each of the zeros of Pn, and want to describe the weak

limit(s) of µn as n→ ∞.
This topic was initiated by the second author, in the course of his inves-

tigations on convergence acceleration [8], [24], and numerical integration of
singular integrands. He considered [21], [22], [23]

ψ (x) = log x, x ∈ (0, 1)

and found that the corresponding biorthogonal polynomials are

Pn (x) =

n
∑

j=0

(−1)n−j
(

n

j

)(

j + 1

n+ 1

)j

xj .

The latter are now often called the Sidi polynomials, and one may represent
them as a contour integral. Using steepest descent, the strong asymptotics
of Pn, and their zero distribution, were established in [14]. Asymptotics for
more general polynomials of this type were analyzed by Elbert [7]. Exten-
sions, asymptotics, and applications in numerical integration, and conver-
gence acceleration have been considered in [15], [16], [25], [26]. Biorthogonal
polynomials of a more general form have been studied in several contexts
– see [5], [10], [11]. The sorts of biorthogonal polynomials used in random
matrices [3], [6], [12] are mostly different, although there are some common
ideas in the associated potential theory.

Herbert Stahl’s interest in this topic arose after he refereed [14]. He and
the first author discussed the topic at some length at a conference in honor
of Paul Erdős in 1995. This led to a draft paper on zero distribution in the
later 1990’s, with revisions in 2001, and 2003, and this paper is the partial
completion of that work. For the case ψ (x) = xα, α > 0, we presented
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explicit formulae in [18]. Rodrigues type representations were studied in
[17].

Distribution of zeros of polynomials is closely related to potential theory
[1], [20], [28], and accordingly we introduce some potential theoretic con-
cepts. We let P (E) denote the set of all probability measures with compact
support contained in the set E . For any positive Borel measure µ, we define
its classical energy integral

I (µ) =

∫ ∫

log
1

|x− t|
dµ (x) dµ (t) , (4)

and denote its support by supp[µ]. Where appropriate, we consider these
concepts for signed measures too. For any set E in the plane, its (inner)
logarithmic capacity is

cap (E) = sup
{

e−I(µ) : µ ∈ P (E)
}

.

We say that a property holds q.e. (quasi-everywhere) if it holds outside a
set of capacity 0. We use meas to denote linear Lebesgue measure 0. For
further orientation on potential theory, see for example [13], [19], [20].

In our setting we need a new energy integral

J (µ) =

∫ ∫

K (x, t) dµ (x) dµ (t) , (5)

where

K (x, t) = log
1

|x− t|
+ log

1

|ψ (x) − ψ (t)|
. (6)

In [6], a similar energy integral was considered for ψ (t) = et, but with an
external field. The minimal energy corresponding to ψ is

J∗ (ψ) = inf {J (µ) : µ ∈ P ([0, 1])} . (7)

Under mild conditions on ψ, we shall prove that there is a unique probability
measure, which we denote by νψ, attaining the minimum. For probability
measures µ, ν, we define the classical potential

Uµ (x) =

∫

log
1

|x− t|
dµ (t) , (8)

the mixed potential

W µ,ν (x) =

∫

log
1

|x− t|
dµ (t) +

∫

log
1

|ψ (x) − ψ (t)|
dν (t) (9)

= Uµ (x) + Uν◦ψ
[−1]

◦ ψ (x) , (10)
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and the ψ potential

W µ (x) = W µ,µ (x) =

∫

K (x, t) dµ (t) . (11)

We note that potential theory for generalized kernels is an old topic, see for
example, Chapter VI in [13]. However, there does not seem to be a compre-
hensive treatment covering our setting. Our most important restrictions on
ψ are contained in:

Definition 1.1. Let ψ : [0, 1] → [ψ (0) , ψ (1)] be a strictly increasing con-
tinuous function, with inverse ψ[−1]. Assume that ψ satisfies the following
two conditions:

(I)

cap (E) = 0 ⇒ cap
(

ψ[−1] (E)
)

= 0. (12)

(II) For each ε > 0, there exists δ > 0 such that

meas (E) ≤ δ ⇒ meas
(

ψ[−1] (E)
)

≤ ε. (13)

Then we say that ψ preserves smallness of sets.

The conditions (I), (II) are satisfied if ψ satisfies a local lower Lipschitz
condition. By this we mean that we can write [0, 1] as a countable union
of intervals [a, b] such that in [a, b], there exist C, α > 0 depending on a, b,
with

|ψ (x) − ψ (t)| ≥ C |t− x|α , x, t ∈ [a, b] .

We can apply Theorem 5.3.1 in [19, p. 137] to ψ−1 to deduce (12).
Using classical methods, we shall prove:

Theorem 1.2. Let ψ : [0, 1] → [ψ (0) , ψ (1)] be a strictly increasing contin-
uous function that preserves smallness of sets. Define the minimal energy
J∗ = J∗ (ψ) by (7). Then

(a) J∗ is finite and there exists a unique probability measure νψ on [0, 1]
such that

J (νψ) = J∗. (14)

(b)
W νψ ≥ J∗ q.e. in [0, 1] . (15)

In particular, this is true at each point of continuity of W νψ .
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(c)
W νψ ≤ J∗ in supp [νψ] . (16)

and
W νψ = J∗ q.e. in supp [νψ] . (17)

(d) νψ is absolutely continuous with respect to linear Lebesgue measure on
[0, 1]. Moreover, there are constants C1 and C2 depending only on ψ,
such that for all compact K ⊂ [0, 1],

νψ (K) ≤
C1

|log capK|
≤

C2

|logmeas (K)|
. (18)

(e) There exists ε > 0 such that

[0, ε] ∪ [1 − ε, 1] ⊂ supp [νψ] . (19)

Let

In =

∫ 1

0
Pn (t)ψ (t)n dt, n ≥ 1. (20)

Theorem 1.3. Let ψ : [0, 1] → [ψ (0) , ψ (1)] be a strictly increasing continu-
ous function that preserves smallness of sets. Let {Pn} be the corresponding
biorthogonal polynomials, with zero counting measures {µn}. If

supp [νψ] = [0, 1] , (21)

then the zero counting measures {µn} of (Pn) satisfy

µn
∗
→ νψ, n → ∞ (22)

and
lim
n→∞

I1/n
n = exp (−J∗) . (23)

The weak convergence (22) is defined in the usual way:

lim
n→∞

∫ 1

0
f (t) dµn (t) =

∫ 1

0
f (t) dνψ (t) ,

for every continuous function f : [0, 1] → R. We can replace (21) by the more
implicit, but more general, assumption that supp[νψ] contains the support
of every weak limit of every subsequence of (µn). We can at least prove
it when the kernel K, and hence the potential W νψ , satisfies a convexity
condition:
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Theorem 1.4. Let ψ : [0, 1] → [ψ (0) , ψ (1)] be a strictly increasing contin-
uous function that preserves smallness of sets. In addition assume that ψ is
twice continuously differentiable in (0, 1) and either

(a) for x, t ∈ (0, 1) with x 6= t,

∂2

∂x2
K (x, t) > 0, (24)

or

(b) for x, t ∈ (ψ (0) , ψ (1)) with x 6= t,

∂2

∂x2

[

K
(

ψ[−1] (x) , ψ[−1] (t)
)]

> 0. (25)

Then
supp [νψ] = [0, 1] . (26)

Example. Let α > 0 and

ψ (x) = xα, x ∈ [0, 1] .

Then either (25) or (26) holds and hence (21) holds. We show this separately
for α ≥ 1 and for α < 1.

Case I α ≥ 1
We shall show that the hypotheses of Theorem 1.4 (a) are fulfilled. A
straightforward calculation gives that

∆ (x, t) := (x− t)2 (ψ (x) − ψ (t))2
∂2

∂x2
K (x, t)

= (xα − tα)2 +
(

αxα−1
)2

(x− t)2 − α (α− 1) xα−2 (xα − tα) (x− t)2 .

Writing s = tx, we see that

∆ (x, t) = x2αH (s) ,

where

H (s) := (1 − sα)2 + α2 (1 − s)2 − α (α− 1) (1 − sα) (1 − s)2 . (27)

For s > 1, all three terms in the right-hand side of (27) are positive, so
H (s) > 0. If 0 ≤ s < 1, we see that

H (s) = (1 − sα)2 + α (1 − s)2 {α− (α− 1) (1 − sα)}

≥ (1 − sα)2 + α (1 − s)2 > 0.
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In summary, if α > 1, we have for all x ∈ [0, 1] and s ∈ [0,∞)\ {1} ,

∆ (x, sx) > 0

so the hypotheses (24) is fulfilled.

Case II α < 1
Here

ψ[−1] (x) = x1/α

and

K
(

ψ[−1] (x) , ψ[−1] (t)
)

= log
1

∣

∣x1/α − t1/α
∣

∣

+ log
1

|x− t|
,

which is exactly the case 1/α > 1 treated above, so we see that the hypoth-
esis (25) is fulfilled.

Instead of placing an implict assumption on the support of νψ, we can
place an implicit assumption on the zeros of {Pn}, and obtain a unique weak
limit:

Theorem 1.5. Let ψ : [0, 1] → [ψ (0) , ψ (1)] be a strictly increasing contin-
uous function that preserves smallness of sets. Let K ⊂ [0, 1] be compact.
Assume that every weak limit of every subsequence of the zero counting mea-
sures {µn} has support K. Then there is a unique probability measure µ on
K such that

µn
∗
→ µ, n→ ∞, (28)

and a unique positive number A such that

lim
n→∞

I1/n
n = A, (29)

Here µ is absolutely continuous with respect to linear Lebesgue measure, and
is the unique solution of the integral equation

W µ (x) = Constant, q.e. x ∈ K, (30)

Moreover, then

W µ (x) = log
1

A
, q.e. x ∈ K.

We note that in [6], a related integral equation to (30) appears. We
shall also need the dual polynomials Qn such that Qn ◦ ψ are biorthogonal

7



to powers of x. Thus we define Qn to be a monic polynomial of degree n
determined by the conditions

∫ 1

0
Qn ◦ ψ (t) tjdt = 0, (31)

j = 0, 1, 2, . . . , n− 1. Because of this biorthogonality condition,

∫ 1

0
Qn ◦ ψ (t) tndt =

∫ 1

0
Qn ◦ ψ (t)Pn (t) dt =

∫ 1

0
Pn (t)ψ (t)n dt.

That is,

In =

∫ 1

0
Pn (t)ψ (t)n dt =

∫ 1

0
Qn ◦ ψ (t) tndt. (32)

The orthogonality conditions ensure that Qn ◦ ψ has n distinct zeros {yjn}
in (0, 1), so we can write

Qn ◦ ψ (t) =

n
∏

j=1

(ψ (t) − ψ (yjn)) . (33)

Let

νn =
1

n

n
∑

j=1

δyjn . (34)

We shall prove

Theorem 1.6. Let ψ : [0, 1] → [ψ (0) , ψ (1)] be a strictly increasing contin-
uous function that preserves smallness of sets, and assume (21). We have
as n→ ∞,

νn
∗
→ νψ.

We also prove the following extremal property for weak subsequential
limits of {µn}.

Theorem 1.7. Let ψ : [0, 1] → [ψ (0) , ψ (1)] be a strictly increasing contin-
uous function that preserves smallness of sets. Assume that S is an infinite
subsequence of positive integers such that as n→ ∞ through S,

µn
∗
→ µ; (35)

νn
∗
→ ν; (36)

and
I1/n
n → A, (37)
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where A ∈ R and µ, ν ∈ P ([0, 1]). Then

A ≤ exp

(

− sup
β∈P([0,1])

inf
[0,1]

W µ,β

)

(38)

and

A ≤ exp

(

− sup
α∈P([0,1])

inf
[0,1]

Wα,ν

)

. (39)

Remarks. (a) This extremal property is very close to a characterization
of equilibrium measures for external fields. For example, with ν as
above, let Q be the external field

Q = Uν◦ψ
[−1]

◦ ψ on [0, 1] .

Then the second inequality above says

A ≤ exp

(

− sup
α∈P([0,1])

inf
[0,1]

(Uα +Q)

)

.

This is reminiscent of one characterization of the equilibrium measure
for the external field Q [20, Theorem I.3.1, p. 43].

(b) Herbert Stahl sketched a proof that when ψ is strictly increasing and
piecewise linear, then (21) holds [27]. His expectation was that this
and a limiting argument could establish (21) very generally.

(c) There are two principal issues left unresolved in this paper, that seem
worthy of further study:

(I) Find general hypotheses for supp[νψ] = [0, 1].

(II) Find an explicit representation of the solution µ′ of the integral
equation (30), that is of

∫ 1

0
log |x− t|µ′ (t) dt

+

∫ 1

0
log |ψ (x) − ψ (t)|µ′ (t) dt = Constant, x ∈ [0, 1] .

The usual methods (differentiating, and solving a Cauchy singular
integral equation) do not seem to work, even when ψ is analytic.
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Next we show that if ψ is constant in an interval, then the support of
the equilibrium measure should avoid that interval, as do most of the zeros
of {Pn} :

Example. Let

ψ (x) =

{

2x, x ∈
[

0, 1
2

]

1, x ∈
[

1
2 , 1
] .

Then it is not difficult to see that the equilibrium measure νψ must have
support [0, 1

2 ]. Indeed if µ is a probability measure that has positive measure
on [a, b] ⊂ (1

2 , 1), then as

log
1

|ψ (x) − ψ (t)|
= ∞, x, t ∈ [a, b] ,

so
J (µ) = ∞.

Consequently,

J∗ = inf

[

2I (µ) + log
1

2

]

,

where the inf is now taken over all µ ∈ P
([

0, 1
2

])

. Then νψ is the classical
equilibrium measure for

[

0, 1
2

]

, namely

ν ′ψ (x) =
1

π
√

x
(

1
2 − x

)

, x ∈

[

0,
1

2

]

,

and

J∗ = 2 log 8 + log
1

2
= log 32.

In this case, we can also almost explicitly determine Pn. The biorthogonality
conditions give for π of degree at most n− 1,

∫ 1/2

0
Pn (x) π (2x) dx+ π (1)

∫ 1

1/2
Pn (x) dx = 0.

In particular, this is true for π ≡ 1, so

∫ 1

1/2
Pn (x) dx = −

∫ 1/2

0
Pn (x) dx,

and we obtain for any π of degree at most n− 1,

∫ 1/2

0
Pn (x) (π (2x) − π (1)) dx = 0.
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Then for every polynomial S of degree ≤ n− 2,

∫ 1/2

0
Pn (x)S (x) (1 − 2x) dx = 0, (40)

which forces Pn to have at least n − 1 distinct zeros in [0, 1
2 ]. Then every

weak limit of every subsequence of {µn} has support in [0, 1
2 ].

This paper is organized as follows: in Section 2, we present a principle
of descent, and a lower envelope theorem, and the proof of Theorem 1.2. In
Section 3, we prove Theorems 1.3–1.7. Throughout the sequel, we assume
that ψ : [0, 1] → [ψ (0) , ψ (1)] is a strictly increasing continuous function
that preserves smallness of sets.

We close this section with some extra notation. Define the companion
polynomial to Pn, namely

Rn (x) =

n
∏

j=1

(x− ψ (xjn)) . (41)

It has the property that Rn ◦ ψ has the same zeros as Pn. Hence

Pn (x)Rn ◦ ψ (x) ≥ 0 in [0, 1] . (42)

Analogous to Rn, we define

Sn (t) =

n
∏

j=1

(t− yjn) , (43)

so that
Sn (t)Qn ◦ ψ (t) ≥ 0, t ∈ [0, 1] . (44)

Observe that In of (20) satisfies

In =

∫ 1

0
Pn (x)Rn ◦ ψ (x) dx =

∫ 1

0
Qn ◦ ψ (x)Sn (x) dx > 0. (45)

2. Proof of Theorem 1.2

We begin by noting that for any positive measures α, β, Wα,β is lower
semicontinuous, since a potential of any positive measure is, while ψ and
ψ[−1] are continuous. We start with

11



Lemma 2.1 (The Principle of Descent). Let {αn} and {βn}be finite positive
Borel measures on [0, 1] such that

lim
n→∞

αn ([0, 1]) = 1 = lim
n→∞

βn ([0, 1]) .

Assume moreover that as n→ ∞,

αn
∗
→ α;

βn
∗
→ β.

(a) If {xn} ⊂ [0, 1] and xn → x0, n→ ∞, then

lim inf
n→∞

Wαn,βn (xn) ≥Wα,β (x0) .

(b) If K ⊂ [0, 1] is compact and

Wα,β ≥ λ in K,

then uniformly in K,

lim inf
n→∞

Wαn,βn (x) ≥ λ.

Proof. (a) By the classical principle of descent,

lim inf
n→∞

Uαn (xn) ≥ Uα (x0) ,

see for example, [20, Theorem I.6.8, p. 70]. Next, we see from the
classical principle of descent and continuity of ψ, ψ[−1] that

lim inf
n→∞

Uβn◦ψ
[−1]

◦ ψ (xn) ≥ Uβ◦ψ
[−1]

◦ ψ (x0) .

Combining these two gives the result.

(b) This follows easily from (a). If (b) fails, we can choose a sequence (xn)
in K with limit x0 ∈ K such that

lim inf
n→∞

Wαn,βn (xn) < λ ≤Wα,β (x0) .

Recall our notation Wαn = Wαn,αn . We now establish
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Lemma 2.2 (Lower Envelope Theorem). Assume the hypotheses of Lemma 2.1.
Then for q.e. x ∈ [0, 1],

lim inf
n→∞,n∈S

Wαn (x) = Wα (x) .

Proof. We already know from Lemma 2.1 (the principle of descent) that
everywhere in [0, 1] ,

lim inf
n→∞,n∈S

Wαn (x) ≥Wα (x) .

Suppose the result is false. Then there exists ε > 0, and a (Borel) set S of
positive capacity such that

lim inf
n→∞,n∈S

Wαn (x) ≥Wα (x) + ε in S. (46)

Because Borel sets are inner regular, and even more, capacitable, we may
assume that S is compact. Then there exists a probability measure ω with
support in S such that Uω is continuous in C. See, for example, [20, Corol-
lary I.6.11, p. 74]. As ψ and ψ[−1] are continuous,

W ω = Uω + Uω◦ψ
[−1]

◦ ψ

is also continuous in [0, 1]. Then by Fubini’s Theorem and weak convergence

lim inf
n→∞,n∈S

∫

Wαndω = lim inf
n→∞,n∈S

∫

W ωdαn

=

∫

W ωdα =

∫

Wαdω.

Here since K (x, t) is bounded below in [0, 1], we may continue this using
(46) and Fatou’s Lemma as

=

∫

(Wα + ε) dω − ε

≤

∫
(

lim inf
n→∞,n∈S

Wαn

)

dω − ε

≤ lim inf
n→∞,n∈S

∫

Wαndω − ε.

So we have a contradiction.

Next, we show that J∗ is finite, establishing part of Theorem 1.2(a):
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Lemma 2.3. J∗ is finite.

Proof. This is really a consequence of Cartan’s Lemma for potentials. Let
µ = meas denote Lebesgue measure on [0, 1]. Then for x ∈ [0, 1] ,

Uµ (x) =

∫ 1

0
log

1

|x− t|
dt ≤ 2

∫ 1

0
log

1

s
ds

and Uµ is continuous. Now consider the unit measure µ◦ψ[−1]. By Cartan’s
Lemma [9, p. 366], if ε > 0 and

Aε =

{

y ∈ R : Uµ◦ψ
[−1]

(y) > log
1

ε

}

,

then
µ (Aε) ≤ 3eε.

With a suitably small choice of ε, we then have by the hypothesis (13),

µ
(

ψ[−1] (Aε)
)

≤
1

2
.

With this choice of ε, let

B = [0, 1] \ψ[−1] (Aε) ,

a closed set. Let
ν =

µ|B

µ (B)
.

As µ (B) ≥ 1
2 , ν is a well defined probability measure. Moreover, x ∈ B ⇒

ψ (x) /∈ Aε, and

Uν◦ψ
[−1]

◦ ψ (x) =
1

µ (B)

[

Uµ◦ψ
[−1]

◦ ψ (x) − Uµ|[0,1]\B◦ψ
[−1]

◦ ψ (x)
]

≤
1

µ (B)

[

log
1

ε
+ log

(

2 ‖ ψ ‖L∞[0,1]

)

]

=: C0 <∞.

Then
J∗ ≤ J (ν) ≤ I (ν) + C0 <∞.
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Proof of Theorem 1.2. (a) We can choose a sequence {αn} of probability
measures on [0, 1] such that

lim
n→∞

J (αn) = J∗.

By Helly’s Theorem, we can choose a subsequence converging weakly to some
probability measure α on [0, 1], and by relabelling, we may assume that the
full sequence {αn} converges weakly to α. Then

{

αn ◦ ψ
[−1]
}

converges

weakly to α ◦ ψ[−1]. By the classical principle of descent

lim inf
n→∞

I (αn) ≥ I (α)

and
lim inf
n→∞

I
(

αn ◦ ψ
[−1]
)

≥ I
(

α ◦ ψ[−1]
)

,

or equivalently,

lim inf
n→∞

∫ ∫

log
1

|ψ (x) − ψ (t)|
dαn (x) dαn (t)

≥

∫ ∫

log
1

|ψ (x) − ψ (t)|
dα (x) dα (t) .

See, for example, [20, Thm. I.6.8, p. 70]. Combining these, we have

J∗ = lim inf
n→∞

J (αn) ≥ J (α) ,

so α achieves the inf, and is an equilibrium distribution. If β is another such
distribution, then the parallelogram law

J

(

1

2
(α+ β)

)

+ J

(

1

2
(α− β)

)

=
1

2
(J (α) + J (β)) = J∗,

gives

J

(

1

2
(α− β)

)

= J∗ − J

(

1

2
(α+ β)

)

≤ 0,

as 1
2 (α+ β) is also a probability measure on [0, 1]. Here

J

(

1

2
(α− β)

)

= I

(

1

2
(α− β)

)

+ I

(

1

2

(

α ◦ ψ[−1] − β ◦ ψ[−1]
)

)

,

and both terms on the right-hand side are non-negative as both measures in-
side the energy integrals on the right have total mass 0. See [20, Lemma I.1.8,
p. 29]. Hence

I

(

1

2
(α− β)

)

= 0,
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so α = β [20, Lemma I.1.8, p. 29].
(b) Suppose the result is false. Then for some large enough integer n0,

E1 :=

{

x ∈ [0, 1] : W νψ (x) ≤ J∗ −
1

n0

}

,

has positive capacity and is compact, since W νψ is lower semi-continuous.
But,

∫

W νψdνψ = J (νψ) = J∗,

so there exists a compact subset E2 disjoint from E1 such that

W νψ (x) > J∗ −
1

2n0
, x ∈ E2,

and
m = νψ (E2) > 0.

Now as E1 is a compact set of positive capacity, we can find a positive
measure σ on E1, with support in E1, such that Uσ is continuous in the plane
[20, Cor. I.6.11, p. 74]. Then Uσ◦ψ

[−1]
is also continuous in [ψ (0) , ψ (1)], so

W σ is continuous in [0, 1]. We may also assume that

σ (E1) = m.

Define a signed measure σ1 on [0, 1], by

σ1 :=







σ in E1

−νψ in E2

0 elsewhere
.

Here if η ∈ (0, 1),

J (νψ + ησ1) = J (νψ) + 2η

∫

W νψdσ1 + η2J (σ1)

≤ J (νψ) + 2η

{
∫

E1

[

J∗ −
1

n0

]

dσ +

∫

E2

[

J∗ −
1

2n0

]

d (−νψ)

}

+ η2J (σ1)

= J (νψ) + 2ηm

{[

J∗ −
1

n0

]

−

[

J∗ −
1

2n0

]}

+ η2J (σ1)

= J (νψ) −
ηm

n0
+ η2J (σ1) < J (νψ) ,

16



for small η > 0. As σ1 has total mass 0, so νψ + ησ1 has total mass 1, and
we see from the identity

νψ + ησ1 = (1 − η) νψ|E2
+ νψ|[0,1]\E2

+ ησ

that it is non-negative. Then we have a contradiction to the minimality of
J (νψ).
(c) Let x0 ∈ supp [νψ] and suppose that

W νψ (x0) > J∗.

By lower semi-continuity of W νψ , there exists ε > 0 and closed [a, b] con-
taining x0 such that

W νψ (x) > J∗ + ε, x ∈ [a, b] .

We know too that

W νψ (x) ≥ J∗ for q.e. x ∈ supp [νψ] .

Here as J∗ is finite, so I (νψ) must be finite (recall that K (x, t) is bounded
below). Then νψ vanishes on sets of capacity 0, so this last inequality holds
νψ a.e. (cf. [19, Theorem 3.2.3, p. 56]). Then

J∗ = J (νψ) =

(

∫ b

a
+

∫

[0,1]\[a,b]

)

W νψ (x) dνψ (x)

≥ (J∗ + ε) νψ ([a, b]) + J∗νψ ([0, 1] \ [a, b])

= J∗ + ενψ ([a, b]) ,

a contradiction.
(d) If cap (K) = 0, then as I (νψ) < ∞, we have also νψ (K) = 0, and
the inequality (18) is immediate. So assume that K ⊂supp[νψ] has positive
capacity, and let ω be the equilibrium measure for K. We may also assume
that K ⊂ supp [νψ], since

νψ (K) = νψ (K ∩ supp [νψ]) .

Now, there exists a positive constant C0 such that

K (x, t) ≥ −C0, x, t ∈ [0, 1] .

17



Then by (c), for x ∈ K,
∫

K
K (x, t) dνψ (t) ≤ J∗ −

∫

[0,1]\K
K (x, t) dνψ (t)

≤ J∗ + C0

and hence for x ∈ K,
∫

K
log

1

|x− t|
dνψ (t) ≤ J∗ + C0 + log

(

2‖ψ‖L∞ [0,1]

)

=: C1. (47)

Here C1 is independent of K, x. Now

Uω (t) = log
1

capK

for q.e. t ∈ K and since νψ vanishes on sets of capacity zero, this also holds
for νψ a.e. t ∈ K. Integrating (47) with respect to dω (x) and using Fubini’s
theorem, gives

∫

K
Uω (t) dνψ (t) ≤ C1

and hence

νψ (K) log
1

capK
≤ C1.

This gives the first inequality in (18), and then well known inequalities
relating cap and meas give the second. In particular, that inequality implies
the absolute continuity of µ with respect to linear Lebesgue measure.
(e) Suppose that 0 /∈ supp [νψ]. Let c > 0 be the closest point in the support
of νψ to 0. Then for x ∈ [0, c2 ], and for all t ∈ [c, 1], we have from the strict
monotonicity of ψ that

K (x, t) < K (c, t) ,

so for such x,

W νψ (x) =

∫ 1

c
K (x, t) dνψ (t)

<

∫ 1

c
K (c, t) dνψ (t) = W νψ (c) ≤ J∗.

Thus in spite of the continuity of W νψ in [0, c),

W νψ < J∗ in
[

0,
c

2

]

,

contradicting (b). Absolute continuity of νψ then shows that for some ε > 0,
we have [0, ε] ⊂ supp [νψ]. Similarly we can show that for some ε > 0,
[1 − ε, 1] ⊂ supp [νψ]. �
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3. Proof of Theorems 1.3–1.7

Recall that µn and νn were defined respectively by (3) and (34). Through-
out this section, we assume that S is an infinite subsequence of positive
integers such that as n→ ∞ through S,

µn
∗
→ µ; (48)

νn
∗
→ ν; (49)

and
I1/n
n → A, (50)

where A ∈ R and µ, ν ∈ P ([0, 1]). In the sequel we make frequent use of
identities such as

|Pn (x)|1/n = exp (−Uµn (x))

and
|Pn (x)Rn ◦ ψ (x)|1/n = exp (−W µn (x)) .

We begin with

Lemma 3.1 (An upper bound for W µ). (a) With the hypotheses above,
let [a, b] ⊂ [0, 1] and assume that [a, b] contains two zeros of Pn for
infinitely many n ∈ S. Then

inf
[a,b]

W µ ≤ log
1

A
.

(b) In particular, if x0 is a limit of two zeros of Pn as n→ ∞ through S,
or x0 ∈ supp [µ], then

W µ (x0) ≤ log
1

A
.

Proof. (a) We may assume (by passing to a subsequence) that for all n ∈ S,
Pn has two zeros in [a, b]. Assume on the contrary, that for some ε > 0,

inf
[a,b]

W µ > log
1

A
+ ε. (51)

Let xn, yn be two zeros of Pn in [a, b] and let

R∗
n (x) = Rn (x) / [(x− ψ (xn)) (x− ψ (yn))] .
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Then we see that

Pn (x)R∗
n ◦ ψ (x) ≥ 0, x ∈ [0, 1] \ [a, b] ,

and

0 ≤ Pn (x)Rn ◦ ψ (x) ≤ |Pn (x)R∗
n ◦ ψ (x)|

(

4‖ψ‖L∞ [0,1]

)2
, x ∈ [0, 1] .

Moreover, as R∗
n has the same asymptotic zero distribution as Rn, we see

from Lemma 2.1 and (51) that

lim sup
n→∞,n∈S

|Pn (x)R∗
n ◦ ψ (x)|1/n ≤ exp (−W µ,µ (x))

= exp (−W µ (x)) ≤ Ae−ε,

uniformly in [a, b]. Then by biorthogonality, and positivity of Pn (x)R∗
n ◦

ψ (x) outside [a, b],

lim sup
n→∞,n∈S

(

∫

[0,1]\[a,b]
|Pn (x)R∗

n ◦ ψ (x)| dx

)1/n

= lim sup
n→∞,n∈S

∣

∣

∣

∣

∣

∫

[a,b]
Pn (x)R∗

n ◦ ψ (x) dx

∣

∣

∣

∣

∣

1/n

≤ Ae−ε.

Of course Lemma 2.1(b) also gives

lim sup
n→∞,n∈S

(

∫

[a,b]
|Pn (x)R∗

n ◦ ψ (x)| dx

)1/n

≤ Ae−ε,

so

A = lim sup
n→∞,n∈S

I1/n
n

≤ lim sup
n→∞,n∈S

(

4‖ψ‖L∞[0,1]

)2/n
(
∫ 1

0
|Pn (x)R∗

n ◦ ψ (x)| dx

)1/n

≤ Ae−ε.

This contradiction gives the result.
(b) This follows from (a), and lower semicontinuity of W µ.

Lemma 3.2 (A Lower bound for W µ). At each point of continuity of W µ

in [0, 1], we have

W µ ≥ log
1

A
. (52)

In particular, this inequality holds q.e. in [0, 1].
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Proof. Assume that a ∈ [0, 1] is a point of continuity of W µ, but for some
ε > 0,

W µ (a) ≤ log
1

A
− 2ε.

Then there exists an interval [a, b] containing a, such that

W µ (x) ≤ log
1

A
− ε, x ∈ [a, b] .

By the lower envelope theorem (Lemma 2.2)

lim sup
n→∞,n∈S

(Pn (x)Rn ◦ ψ (x))1/n

= exp

(

− lim inf
n→∞,n∈S

W µn (x)

)

= exp (−W µ (x)) ≥ Aeε

for q.e. x ∈ [a, b]. Let

Tn =
{

x ∈ [a, b] : (Pn (x)Rn ◦ ψ (x))1/n ≥ Aeε/2
}

.

Then for each m ≥ 1,
∞
⋃

n=m

Tn

contains q.e. x ∈ [a, b], so has linear Lebesgue measure b − a. Then for
infinitely many n, Tn has linear Lebesgue measure at least n−2, so

I1/n
n ≥

(
∫

Tn

Pn (x)Rn ◦ ψ (x) dx

)1/n

≥ n−2/nAeε/2

so
A = lim sup

n→∞,n∈S
I1/n
n ≥ Aeε/2,

a contradiction.
Finally, we note that any logarithmic potential is continuous q.e. [13,

p. 185], so Uµ and Uµ◦ψ
[−1]

are continuous q.e. Our hypothesis that ψ[−1] (E)

has capacity zero whenever E does ensures that Uµ◦ψ
[−1]

◦ ψ is continuous
q.e. also. Hence W µ is continuous q.e. and so (52) holds q.e. in [0, 1].

Next, we establish lower and upper bounds for A.
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Lemma 3.3. (a) There exist constants C1, C2 > 0 depending only on ψ
(and not on the subsequence S above) such that

C1 ≥ A ≥ C2. (53)

(b) In particular,
I (µ) <∞.

(c)

J (µ) = log
1

A
(54)

and

W µ = log
1

A
q.e. and a.e. (µ) in supp [µ] . (55)

(d) µ is absolutely continuous with respect to linear Lebesgue measure on
[0, 1]. Moreover, there are constants C1 and C2 depending only on ψ,
and not on S, such that for all compact K ⊂ [0, 1],

µ (K) ≤
C1

|log capK|
≤

C2

|logmeas (K)|
.

Proof. (a) Firstly as all zeros of Pn and Rn ◦ ψ lie in [0, 1], so

In =

∫ 1

0
Pn (x)Rn ◦ ψ (x) dx

≤ (diamψ [0, 1])n .

Here diam denotes the diameter of a set. So

A ≤ diamψ [0, 1] .

In the other direction, we use Cartan’s Lemma for polynomials [2, p. 175],
[9, p. 366]. This asserts that if δ > 0, then

|Rn (x)| ≥

(

δ

4e

)n

outside a set E of linear Lebesgue measure at most δ. Then

|Rn ◦ ψ (x)| ≥

(

δ

4e

)n

, x ∈ [0, 1] \ψ[−1] (E) .

22



By our hypothesis (13), we may choose δ so small that

meas (E) ≤ δ ⇒ meas
(

ψ[−1] (E)
)

≤
1

4
.

Next, Cartan’s Lemma also shows that

|Pn (x)| ≥

(

1

16e

)n

, x ∈ [0, 1] \F ,

where

meas (F) ≤
1

4
.

Then

Pn (x)Rn ◦ ψ (x) ≥

(

δ

64e2

)n

, x ∈ [0, 1] \
(

ψ[−1] (E) ∪ F
)

and so

In ≥

∫

[0,1]\(ψ[−1](E)∪F)
Pn (x)Rn ◦ ψ (x) dx

≥

(

δ

64e2

)n 1

2
.

Hence

A ≥
δ

64e2
.

(b) Since for x, t ∈ [0, 1] ,

log
1

|ψ (x) − ψ (t)|
≥ log

1

2diamψ [0, 1]
> −∞,

so for x ∈ supp [µ], Lemma 3.1(b) gives

log
1

A
≥W µ (x) ≥ Uµ (x) + log

1

2diamψ [0, 1]
.

Then

I (u) ≤ log
1

A
− log

1

2diamψ [0, 1]
.

(c) As µ has finite energy, it vanishes on sets of capacity zero. Then com-
bining Lemma 3.1 and 3.2,

W µ = log
1

A
both q.e. and a.e. (µ) in supp [µ] .
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Then the first assertion (54) also follows.
(d) This is almost identical to that of Theorem 1.2(d), following from the
fact that

W µ ≤ log
1

A
in supp [µ] .

Proof of Theorem 1.5. Assume that S, µ and A are as in the beginning
of this section. Assume that S#, µ#, A# satisfy analogous hypotheses. We
shall show that

A = A# and µ = µ#.

Our hypothesis on the zeros shows that

supp [µ] = supp
[

µ#
]

= K.

Then Lemma 3.3 shows that

W µ = log
1

A
q.e. in K

and

W µ#
= log

1

A#
q.e. in K.

Since I (µ) and I
(

µ#
)

are finite by Lemma 3.3, these last statements also
hold µ a.e. and µ# a.e. in K. Then

log
1

A
=

∫

W µdµ# =

∫

W µ#
dµ = log

1

A#
.

It follows that there is a unique number A that is the limit of I
1/n
n as n→ ∞.

Next,

J
(

µ− µ#
)

= J (µ) + J
(

µ#
)

− 2

∫

W µdµ#

= log
1

A
+ log

1

A
− 2 log

1

A
= 0.

As in Theorem 1.2(a), this then gives

µ = µ#.

This proof also shows that µ is the unique solution of the integral equation

W µ = C q.e. in K.
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�

We turn to the

Proof of Theorem 1.3. Let µ be a weak limit of some subsequence
{µn}n∈S of {µn}

∞
n=1. We may also assume that (50) holds. From Lemma 3.3,

µ has finite logarithmic energy, and from Lemma 3.2,

W µ ≥ log
1

A
q.e. in [0, 1] .

Moreover, by Theorem 1.2(c) and our hypothesis (21),

W νψ = J∗ q.e. in [0, 1] .

Then the last relations also hold µ a.e. and νψ a.e., so

J∗ =

∫

W νψdµ =

∫

W µdνψ ≥ log
1

A
.

Moreover, by Lemma 3.3(c),

W µ = log
1

A
µ a.e. in supp [µ]

so

J (µ) =

∫

W µdµ = log
1

A
≤ J∗.

Then necessarily

log
1

A
= J (µ) = J∗

and
µ = νψ.

�

Proof of Theorem 1.4. Assume first that ψ′′ is continuous in (0, 1) and
that for each x, t ∈ [0, 1] with x 6= t,

∂2

∂x2
K (x, t) > 0,

but that the support is not all of [0, 1]. We already know that [0, ε] ∪
[1 − ε, 1] ⊂ supp [νψ] for some ε > 0. Then there exist 0 < a < b < 1 such
that

(a, b) ∩ supp [νψ] = ∅. (56)
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We may assume that both

a, b ∈ supp [νψ] . (57)

Then by Theorem 1.2(c),

W νψ (a) ≤ J∗ and W νψ (b) ≤ J∗.

But in (a, b), which lies outside the support of µ, W µ will be twice continu-
ously differentiable, and by our hypothesis,

∂2

∂x2
W νψ (x) =

∫

∂2

∂x2
K (x, t) dνψ (t) > 0.

The convexity of W νψ forces in some (c, d) ⊂ (a, b)

W µ < J∗.

This contradicts Theorem 1.2(b).
Next, suppose that for x, t ∈ (ψ (0) , ψ (1)) with x 6= t,

∂2

∂x2

[

K
(

ψ[−1] (x) , ψ[−1] (t)
)]

> 0.

Consider

W νψ ◦ ψ[−1] (x) =

∫

K
(

ψ[−1] (x) , t
)

dνψ (t)

=

∫

K
(

ψ[−1] (x) , ψ[−1] (s)
)

dνψ ◦ ψ[−1] (s) .

We have
W νψ ◦ ψ[−1] (x) ≤ J∗ if x ∈ ψ (supp [νψ])

and at each point of continuity of W νψ ◦ ψ[−1], Theorem 1.2(b) gives

W νψ ◦ ψ[−1] (x) ≥ J∗.

We also see that for x ∈ [ψ (0) , ψ (1)] \ψ (supp [νψ]) ,

∂2

∂x2

[

W νψ ◦ ψ[−1] (x)
]

=

∫

∂2

∂x2

[

K
(

ψ[−1] (x) , ψ[−1] (s)
)]

dνψ◦ψ
[−1] (s) > 0.

If 0 < a < b < 1 and (56), (57) hold, then by Theorem 1.1(c),

W νψ ◦ ψ[−1] (ψ (a)) ≤ J∗ and W νψ ◦ ψ[−1] (ψ (b)) ≤ J∗
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so in some interval
(c, d) ⊂ (ψ (a) , ψ (b)) ,

the convexity gives
W νψ ◦ ψ[−1] < J∗

But then
W νψ < J∗ in (ψ (c) , ψ (d)) ,

contradicting Theorem 1.2(b). �

Proof of Theorem 1.6. Recall from (45) that

In =

∫ 1

0
SnQn ◦ ψ

and
|Sn (x)Qn ◦ ψ (x)|1/n = exp (−W νn (x)) .

Then much as in the proof of Lemma 3.1, 3.2, under the hypotheses (48)–
(50), we obtain

W ν ≤ log
1

A
in supp [ν]

and

W ν ≥ log
1

A
q.e. in [0, 1] ,

in particular at every point of continuity of W ν. Then the proof of Theo-
rem 1.3 shows that ν = νψ, and the result follows. �

We next prove an inequality for In, assuming the hypotheses (35)–(36).
Below, if α, β are probability measures on [0, 1], we set

mα,β := inf
[0,1]

Wα,β.

Proof of Theorem 1.7. Let β be a probability measure on [0, 1]. By
orthogonality, for any monic polynomial Πn of degree n, we have

In =

∫ 1

0
Pn (x)Πn ◦ ψ (x) dx.

Given a probability measure on [0, 1], we may choose a sequence of polyno-
mials Πn such that Πn has n simple zeros in [ψ (0) , ψ (1)], and the corre-
sponding zero counting measures converge weakly to β ◦ ψ[−1] as n → ∞.
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(This follows easily as pure jump measures are dense in the set of probability
measures.) As

W µ,β ≥ mµ,β in the closed set [0, 1] ,

we obtain, by Lemma 2.1,

lim sup
n→∞,n∈S

|Pn (x)Πn ◦ ψ (x)|1/n ≤ exp (−mµ,β) ,

uniformly in [0, 1]. Then

A = lim sup
n→∞,n∈S

I1/n
n ≤ exp (−mµ,β) .

Taking sup’s over all such β gives (38). The other relation follows similarly,
because of the duality identity (32). �
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