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Abstract

Let ¢ : [0,1] — R be a strictly increasing continuous function. Let P, be a
polynomial of degree n determined by the biorthogonality conditions

1 .
/ Py(@) 0 (@) de =0, j=01,....n—1.
0

We study the distribution of zeros of P, as n — oo, and related potential
theory.

1. Introduction and Results

Let ¢ : [0,1] — [¢ (0),% (1)] be a strictly increasing continuous function,
with inverse =Y. Then we may uniquely determine a monic polynomial
P, of degree n by the biorthogonality conditions

! : 0 ji=0,1,2,...,n—1
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P,, will have n simple zeros in (0, 1), so we may write
Py (x) =] (@ —zjn). (2)
j=1

The proof of this is the same as for classical orthogonal polynomials. Our
goal in this paper is to investigate the zero distribution of P, as n — oo.
Accordingly, we define the zero counting measures

1 n
7=1

that place mass % at each of the zeros of P,, and want to describe the weak
limit(s) of p, as n — co.

This topic was initiated by the second author, in the course of his inves-
tigations on convergence acceleration [8], [24], and numerical integration of
singular integrands. He considered [21], [22], [23]

¥ (z) =logz, x€(0,1)
and found that the corresponding biorthogonal polynomials are

mio=S v () () -

i=0 J

The latter are now often called the Sidi polynomials, and one may represent
them as a contour integral. Using steepest descent, the strong asymptotics
of P,, and their zero distribution, were established in [14]. Asymptotics for
more general polynomials of this type were analyzed by Elbert [7]. Exten-
sions, asymptotics, and applications in numerical integration, and conver-
gence acceleration have been considered in [15], [16], [25], [26]. Biorthogonal
polynomials of a more general form have been studied in several contexts
—see [5], [10], [11]. The sorts of biorthogonal polynomials used in random
matrices [3], [6], [12] are mostly different, although there are some common
ideas in the associated potential theory.

Herbert Stahl’s interest in this topic arose after he refereed [14]. He and
the first author discussed the topic at some length at a conference in honor
of Paul Erdés in 1995. This led to a draft paper on zero distribution in the
later 1990’s, with revisions in 2001, and 2003, and this paper is the partial
completion of that work. For the case ¢ (x) = 2% « > 0, we presented



explicit formulae in [18]. Rodrigues type representations were studied in
[17].

Distribution of zeros of polynomials is closely related to potential theory
[1], [20], [28], and accordingly we introduce some potential theoretic con-
cepts. We let P (€) denote the set of all probability measures with compact
support contained in the set £. For any positive Borel measure u, we define
its classical energy integral

1) = | [tor () dn ), (1)

and denote its support by supp[u]. Where appropriate, we consider these
concepts for signed measures too. For any set £ in the plane, its (inner)
logarithmic capacity is

cap (€) = sup {e_l(“) RS 73(5)}.

We say that a property holds q.e. (quasi-everywhere) if it holds outside a
set of capacity 0. We use meas to denote linear Lebesgue measure 0. For
further orientation on potential theory, see for example [13], [19], [20].

In our setting we need a new energy integral

T () = / / K () dp () dpe (8) (5)

where

K (z,t) = log + log

1
: (6)
¢ (z) = (1))
In [6], a similar energy integral was considered for v (t) = €', but with an
external field. The minimal energy corresponding to v is

J7 () = {J () : p € P([0,1])} (7)

Under mild conditions on v, we shall prove that there is a unique probability
measure, which we denote by v, attaining the minimum. For probability
measures [, v, we define the classical potential

U (z) = / log ——du (1), (8)

|z — ]

|z —t]

the mixed potential

W (z) = / log ——dyu (t) + / log

[ — 1]
= Ur @)+ 0" o (a), (10)



and the v potential
W () = Wt (3) = /K(:n,t) du (1) (1)

We note that potential theory for generalized kernels is an old topic, see for
example, Chapter VI in [13]. However, there does not seem to be a compre-
hensive treatment covering our setting. Our most important restrictions on
1) are contained in:

Definition 1.1. Let ¢ : [0,1] — [t (0),% (1)] be a strictly increasing con-
tinuous function, with inverse ¥[~1. Assume that 1 satisfies the following
two conditions:

()
cap (E) =0 = cap (1/)[_1} (E)) =0. (12)

(IT) For each € > 0, there exists 6 > 0 such that

meas (E) < § = meas <¢[_l] (E)) <e. (13)

Then we say that 1) preserves smallness of sets.

The conditions (I), (IT) are satisfied if 1) satisfies a local lower Lipschitz
condition. By this we mean that we can write [0, 1] as a countable union
of intervals [a, b] such that in [a,b], there exist C', & > 0 depending on a, b,
with

[ (z) = (t)] = Cft — =", 2,1 € [a,b].
We can apply Theorem 5.3.1 in [19, p. 137] to 1 ~! to deduce (12).

Using classical methods, we shall prove:

Theorem 1.2. Let v : [0,1] — [¢ (0),4¢ (1)] be a strictly increasing contin-
uwous function that preserves smallness of sets. Define the minimal energy
J*=J* () by (7). Then

(a) J* is finite and there exists a unique probability measure vy on [0, 1]
such that
J (vy) = J*. (14)

(b)
WY > J* q.e. in [0,1]. (15)

In particular, this is true at each point of continuity of W"v.



(c)
W¥v < J* in supp [vy] . (16)

and

WY = J* q.e. in supp [vy) . (17)

(d) vy is absolutely continuous with respect to linear Lebesgue measure on
[0,1]. Moreover, there are constants Cy and Cy depending only on 1,
such that for all compact K C [0,1],

Cq Cy

vy (K) < [log capK| = [log meas (K)| (18)
(e) There exists € > 0 such that
[0,e] U[1 —¢€,1] C supp [vy) - (19)
Let
I, = / Py ( n> 1. (20)
Theorem 1.3. Let v : [0,1] — [¢ (0),% (1)] be a strictly increasing continu-

ous function that preserves smallness of sets. Let {P,} be the corresponding
biorthogonal polynomials, with zero counting measures {p,}. If

supp [vy] = [0,1], (21)

then the zero counting measures {u,} of (P,) satisfy

fin = Vi, — 00 (22)
and
lim I}/™ = exp (—J*). (23)

The weak convergence (22) is defined in the usual way:

1
lim f @) dpy (t / f(t)duy (t
n—oo 0

for every continuous function f : [0,1] — R. We can replace (21) by the more
implicit, but more general, assumption that supp|v] contains the support
of every weak limit of every subsequence of (u,). We can at least prove
it when the kernel K, and hence the potential W"¥, satisfies a convexity
condition:



Theorem 1.4. Let ¢ : [0,1] — [ (0),4 (1)] be a strictly increasing contin-
uwous function that preserves smallness of sets. In addition assume that 1 is
twice continuously differentiable in (0,1) and either

(a) for x,t € (0,1) with x # t,

88—;K (z,t) > 0, (24)
(b) for z,t € (¥ (0),9 (1)) with z #t,
2
[k (@) e )] > 0 (25)
Then
supp [vy] = [0,1]. (26)

Example. Let a > 0 and

7;[)(:17)::17&7 336[071]'
Then either (25) or (26) holds and hence (21) holds. We show this separately
for « > 1 and for a < 1.

Casel a>1
We shall show that the hypotheses of Theorem 1.4 (a) are fulfilled. A
straightforward calculation gives that

2

A1) 2= (o 1 (6 ()~ () 55K (a1
— (@ — 1) + (a2 ) (2 — )2 —a(a— 1) 2% (2% — %) (x — ).
Writing s = tz, we see that
Az, t) = 22 H (s),
where

H(s):=(1—-sVY+a?(1-s5 -ala—1)1-s*)(1-5)7. (27

For s > 1, all three terms in the right-hand side of (27) are positive, so
H(s) >0. If 0 < s <1, we see that

H(s) = (1-=5")+a(l-s)2{a—(a—1)(1—-s}
> (1-59+a(l-s)?>0.



In summary, if @ > 1, we have for all z € [0,1] and s € [0,00)\ {1},
A (z,sx) >0

so the hypotheses (24) is fulfilled.

Case Il a <1
Here

v (2) = al/e

and

(1] (—1] - L !
K(w (33)71/1 (t)) _log ‘:El/a_tl/a‘ +10g ‘x—t’7

which is exactly the case 1/a > 1 treated above, so we see that the hypoth-
esis (25) is fulfilled.

Instead of placing an implict assumption on the support of vy, we can
place an implicit assumption on the zeros of { P, }, and obtain a unique weak
limit:

Theorem 1.5. Let ¢ : [0,1] — [ (0),v (1)] be a strictly increasing contin-
uous function that preserves smallness of sets. Let I C [0,1] be compact.
Assume that every weak limit of every subsequence of the zero counting mea-
sures {pn} has support K. Then there is a unique probability measure | on
K such that

fin = 1,1 — 00, (28)

and a unique positive number A such that

lim IY/" = A, (29)

n—~0o0

Here i s absolutely continuous with respect to linear Lebesgue measure, and
1s the unique solution of the integral equation

WH (x) = Constant, q.e. z € K, (30)

Moreover, then

1
WH (z) = log T aee e K.

We note that in [6], a related integral equation to (30) appears. We
shall also need the dual polynomials @, such that Q,, o1 are biorthogonal



to powers of x. Thus we define @),, to be a monic polynomial of degree n
determined by the conditions

1
/ Qu o (1) tdt = 0, (31)
0

j=0,1,2,...,n— 1. Because of this biorthogonality condition,

1 1 1
/OQnow(t)t"dtZ/o @now)m(t)dt:/o By (1) (b)" dt.
That is, , )
I, = /0 Po(8) (1) dt = /0 Qu o (t) tdt. (32)

The orthogonality conditions ensure that @, o9 has n distinct zeros {y;,}
in (0,1), so we can write

Quov (t) = (w®) — ¥ (ym)). (33)

[y

<

Let

We shall prove

Theorem 1.6. Let v : [0,1] — [¢ (0),4¢ (1)] be a strictly increasing contin-
uous function that preserves smallness of sets, and assume (21). We have
as n — oo,
1%2% i> Vi
We also prove the following extremal property for weak subsequential
limits of {p,}.

Theorem 1.7. Let ¢ : [0,1] — [ (0),4 (1)] be a strictly increasing contin-
uwous function that preserves smallness of sets. Assume that S is an infinite
subsequence of positive integers such that as n — oo through S,

fin = 1 (35)
Vp = v (36)

and
IMm A, (37)



where A € R and p,v € P([0,1]). Then

A<exp|— sup inf WH# (38)
peP((o,1]) [0,1]
and
A<exp|— sup inf W |. (39)
aeP((0,1]) [0,1]

Remarks. (a) This extremal property is very close to a characterization
of equilibrium measures for external fields. For example, with v as
above, let ) be the external field

Q= gl o ¥ on [0,1].
Then the second inequality above says
A<exp|— sup inf (U“+Q)].
aeP([0,1]) [0,1]

This is reminiscent of one characterization of the equilibrium measure
for the external field @ [20, Theorem 1.3.1, p. 43].

(b) Herbert Stahl sketched a proof that when v is strictly increasing and
piecewise linear, then (21) holds [27]. His expectation was that this
and a limiting argument could establish (21) very generally.

(¢) There are two principal issues left unresolved in this paper, that seem
worthy of further study:

(I) Find general hypotheses for supp[vy] = [0,1].

(IT) Find an explicit representation of the solution i’ of the integral
equation (30), that is of

1
/ log |z — t| 1! (£) dt
0

1
+/ log |1 () — 1 (t)| ' (t) dt = Constant, x € [0,1].
0

The usual methods (differentiating, and solving a Cauchy singular
integral equation) do not seem to work, even when v is analytic.



Next we show that if ¢ is constant in an interval, then the support of
the equilibrium measure should avoid that interval, as do most of the zeros

of {P,}:
Example. Let

2z, z€l0,3

(0 (l‘) = [1 2]

1, ze31]
Then it is not difficult to see that the equilibrium measure vy, must have
support [0, %] Indeed if i1 is a probability measure that has positive measure
on [a,b] C (3,1), then as

log =00, x,t€]la,b],

W (z) — o (t)]
SO

J () = o0.
Consequently,

1
J* = inf [2[ (1) + log 5] ,

1

where the inf is now taken over all y € P ([0, 5]) Then vy, is the classical

equilibrium measure for [0, %], namely

and ]

J* =2log8 + log 5= log 32.
In this case, we can also almost explicitly determine P,. The biorthogonality
conditions give for m of degree at most n — 1,

1

1/2
/ P, (z) 7 (2z) dx + 7 (1) / P, (z)dx = 0.
0 1/2

In particular, this is true for # = 1, so
1 1/2
/ P, (z)dr = — P, (z) dx,
1/2 0
and we obtain for any 7 of degree at most n — 1,

1/2
; P, (z)(m (2x) =7 (1)) dz = 0.

10



Then for every polynomial S of degree < n — 2,

1/2
P, (z)S (x)(1—2x)dx =0, (40)
0

1%] Then every
3l

This paper is organized as follows: in Section 2, we present a principle
of descent, and a lower envelope theorem, and the proof of Theorem 1.2. In
Section 3, we prove Theorems 1.3-1.7. Throughout the sequel, we assume
that ¢ : [0,1] — [¢(0),% (1)] is a strictly increasing continuous function
that preserves smallness of sets.

We close this section with some extra notation. Define the companion
polynomial to P,, namely

which forces P, to have at least n — 1 distinct zeros in [0,
weak limit of every subsequence of {u,,} has support in |0,

Ry (@) = [ (@ — o (7). (41)
j=1

It has the property that R, o has the same zeros as P,. Hence
P,(z)Ryov¢ (x) >0in [0,1]. (42)
Analogous to Ry, we define
Sn (t) = H (t - yjn) > (43)
j=1

so that
Sn (t) Qnov (t) >0, te [07 1] : (44)

Observe that I,, of (20) satisfies
1 1
In:/ Pn(:n)RnozZ)(:n)dx:/ Qnow () Sy (@)de>0.  (45)
0 0

2. Proof of Theorem 1.2

We begin by noting that for any positive measures o, 3, W is lower
semicontinuous, since a potential of any positive measure is, while 1 and
I~ are continuous. We start with

11



Lemma 2.1 (The Principle of Descent). Let {c,} and {3, }be finite positive
Borel measures on [0, 1] such that

lim a, ([0,1]) =1= nh_)ngoﬁn ([0,1]).

n—~0o0

Assume moreover that as n — oo,
E3
ap — O
E3

(a) If {z,,} C[0,1] and x,, — x0, n — 00, then

lim inf WP () > WP ().

(b) If K C [0,1] is compact and
WP >\ in K,
then uniformly in IC,

lim inf WP () > X,

n—oo
Proof.  (a) By the classical principle of descent,

lim inf U*" (z,,) > U* (z0) ,

n—oo

see for example, [20, Theorem 1.6.8, p. 70]. Next, we see from the
classical principle of descent and continuity of v, (=1 that

lim inf U%¥' ™ o 4p (zn) > U o 4 (zo) -

n—oo
Combining these two gives the result.

(b) This follows easily from (a). If (b) fails, we can choose a sequence (zy,)
in K with limit 2y € K such that

lim inf WP (2,) < X < WP (x) .

n—~o0

Recall our notation We» = W% We now establish

12



Lemma 2.2 (Lower Envelope Theorem). Assume the hypotheses of Lemma 2.1.
Then for q.e. x € [0,1],

liminf W (z) = W (z).

n—o0,nNES

Proof. We already know from Lemma 2.1 (the principle of descent) that
everywhere in [0, 1],

liminf W () > W (z).

n—o0,nES

Suppose the result is false. Then there exists € > 0, and a (Borel) set S of
positive capacity such that

liminf W (z) > W< (z) 4+ ¢ in S. (46)

n—oo,neS

Because Borel sets are inner regular, and even more, capacitable, we may
assume that S is compact. Then there exists a probability measure w with
support in S such that U% is continuous in C. See, for example, [20, Corol-
lary 1.6.11, p. 74]. As 1 and (=1 are continuous,

W — U 4 gort oy

is also continuous in [0, 1]. Then by Fubini’s Theorem and weak convergence

lim inf / Wedw = liminf / W¥da,
S S

n—oo,ne n—oo,ne

= /W“’da: /Wadw.

Here since K (z,t) is bounded below in [0, 1], we may continue this using
(46) and Fatou’s Lemma as

:/(Wa+a)dw—€

< /( lim inf W“") dw — ¢
n—o0,nES

< liminfs/Wa”dw—s.

n—oo,ne
So we have a contradiction. O

Next, we show that J* is finite, establishing part of Theorem 1.2(a):

13



Lemma 2.3. J* is finite.

Proof. This is really a consequence of Cartan’s Lemma for potentials. Let
= meas denote Lebesgue measure on [0,1]. Then for z € [0,1],

1 1 |
UH (x) = / log ——dt < 2/ log —ds
0 |z — ¢ 0 s

and U* is continuous. Now consider the unit measure g o=, By Cartan’s
Lemma [9, p. 366], if € > 0 and

- 1
A = {yGR:U”Ow[ 1 (y) >10gg},

then
p(A%) < 3ee.

With a suitably small choice of €, we then have by the hypothesis (13),

1
(=1 ( g¢ -
I <¢ (A )) <3
With this choice of ¢, let
B =[0,1]\p!1 (4%,

a closed set. Let
B

" u(B)

As p(B) > %, v is a well defined probability measure. Moreover, x € B =

Y (z) ¢ A%, and

voyl=1l _ ; oyl =11 T
U o9 () 7 (B) [U o (x)—U OT,Z)(SE)]
1 1
i [log 108 (2116 lagou)| = o < o

IN

Then
J<JWw)<I(v)+Ch< oc.

14



Proof of Theorem 1.2. (a) We can choose a sequence {ay, } of probability
measures on [0, 1] such that

lim J (o) = J*.

n—oo

By Helly’s Theorem, we can choose a subsequence converging weakly to some
probability measure « on [0, 1], and by relabelling, we may assume that the
full sequence {«,} converges weakly to . Then {an o zp[_l]} converges
weakly to a o !71. By the classical principle of descent

liminf I (o) > I (@)

n—oo
and

liminf I (an o w[_l}) >1 <a ° ¢[_1}) )

n—oo

or equivalently,

. 1
hnrr_l)gf//log mdan (x) day, (1)

1
> //log mda (z)da(t).

See, for example, [20, Thm. 1.6.8, p. 70]. Combining these, we have
J* =liminf J (ay,) > J (o),

n—oo

so « achieves the inf, and is an equilibrium distribution. If 3 is another such
distribution, then the parallelogram law

1(3+m)+7(Fla-m) = JUE@+I@) =T

gives

J(%@-ﬁ)) :J*—J<%(oz—|—ﬁ)> <0,

as 3 (a+ ) is also a probability measure on [0, 1]. Here

J(%(a—ﬁ)) :I<%(a—ﬁ)> +I<% (aow[‘”—ﬂow[‘”D,

and both terms on the right-hand side are non-negative as both measures in-
side the energy integrals on the right have total mass 0. See [20, Lemma 1.1.8,

p. 29]. Hence

15



so a = [ [20, Lemma I.1.8, p. 29].
(b) Suppose the result is false. Then for some large enough integer ny,

1
E, = {xe [0,1] : W™ (x)gJ*——},
n0

has positive capacity and is compact, since W*% is lower semi-continuous.
But,

/W”wduw =J () =J",

so there exists a compact subset sy disjoint from £ such that

1
Wvv >J— — ckE
(‘T) 277,07 x 2

and
m = Uy (EQ) > 0.

Now as F; is a compact set of positive capacity, we can find a positive
measure o on E7, with support in F1, such that U? is continuous in the plane
[20, Cor. 1.6.11, p. 74]. Then U™ is also continuous in (¢ (0),4 (1)], so
W7 is continuous in [0, 1]. We may also assume that

g (El) =m.

Define a signed measure o1 on [0, 1], by

g in E1
g1 = —y in E2
0 elsewhere

Here if n € (0,1),

T vy +101) = J (1) +277/W”¢d01 + 2 (o)

< J(u¢)+2n{/& [J* - nﬂ da—i—/Ez [J*— %} d(—uw)} 4127 (o)

= J (vy) + 2nm { {J* - i} - [J* - 2%0} } +n*J (1)

nm
=J (vy) — o + 02 (01) < J (vy)

16



for small n > 0. As o7 has total mass 0, so vy + no1 has total mass 1, and
we see from the identity

vy +nor = (1=n) vy g, + vyjo,\E, + 10

that it is non-negative. Then we have a contradiction to the minimality of

S ().
(c) Let x¢ € supp [vy] and suppose that

Wve (ZEQ) > J*.

By lower semi-continuity of W*¥  there exists ¢ > 0 and closed [a,b] con-
taining x( such that

W (z) > J* +¢e, z¢€la,bl.
We know too that
WY (z) > J* for q.e. & € supp [vy] .

Here as J* is finite, so I (vy) must be finite (recall that K (z,t) is bounded
below). Then vy, vanishes on sets of capacity 0, so this last inequality holds
vy a.e. (cf. [19, Theorem 3.2.3, p. 56]). Then

7o </ /[01]\[01’) W )

(J* +e) vy ([a,b]) + T vy ([0, 1] \ [a, b])
= J" +evy ([a,b]),

a contradiction.

(d) If cap(K) = 0, then as I (ry) < oo, we have also vy, (K) = 0, and
the inequality (18) is immediate. So assume that /C Csupp[vy] has positive
capacity, and let w be the equilibrium measure for . We may also assume
that IC C supp [vy], since

vy (KC) = vy (K Nisupp [vy)) -
Now, there exists a positive constant Cj such that

K (z,t) > —Cy, =,t€]0,1].

17



Then by (c), for z € K,

/K:EtdWJ)

IA

I / K (,8) dv (1)
[0,1\K
< J 4+ Cy

and hence for z € IC,

I *
/’Clog P ’de( ) < T+ Co+1log 2[¥ L) = C1- (47)

Here C is independent of IC, z. Now
1

©(t) =1
U~ (1) 08 Tk

for q.e. t € K and since v, vanishes on sets of capacity zero, this also holds
for vy, a.e. t € K. Integrating (47) with respect to dw () and using Fubini’s
theorem, gives

/ U (8) dvy (1) < O
IC

and hence

Uy (’C) log < 01

apk =
This gives the first inequality in (18), and then well known inequalities
relating cap and meas give the second. In particular, that inequality implies
the absolute continuity of p with respect to linear Lebesgue measure.

(e) Suppose that 0 ¢ supp [vy]. Let ¢ > 0 be the closest point in the support
of vy to 0. Then for z € [0, §], and for all ¢ € [c, 1], we have from the strict
monotonicity of ¢ that

K (z,t) < K (e,t),

so for such z,
1
W (z) = / K (z,t) dvy (t)
"
< / K (c,t)dvy (t) = W (c) < J*.
Thus in spite of the continuity of W*# in [0, ¢),
c
VTJJ * _
W < J% in [0, 2} ,

contradicting (b). Absolute continuity of vy, then shows that for some £ > 0,
we have [0,e] C supp [vy]. Similarly we can show that for some ¢ > 0,
[1 —¢€,1] Csupp[vy). O

18



3. Proof of Theorems 1.3—-1.7

Recall that y,, and v, were defined respectively by (3) and (34). Through-
out this section, we assume that S is an infinite subsequence of positive
integers such that as n — oo through S,

Hn = s (48)
Up — 1 (49)

and
/" — A, (50)

where A € R and p,v € P ([0,1]). In the sequel we make frequent use of
identities such as
[Po ()] "" = exp (~U" ()

and
|Pa () Ry 09 (2)|'/™ = exp (=WH (2)).

We begin with

Lemma 3.1 (An upper bound for WH).  (a) With the hypotheses above,
let [a,b] C [0,1] and assume that [a,b] contains two zeros of P, for
infinitely many n € S. Then

1
inf W* < log —.
[lrfb]W =%

(b) In particular, if g is a limit of two zeros of Py, as n — oo through S,
or xg € supp [p], then

1
WH (zo) < log 1

Proof. (a) We may assume (by passing to a subsequence) that for all n € S,
P, has two zeros in [a, b]. Assume on the contrary, that for some € > 0,

1
[1;115 WH > log qte (51)

Let z,, y, be two zeros of P, in [a,b] and let

Ry, (z) = R (2) / [(x = ¢ (20)) (& = ¢ (yn))] -
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Then we see that
P,(z)R} o (x) >0, x€[0,1]\][a,b],
and
0< P () Ry 0t (z) < [P (2) By 00 (2)| (410 o)™ € [0,1].

Moreover, as R; has the same asymptotic zero distribution as R,,, we see
from Lemma 2.1 and (51) that

lim sup ]Pn(a:)R:ow(x)\l/n < exp (=W (z))

n—o0,NES

— exp (- (2)) < Ae ™,

uniformly in [a,b]. Then by biorthogonality, and positivity of P, (x) R} o
¥ (x) outside [a, b),

1/n
Jim sup < / P, (2) RE o) () dm)
n—oo,nES [0,1]\[a,b]

1/n

= limsup < Ae”".

n—oo,nNeES

P, (z) R}, ot (x)dx
[a.b]

Of course Lemma 2.1(b) also gives

1/n
Jim sup < / |Pn(<p)R;;oq,z)(:n)|dm> < A=,
n—oo,nES (a,b]
SO
A = limsup I}/"

n—oo,nNES

1 1/n
< sy (0l p00)”" ([ 1720 By 00 (@) ds )

n—oo,nNES

< Ae”C.

This contradiction gives the result.
(b) This follows from (a), and lower semicontinuity of W*. O

Lemma 3.2 (A Lower bound for WH). At each point of continuity of WH
in [0, 1], we have

1
W* > log —. (52)

In particular, this inequality holds g.e. in [0, 1].
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Proof. Assume that a € [0, 1] is a point of continuity of W*, but for some
e >0,

1
WH (a) <log i 2e.

Then there exists an interval [a, b] containing a, such that

W“(x)glog%—a, x € [a,b].

By the lower envelope theorem (Lemma 2.2)

limsup (P, (z) Ry o (x))l/"

n—oo,neES

= exp <— liminf WH» (a:)) =exp (—WH (z)) > Ae®

n—oo,nNES

for q.e. z € [a,b]. Let
T, = {x € [a,b] : (P, (z) Rpot (:E))l/" > Aee/z}.

Then for each m > 1,
o
U7z
n=m

contains q.e. z € [a,b], so has linear Lebesgue measure b — a. Then for
infinitely many n, 7,, has linear Lebesgue measure at least n=2, so

1/n
m > < Pn(x)RnOQ/)(:E)d:L">
Tn
> n—2/nAee/2

SO
A = limsup I,l/" > Aet/?,
n—o0,NES
a contradiction.

Finally, we note that any logarithmic potential is continuous q.e. [13,
p. 185], so U* and U™ are continuous q.e. Our hypothesis that =1 (E)
has capacity zero whenever E does ensures that U poypl=1 1) is continuous

q.e. also. Hence W* is continuous q.e. and so (52) holds g.e. in [0,1]. O

Next, we establish lower and upper bounds for A.

21



Lemma 3.3. (a) There exist constants C1,Cy > 0 depending only on

(and not on the subsequence S above) such that

C1 > A>Cs.
(b) In particular,
I(p) < o0
(c) .
J (1) = log 1

and

1
WH = log 7 ¢ and a.e. (u) in supp[p].

(53)

(54)

(55)

(d) p is absolutely continuous with respect to linear Lebesque measure on
[0,1]. Moreover, there are constants Cy and Cy depending only on 1,

and not on S, such that for all compact K C [0, 1],

Ci Cs

K) < < .
HK) < [log capkC| — |logmeas (K)]

Proof. (a) Firstly as all zeros of P, and Ry, o % lie in [0, 1], so
1
I, = / P, (z) Ry ot (x)dx
0
< (diamy[0,1])".
Here diam denotes the diameter of a set. So

A < diamy [0, 1].

In the other direction, we use Cartan’s Lemma for polynomials [2, p. 175],

[9, p. 366]. This asserts that if § > 0, then

Rz ()

outside a set £ of linear Lebesgue measure at most . Then

0

Reov@lz (£) s cepaw @),
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By our hypothesis (13), we may choose d so small that
1
meas (£) < 0 = meas <¢[_l] (5)) < T

Next, Cartan’s Lemma also shows that

1 n
> -
Pz (1) selF
where ]
meas (F) < T
Then
By (2) Ryot(@)> (=02) . zelo 1]\(¢[—ﬂ (S)Uf)
n mn — 6462 9 )
and so
I, > / Py () R 0 9 () da
0,1\ (v[-1(£)uF)
IR
64e2 ) 2
Hence
as 0
~ 64e?
(b) Since for z,t € [0, 1],
log; > log; > —00
¢ (z) =4 (¢)] —  2diami) [0, 1] ’
so for = € supp [u]|, Lemma 3.1(b) gives
1 1
- > M > UM S —
log 12 WH(xz) > U" (x) + log Sdiamd 0.1]

Then
1

log .
8 Sdiamy [0, 1]

(c¢) As p has finite energy, it vanishes on sets of capacity zero. Then com-
bining Lemma 3.1 and 3.2,

1
I(U)Slogz—

1
WH = log 1 both qg.e. and a.e. (p) in supp [y].
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Then the first assertion (54) also follows.
(d) This is almost identical to that of Theorem 1.2(d), following from the
fact that

1
WH <log 1 in supp [y .
O
Proof of Theorem 1.5. Assume that S, and A are as in the beginning
of this section. Assume that S7, u#, A% satisfy analogous hypotheses. We

shall show that
A= A% and p = pu”.

Our hypothesis on the zeros shows that
supp [p1] = supp [u#] =K.
Then Lemma 3.3 shows that
1
WH =log 7 ae in K

and ]
wH' = log o 4e in K.

Since I (p) and I (u#) are finite by Lemma 3.3, these last statements also
hold p a.e. and p# a.e. in . Then

1
log% :/W“d,u# :/W“#d,uzlog yES

It follows that there is a unique number A that is the limit of ITIL/ "asn — o0.
Next,

J(u—u#) =J(u)+J<u#> —2/W“du#
= logl —|—logl —210gl =0.
A A A
As in Theorem 1.2(a), this then gives
p=p¥.
This proof also shows that y is the unique solution of the integral equation

WH =C q.e. in K.
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We turn to the

Proof of Theorem 1.3. Let u be a weak limit of some subsequence
{ttn}nes of {pn}re. We may also assume that (50) holds. From Lemma 3.3,

w has finite logarithmic energy, and from Lemma 3.2,
W > log% g.e.in [0,1].
Moreover, by Theorem 1.2(c) and our hypothesis (21),
WY = J* q.e. in [0,1].

Then the last relations also hold p a.e. and vy, a.e., so

1
J* = /W”’ﬁd,u = /W“duw > log T

Moreover, by Lemma 3.3(c),

WH = log% p a.e. in supp [u]
SO )
J(p) = /W“d,u = logZ < J*.
Then necessarily
log &y = 7 (4) = J*

and
n = I/w.

O

Proof of Theorem 1.4. Assume first that ¢” is continuous in (0,1) and

that for each z, t € [0,1] with = # ¢,
2

WK (IL’,t) > 0,

but that the support is not all of [0,1]. We already know that [0,e] U
[1 —¢e,1] C supp [vy] for some € > 0. Then there exist 0 < a < b < 1 such

that
(a,b) Nsupp [vy] = @.
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We may assume that both
a,b € supp [vy] . (57)
Then by Theorem 1.2(c),
WY (a) < J* and W"¥ (b) < J*.

But in (a,b), which lies outside the support of u, W# will be twice continu-
ously differentiable, and by our hypothesis,

o o
R Yy — _
S (@) / K (2,1)dv (1) > 0.

22
The convexity of W*¥ forces in some (¢,d) C (a,b)
WH < J*.

This contradicts Theorem 1.2(b).
Next, suppose that for z,t € (¢ (0),¢ (1)) with = # ¢,

aa—; K (v @) @) > o

Consider
Wou ) = K (o7 @) ) dv (1)
_ / K (W () 07 (s) ) dorg 0 017 (s)

We have
W o bl (2) < J* i 2 € 1) (supp [vy])

and at each point of continuity of W% o 1)[=1 Theorem 1.2(b) gives
W o= (2) > J*.
We also see that for z € [1 (0),% (1)] \¢ (supp [vy])

aa—; [va oyl (x)] = 88_; [K (w[—ﬂ (z), (8))] diyo=1 (5) > 0.

If0<a<b<1and (56), (57) hold, then by Theorem 1.1(c),

W ol (1 (a)) < J* and W o =H (4 (b)) < J*
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so in some interval
(c;d) C (¥ (a), 9 (b)),
the convexity gives
lew O¢[_1] < J*
But then
W < J%in (¢ (c), ¥ (d)),
contradicting Theorem 1.2(b). O

Proof of Theorem 1.6. Recall from (45) that

In:/OISnQnow

and
1S (2) Qn ot (2)[" = exp (~W" ().

Then much as in the proof of Lemma 3.1, 3.2, under the hypotheses (48)—
(50), we obtain

1
WY <log 1 in supp [V/]

and )
WY > log 7 e in [0,1],

in particular at every point of continuity of W¥. Then the proof of Theo-
rem 1.3 shows that v = v, and the result follows. O

We next prove an inequality for I,,, assuming the hypotheses (35)—(36).
Below, if a, 3 are probability measures on [0, 1], we set

My g = inf WP,
I o]

Proof of Theorem 1.7. Let  be a probability measure on [0,1]. By
orthogonality, for any monic polynomial II,, of degree n, we have

1
I, = /0 P, (z)I1, 09 (z) dx.

Given a probability measure on [0, 1], we may choose a sequence of polyno-
mials II,, such that IT,, has n simple zeros in [¢) (0), (1)], and the corre-
sponding zero counting measures converge weakly to 3o ¢[™1 as n — 0.
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(This follows easily as pure jump measures are dense in the set of probability
measures.) As
WHP > m, 5 in the closed set [0,1],

we obtain, by Lemma 2.1,

limsup [P, () I, 04 (2)["/" < exp (=mys),

n—oo,nNES
uniformly in [0, 1]. Then

A= limsup I'™ < exp (—myp) .

n—oo,neS

Taking sup’s over all such /3 gives (38). The other relation follows similarly,
because of the duality identity (32). O
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