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Abstract

The Gauss quadrature formula for a weight W2 on the real line has the
form

> A P(zn) = f PW?
J=1

for polynomials P of degree < 2n — 1. In studying convergence of La-
grange interpolation in I, norms, p # 2, one needs forward and converse
quadrature sum estimates such as

> AiaW @) | PW F (230) <2 C [ | PWIF
j=1

with ' independent of n and P. These are often called Marcinkiewicz-
Zygmund inequalities after their founders. We survey methods to prove
these and the results that can be achieved using them. Our focus is on
weights on the whole real line, but we also refer to results for (—1,1) and
the plane. In particular, we present four methods to prove forward estimates
and two to prove converse ones.



1. Introduction

There is an intimate connection between Gauss quadrature sums and mean con-
vergence of Lagrange interpolation - hardly surprising, when both involve zeros
of orthogonal polynomials.

Let do: be a non-negative measure on R, and {p,(z}}22, be its orthonormal
polynomials, so that

/ PPl = O

If do(z) = w(z)dz, and we need to indicate the dependence on w, we write
palw, z), etc. Let
—00 < Tnp < Tp 1n < oo < T < OO

denote the zeros of p,(z) and let {};,,} denote the Christoffel numbers. The Gauss
quadrature formula is

n

Z)\jnp(mjn) = /Pd(]f,P S PZn—l-

j=t

Here P,, denotes the polynomials of degree < m. Let L,[f] € P,.—1 denote the
Lagrange interpolation polynomial to f at the zeros of p,, so that

Lulfl(am) = flem), 1 <G <n.

The connection between convergence of Lagrange interpolation and conver-
gence of Gauss quadrature is nowhere clearer than in the following result: Let f
be in the La(da) closure of the polynomials. Then

lim [ (f = La[f])*da =0 (L1)

if and only if for every polynomial P
Jm S Xul(f = PYa) = [(F = P)Pdas
=1

These relations are of course part of Shohat’s extension to the infinite interval of

the classic result of Erdos-Turan on Ls convergence of Lagrange interpolation.
For L,,p # 2, things are far more complicated and we need forward and con-

verse quadrature sum estimates, often called Marcinkiewicz-Zygmund inequalities.



Zygmund’s classic treatise contains a particularly elegant proof of both forward
and converse estimates in the case of trigonometric polynomials [48,Ch.X,pp.28-
29]. Let us illustrate the use of these in the context of weights of the form

do(z) = W?(z)dz
where W (z) is a non-negative function, the archetype being
W(z) = Ws(z) := exp(— | z |?),8 > L.

At first sight, the use of W2 for the weight, rather than W, seems strange, but is
standard for weights on the whole real line: it simplifies formulation of results.

1.1. Forward Quadrature sums in Lagrange Interpolation

Let us assume that we have a forward quadrature sum estimate of the form

> W X (w5a)pla0) | PW I (030) < C [ | PW I 6, (1.2)
=1

P € Pp_1, where C # C(n,P). Here ¢ is a slowly changing function. For our
purposes, we can take ¢(z) 1= (1 + z?)~ /7,

The main part of proving mean convergence of Lagrange interpolation in a
weighted L, norm is showing uniform boundedness in » of the operator L,. Let
1 <p<ooandg:=p/(p—1). Then by duality

| LW llzs=sup [ Lol /W

where the sup is taken over all g with || gW ||z, ®= 1. To proceed, we use the
partial sums

n—1
Salgl(z) = > epi(a); ey = /QPjW2 V3.
3=0
of the orthonormal expansion of g. Since g — S, [g] is orthogonal to P,_;, we have

[ 26W? = [ LRSI = 3 dn r3e) Sl in)

by the Gauss quadrature formula. Let us now assume that

| fW | (@) <z} =1+ z €R. (1.3)
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Then we obtain

| LalAGW2 1< 3 AW 2wl | SulalW | (2)

j=l : |

<C [18.0g | W,

if we use (1.2) with p = 1. Setting o,, := sign(S,[g]) and then using the symmetry
property of the operator S,,, we can continue this as

= C [ Sulgi(oasW W2 = C [ gSalongW W

< C N gW llzgwll SaloagW W iz, -

Assuming a suitable mean boundedness of the operator S, from L, to L, with
suitable weights, we can continue this as

<G|l gW {lL,@m C1 |l [oadW W lz,@= CCL [} & |lL,my==: Ca < o0
Thus we have shown that Vf satisfying (1.3),
| Lo[fIW || L,@< Coyn 2 L.
Here C3 # Ca(n, f). This and the reproducing property
Lp[Pl=P, PE€ P,

and the density of polynomials give convergence of {L,[f]|}52, in weighted L,
norms. .

‘We emphasise that this is just an illustration. The complete proofs are more
complicated and require breaking up the L, norm of L,[f] into several different
pieces; the quadrature sum often includes z;, only for those j satisfying | zj, |<
(1 — &)z, with fixed 0 < & < 1; and suitable factors are often inserted into the
weighted L, norms.

1.2. Converse Quadrature Sums in Lagrange Interpolation

Assume that we have a converse quadrature sum inequality of the form

N PW @< CLY AnW ™ (@gm) | PW [P (2n) 17 (1.4)
i=1
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for P € P, with C # C(n, P). Then

I LalfIW llp< CL XaW ™2 (ja) | WP (20) 17

j=1
n

< C{Z )\jnW_2($jn)(1 + .‘135,2-”)_1}1/?

i=t

provided (1.3) holds. This last quadrature sum converges as n — oo to

C{j;g(l + 22 tdg )P,

So again we have uniform boundedness in n for functions f satisfying (1.3), and
hence convergence.

Clearly converse quadrature sum estimates yield boundedness of {L,,} in a far
simpler way than forward ones. However as we shall see, they are usually more
difficult to prove and more restrictive in scope. There is also an almost incestuous
duality between forward and converse estimates, as we shall see.

Historically, forward and converse quadrature sum estimates were first consid-
ered by Marcinkiewicz and Zygmund in the 1930°s [19], {20]. As we have remarked,
Zyegmund’s treatise contains a concise elegant treatment of both forward and con-
verse estimates for trigonometric polynomials. R. Askey seems the first to have
applied these estimates in studying Lagrange interpolation for Jacobi weights in
the 1970’ [1], and subsequently P. Nevai studied and applied these for the Hermite
weight and Jacobi weights [34], {36], [37].

Indeed, it seems P. Nevai and his collaborators have been responsible for in-
tensively studying and developing these inequalities [33-37], [15]. The author and
his students have concentrated on the case of weights on the whole real line [3],
[4], [8], [16-18] while Y.Xu has considered generalized Jacobi weights [42-45]. A
particularly interesting method has been developed by H. Koénig [9], [10] in the
context of Banach spaces, but yields new results even in the scalar case. Complex
methods such as Carleson measures and H,, space techniques have been developed
by Zhong and Zhu [47], see also Peller [39].

In spirit, estimates for Lebesgue functions of Lagrange/ Hermite/ Hermite-
Fejer interpolation are related to the quadrature sum estimates we consider here,
but we shall not discuss them. See for example [23-26], [38], [41].

This paper is organised as follows: In Section 2, we outline four methods to
prove forward quadrature sum estimates and discuss some of the results that can
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be proved using them. In Section 3, we outline two methods to prove converse
quadrature sum estimates and results that they yield. In Section 4, we present
some conclusions, and some open problems.

As a preparation for subsequent sections, we present more notation, and we
also define classes of weights on the real line. Throughout, C, Cf, Cy, ... denote
positive constants independent of n, x and P € P,. The same symbol does not nec-
essarily denote the same constant in different occurrences. Given real sequences
{6.},{cn} we write

bn ~ Cn
if there exist C7, Cs such that

Cl S c'n,/bn S Cf2

for the relevant range of n. Similar notation will be used for functions and se-
quences of functions.

Our weights on R always have the form W?(z) = =22 where Q is even and
convex. Much as one distinguishes between entire functions of finite and infinite
order, one distinguishes between @ of polynomial growth at oo (the so-called
Freud weights) and of faster than polynomial growth at co (the so-called Erdos
weights). We define first a suitable class of the former:

Definition 1.1. Let W := ¢~ %, where Q : R — R is even, continuous in R, Q"
is continuous in (0,00), @ > 0 in (0,00), and for some A, B > 1,

:BQ”(:L‘)

A o)

< B,z € (0,00).

Then we write W € F.
The most important examples are W (z) = Ws(z) = exp(— | z |?),5 > 1.

Definition 1.2. Let W = e~ %, where @ : R — R is even, continuous in R, Q"
is continuous in (0,00), @', @' > 0 in (0,00) and T(z) := 1+ Q" (z)/Q'(z) is
increasing in (0, 00) with

lim T'(z) > 1; lim T{z) = oc.

o—0+ 00

Moreover, assume that for some C; > 0,5 =1,2,3,

zQ' ()
Q)
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and for every € > 0,

Then we write W 6 E.

The most important examples are W(z) = exp(— exp,(| = {?)), where § >
1,k > 1 and exp, = exp(exp(...exp())) denotes the kth iterated exponential.

For both Freud and Erdos weights, the Mhaskar-Rahmanov-Saff number a,
plays an important role. It is the positive root of the equation

1
n=l [ ant (0t ldf _ (1.5)
One of its important properties is
FPW llzw@=l PW ||Lo-ened: P € Pn (1.6)
and for 0 < p < o0,
I PW @< C | PW ||zy-anenl, P € P (1.7)

where C' # C(n, P) [27], [28], [11], [13]. Concerning its growth, we note that a,
is increasing in n, and grows roughly like Q=Y (n), where QY is the inverse of Q
on (0, 00). For those to whom it is new, a good example to think of is W = W,
Q(z) =} z |?, for which a, = Cn'/%, n > 1.

In presenting the various methods, we shall use the following estimates that
hold for the class F of Freud weights (all of which can be found in [11], [2]). Define

Yn(z) ;= max{n 23 1— |z | /a,}; _ (1.8)
and
Zon = T1n(l + n_g/g); Tntin o= Tun(l + n*2/3). (1.9)
Then . '
|1— =2 |< en™23 (1.10)
O,
and uniformly in j,n
NaW ™ @40) ~ @jtn = Tim ~ 24 @) (1-11)



The Christoffel numbers {A;,} are special cases of the Christoffel functions

(W2 z) = panl (PW)*(t)dt/ P*(x) (1.12)

which admit the estimate

A(W2, 2)W2(z) > C%¢;1/2(x),x eR. (1.13)
The orthogonal polynomials {p,{z)}52, for W* satisfy

| pa(z) | W(z) < G%zj;-‘/‘*(m),m eR,n> 1. (L14)

K

2. Forward Quadrature Sum estimates

In illustrating the four methods to prove forward quadrature sum estimates, we
shall assume that W € F, and that our weight is W?2. We shall also often use the
estimates {1.10) - (1.14).

2.A Neval’s Method

This simple method requires an estimate like (1.11) and a suitable Markov-
Bernstein inequality. The most influential papers (and possibly the first) papers in
which it was used were those of P. Nevai for Jacobi and Hermite weights [34], {36],
[37]. Given © € [zjn, Z;—1,], We have from the fundamental theorem of calculus,

| BW P () S| PW P () g [ 1P () | (PW)'(5) ] s

We can assume that u is the point in [Z,,%j_1,] where | PW |P attains its
minimum. If we now use our estimate (1.11) for the Christoffe]l numbers, we
obtain S

MnW ) | PW I (@50) SC [ | PW P (u)du

Tjn
FOZY 2 ag) [P | PW P () | (PWY(s) | ds.
T Tin

Summing over 7, and using the fact that 4, does not change much in (%, ;-1 5]

(see [11] if you want a proof), we obtain

i/\jnW‘Z(%) | PW 7 (2j0) < C /R | PW P (u)du
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+O 2 [ PW I (s) | (PW)(s) | 957 /%(s)ds. (2.1)

At this stage, we need a quite sophisticated Markov-Bernstein inequality of the
form
| (PWY 9 | @ < ow | PW {|r,®), P € P (2.2)

This was proved in [12] for the class .75' , using Carleson measures. Applying
H6lder’s inequality with parameters ¢ := p/(p — 1) and p to the second term in
(2.1) and then this Markov-Bernstein inequality give

& [ PW )| (PWY (s} | 952 (5)ds

l| PW |15 myll (PWY9 Y |lo,@< C || PW | g -
So we have shown
{3 AW ™ (@gn) | PW P (240)}' P < C || PW | -
=1

The real bugbear of this method, at least for full quadrature sums, is the
sophisticated Markov-Bernstein inequality (2.2). In his treatment of the Hermite
weight, P. Nevai used a somewhat weaker inequality, namely

n
| WY i< €2 || PW lzy 0, P € P 2.3
Later authors [8], [9] did likewise. Since for fixed 0 < e < 1, and | z;, |§ (1—&)a,,
On
)\jnW_z(-’Ejn) < C(Tj1n — Tjn) < 01?

the same arguments as above yield (assuming (2.3))

{3 MW w0) | PW P (z)}? < C || PW || ym) -

|Zjn|<(1—¢)an

This last inequality is typically enough for mean convergence of Lagrange inter-
polation. In fact, in it one may allow for fixed £ > 1, P € Py, rather than just
Pep,.

The following result is what D. Matjila and the author [17] could prove using
this method:



Theorem 2.1
Let W:=e 9 € F.
(a) Let 1 <p<oo,r>0and —oco <b<2. Then

Xl ag) | PW P (a) <C [ | PW P QW0 (24
— R

J

for all P of degree at most n+ rnt/3.
(b) More generally, let ¢ : R — (0, 00) be even, continuous with ¢” continuous
for large xz, and

. @ | ¢/(z) | T . o
P Sy <R Y@ e

Then for every P of degree at most n + rnl/3

> Xal X (@50)8(25n) | PW P () < C [ | PW P Q@OW* (D). (25)
j=1

For example, we could choose ¢(z) := (14 | z |)* where b € R, or ¢(z) :=
exp(| z |%) where a > 0 is small enough. The upper bound of n + rn!/? on the
degree of P is curious, but essential. If m = n + &,n'/3,£, — oo, one can choose
P € P, for which (2.4) fails with b=p =2 as n — oo. See [IT].

This method has also been used by H. Kénig [9], [10] in the context of Ba-
nach spaces with the Hermite weight and Jacobi weights, where instead of scalar
polynomials P, one has polynomials P with vector values or values in a Banach
space. The inequalities take the form

{ 2 XaW () | PW P (2)}? < C'{f | PW {7 ()de}'/?
[2jn| (1 —)an *
where || - || is the norm of the Banach space in which P takes values.

2.B The Large Sieve Method

This method is in spirit closely related to the large sieve of number theory,
and was already used by Marcinkiewicz and Zygmund [48, Ch.X,pp.28-29]. Let
us illustrate this for Freud weights. Our starting point is the estimate (1.13) for
the Christoffel function, which gives

(WA 2)W2(2) < Oz € R.

T
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The definition of A,,+; and the infinite-finite range inequality (1.7) lead to
| PW 2 (z) < caﬁ " (PWY(t)dt, P € Py € R,

In order to deal with L, norms other than p = 2, we fix a large positive integer ,
and we replace P by P! and W by W'. Since the Mhaskar-Rahmanov-Saff number

-of order ml for W' is just the Mhaskar-Rahmanov-Saff number of order m for W,

we obtain
| PW % (z) < 02 [ (PW)2(8)dt, P € P,z € R.

Hence if 0 < p < 21,
m _
| PW o ms O [ 1 PW P (@) [ PW |27 d
so for z € R,

| PW P (z) <|| PW || m) < C [ PW P (@)t (2.6)

It is now that the idea of the large sieve enters: It is largely . Nevai and his

collaborators that have been responsible for developing the method in this form

[15], [22], [35], [37]; R. Askey’s [1] variant of this depends on having a suitable non-

negative kernel for the Jacobi weight to replace K,,(x,t). We need the reproducing
kernel K,,(z,t) for the Chebyshev weight

n—1

Kol t) = —(142 3 T(z)T3(2)

F=1
(as usual Tj(cos @) = cos(j8)). It is well known [35,p.108] that
K,.(z,z) ~n,z € [-1,1];

| Kn{z,t) |< nmin{l bz te{-1,1].

-
‘'njz—1t)|
We now apply (2.6) to the polynomial P(t)K,(;2-, ;2=)* where k and x are fixed

and P € Py,. This polynomial has degree < 2kn in ¢, so we can apply (2.6) with
m = 2kn:

2k
L < 02 [ W ) | Ka =) e
Qgkn” O2kn Q2kn v —agkn Qokn Okn

| PW [P (2) | Kn(—
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and hence if kp > 2, our bounds for K, give

oz T A

| PW P () < 2 [ | pw p (ri(-

1
Gp J —aon A2kn  A2kn

)dt.

This holds uniformly for | z |< ag, with Cy # Ci(n, P,z). Choosing z = z;,, in
the above inequality gives

S AW )0 () | PW P (@) <C [ | PW P (6) o0t

i=1 —Q2kn
where .
il ; t
t) = — % MWz 2 (2, K2 ZLin. y ——
Z() nan; j (:r::, pim (myn) n(a%n ot
n 1
<C in{1 : 2
T
= A3kn Qakn

by our bounds (1.11) on the Christoffel numbers A;, and the bounds on K,,. Since
uniformly in j and n, the zeros of p,(W?2, z) satisfy

. a,
Tj1m— Tjn = C"ﬁ*

it is not difficult to estimate the sum by an integral, so that

S0) < G- [ minfl, —————— Vs

C2kn 2kn

= C’l% f min{1, L}2alu < Oy < o0,
an JR | |

Thus we have for P € Py,

S AW i) | PW P (@) <C [ PW P (it (27)

i=1

with C # C(n, P). As ,(t) > C(e), |t |< (1 — €)a,, we also deduce that

> MW Re) | PW P (@) <O [ | PW P (L. (28)

[2jnl<(1-€)an
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One of the powerful features of the estimates (2.7) and (2.8) is the freedom to
allow polynomials of degree kn and not just n. Thus if ¢ : R — (0,00) is such
that one can find polynomials R, of degree O(n) such that

Ro(z) ~ ¢(z),| = |< an (2.9)

and ¢! is “small” relative to W1, one can insert ¢ in (2.7) to obtain

S Mol g 0 @) 0lese) | PW P (232) < C [ | PW P ((e)a, (210

=1

with C' # C(P,n). In particular ¢(z) := (1+ | z |)°,b € R will do.

The first time the full quadrature sums (2.7} or (2.10) have been counsidered,
with the factor 1}/? in the left, is in the recent Ph.D thesis of Haewon Joung
[7], a student of P. Nevai. There not just ordinary polynomials, but generalized
non-negative polynomials PP were considered. These have the form

Pl)=|c| ][ lz—z"
j=1

where ¢, z; € C, and

m

d = deg(P) =D ;.
=1
Of course in the polynomial case, all r; are positive integers. Joung’s estimate
depends on first finding estimates for Christoffel functions that involve generalized
non-negative polynomnials.

The “large sieve” method has many advantages over the method that we called
Nevai’s method. 1t works for all p > 0, not just p > 1; it requires only estimates
on spacing of Christoffel functions and spacing of zeros, not the deeper Bernstein
inequality. Nevertheless, it does not seem to be able to yield the full quadrature
sum estimates (2.4), (2.5) in Theorem 2.1; the latter do not involve the factor

1/2
I

We note that in both the large sieve method and Nevai’s method, we are not
really using intrinsic properties of the zeros {x;,}, only estimates on their spacing.
Thus if a

titin — Lin > CE” Vj,n; max | tjn |< Can
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then the same methods yield
Z PW " (u)(t;0) S C [ | PW [ ¢, P € Pi.

We remark that both (2.7), (2.8) and (2.10) hold for W € F and P € Py, and
more generally probably for generalized non-negative polynomials of degree < kn,
via Joung’s method of proof. For W € £, the function %, has to be replaced by
another more complicated function in (2.7) and (2.10); (2.8} is still true, but is
not sufficient for mean convergence of Lagrange interpolation. S.Damelin and the
author [3] found it necessary to prove (using the large sieve method) that given
0<n<l,

> AWz d(am) | PW P (w50) S C [ | PW P ()60,
(23nl £(—shan R

where ¢ is any function for which (2.9) is possible. This is sharper than (2.8),
since for Erdos weights,
U/, — 1,1 — 00

The reader may find further applications and developments of this method in
[15], [30], [31], [37].

2.C The Duality Method

This method is based on applying duality to a suitable converse quadrature
sum estimate, and is in a way indicative of the almost incestuous relationship
between forward and converse estimates. It was apparently first used by H. Konig

(9] [10].
Let n be fixed and let w, be the discrete (pure jump) measure having mass
AinW=2(z;,) at z4,. Then

13 MW ) | PW P (252 = ([ | PW P )

=1 -

= sup/PWzg dp,
9

where the sup is taken over all ¢ with
N

14



Here of course ¢ = p/(p — 1). Since g needs to be defined only at the n points
{%jn}?_1, we can assume that g € P,_;. So

[ P dun = 3 Aia(Pg)(asn)

1

7

i

= [[PoW* <I PW lleyll 9W leyco

Now we make our major assumption: There is a converse quadrature sum estimate
of the form

| SW |le,m< C{3 AW 2(zsn) | SW |7 (2) 17, S € Pt (2.11)
j=1

Then

W llzgS CLO- a2 (e0) | gW [ ()} = C [ | gW |2 dpn = C.
=1

J

Thus we obtain

oMWz} | PW P (z) 12 < C || PW |lL,m -
=1

The attraction of this method is that it comes “for free”. After spending a
lot of effort proving a converse quadrature sum inequality involving the Ly norm,
we immediately obtain a forward quadrature sum estimate for the dual L, norm,
and one that holds for full quadrature sums. The disadvantage of this method is
that usually the range of ¢ for which we can prove (2.11) is quite restricted. For
example, in Konig’s work, he showed that (2.11) is true for the Hermite weight
only for 1 < ¢ < 4, and so one deduces the forward estimate for % < p < 00,
whereas it should hold in some form for all 1 < p < co. Another disadvantage is

that it works only for P € P,_;.
2.D Complex Methods and Carleson Measures

Complex methods have been used primarily by Zhong and Zhu [47] for for-
ward and converse quadrature sum estimates in the plane. A principal ingredient
are Carleson measures. The latter also underlie the Markov-Bernstein inequality
(2.2).
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Recall that a Carleson measure is a positive measure do on the upper half
plane, that satisfies

o(la - %h, ot 5h] x [0,K]) < Oh (2.12)

for all a € R, h > 0. Thus the o-measure of any square 5 in the upper-half plane
with base on the real line should be bounded by a constant times the side of S.
The smallest C in (2.12) is called the Carleson norm N(o) of o.

The point about Carleson measures is the following: Let 0 < p < oo, and
H? be the Hardy space of the upper-half plane, that is, the set of all functions f
analytic in the upper-half plane with boundary values f(z) satisfying

| S o=l f 1| zpmy< oo
Then
[1fPdo<N@) [ |1 P (a)da. (2.13)
R

Thus Carleson measures can be used to pass from the upper-half plane back to the
real line. To illustrate how this idea can be used in the context of Freud weights;
we follow closely the proofs given in [12] for (2.2).

Our first step is to pass from an estimate for | PW | (z), z € R, to one over
an arc in the upper-half plane, via Cauchy’s integral formula. The problem is that
W is not analytic! Seo for a given z, define

Hy(z) i= ¢~ Q@H+Q @)

Let us assume P has real coefficients. Cauchy’s integral formula and the reflection
principle give

| PW | (2) < %f; | PH, | (z + ee®)d8.
If we set W(z) := W(| z |) and choose
£ = £a() == 7V %(a),
n
it can be shown {12,Lemma 2.1,p.234] that for | z |< 215,
| Ho(z + £,(2)e?) |< CW(z + e.(2)e?)
with C # C{(n,z, P). Holder’s inequality gives for p > 1,

| PW P (z) < C [O "N PW PP (z + en(z)e)do.
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We deduce that

> e W (@) | PW P (@50) S Co Y XW 2 @gn) [ | PW P (@jnten(@sn)e)d8

i=t =1

- 'clf | PW [P do.

We see that the measure o, is supported on the union of semicircular arcs, centred
on the points {z;,}. If we can show that the Carleson norms N(o,,) of o, satisfy

N{o,) < Co,n>1, (2.14}

and if PW belongs to the Hardy space of the upper half plane, we could use (2.13)
to deduce that

> XaW 2 (@50) | PW [ (230) < CiCa [ | PW [P (s)da.

j=1

As W is not in general analytic, we have to use a function G, (2) that is, in
essence, derived from solving the Dirichlet problem for the domain C\[—a,, a,],
with suitable boundary values on [—a,,a,]. It was used by H.N. Mhaskar and
E.B. Saff in proving (1.5) and in a different form by E.A. Rahmanov [27], [28],
[40]. The properties of G, that we need are that G, is analytic in C\[—ax, ay]
with a simple zero at oo and for z € R, [12,pp.234-235),

| G*{z +0) |= lim | G"(z +iy) |= W(z), 2 € [~an, an]\{O};

W(| z+en(x)e? |} <C | Gz + ealz)e®) |, 2 |< %10, 6 € [0, 7).

Then
/IPW |Pdan§Cf|PG“ ? o,

< CN(o, PG™ ¥ (z)d
< ON(oy) [ | PC" [ (a)da
~CN@){[ | PWPdst [ | PGP dr}

< CN(s,) /a“ | PW [P dz.

—an
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In this last step, one uses a representation of PG™ as a Hilbert transform of a
function supported on [—ay, a,], and boundedness of the Hilbert transform from
Lpto Ly, p> 1.

What about (2.14)7 Our estimate (1.11) for the Christoffel numbers gives

JVPW P doy < O3 (@510 = 30) [ | PWF (@0 + en(msn)e?)do
j=1

< C’fmln /r | PW P (z + en(x)e’)d0 dx
Tpn JO

=:cf | PW [P d&,.

Of course the second last step requires proof, but is intuitively reasonable. In [12,
Lemma 2.4], it is shown that

N(a'n) § 03,7?, 2 1

and the same proof shows that (2.14) holds.

This method of proof is attractive, but as already remarked, it involves essen-
tially the same tools as to prove the Markov-Bernstein inequality (2.2).

Perhaps the only published paper where this method has been used to prove
quadrature sum estimates is that of Zhong and Zhu [47]. They proved:

Theorem 2.2 .
Let T be a C** smooth simple arc in C, that is T = {(t) : t € [a,b]} where
v" satisfies a Lipschitz condition of order 6 > 0. There emist {zn,}r—y C T,
n > 1, such that for 1 <p <oo and P € P, 1,
n—1
{301 Plzin) Pl 26s10 — 200 Y2 S C AL P |lipiry -
k=0

Here zppn = Zon.

Essentially the authors use a conformal map ¥ of the exterior of the unit ball
onto C\I", and form the Fejer points

2 = T2 Fmy o<k <n—1.
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As some of these may be too close, they modify these to obtain {2 , }7=}. Instead
of estimating P(2,) in terms of values of P on a semi-circle centre z;,, the
authors estimate P(z ) in terms of values of P on the “level curve”

T, .= {T((1+ %)e“) 1 € [0,2n]}

which encircles I'. A suitable Carleson measure is formed, and moreover it is
shown that for all f in a suitable Smirnov space of functions analytic inside I',,,

| fllz,@< Cl f llzp@a), C # Cln, f).

Other ingredients are Lagrange interpolation and careful estimation of the spacing

| Zkt1,0 — Zkn |, and of
n—-1

Qn(z) == [[(z — 20)-

k=0

A related paper of Zhong and Shen is [46]. Unfortunately this paper is not
available in South Africa, and the British Lending Library could not provide a
copy to the author. So the reader should please take note that {46] is excluded
from this survey. '

3. Converse Quadrature Sum Estimates

We shall present two methods for these, illustrated in the case of Freud weights.

3.A The Duality Method

This method already appears, in the setting of trigonometric polynomials, in
the treatise of Zygmund [48,ChX, pp.28-29]. It is based on duality and “deep”
results on mean boundedness of orthogonal expansions. Let 1 < p < oc and
g=p/(p—1). Let P € P,_;. We have

| PW lly=sup [ gPW

where the sup is taken over all g with || gW ||;,@®= 1. By orthogonality of
g — Snlg] to Pp_1, and then by the Gauss quadrature formula,

[ 9P = [ S.LlPW? = Y\ (PS.faD) )
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< {é MW H(@n) | PW [P (mjn)}lfp{é MW (@jn) | SulglW |2 (4) }4

=] T1 X Tg.

Let us suppose that we have a suitable forward quadrature sum estimate like (2.4)
and that the partial sum operators {S,} are bounded uniformly in n in a suitable
weighted setting. Then

T < Cy || SulglW ||, ®< Co || gW |ln,m)= Co.

So we have shown that

| PW |z,@< C{Zl XjaW 2(250) | PW [P (250)}'77.
=

This duality method is elegant but it depends on having a forward quadrature
sum estimate, and, much deeper, results on mean boundedness of orthogonal
expansions. It is the difficulty of proving the latter that severely restricts this
method. Chiefly it is a tool to pass from results on mean convergence of orthogonal
expansions to corresponding results for Lagrange interpolation.

Typically, the mean boundedness required above is valid only for % < g < 4
to ensure its validity for other values of ¢, one needs to insert suitable powers of
1+ | z | as weights on S, [g] and/ or g. Moreover, in proving even these, one needs
bounds on functions of the second kind or on p,.; — pr,—1. For Jacobi weights,
the requisite bounds are classical, but these bounds are not generally available in
the setting of Freud weights. This explains the severe restrictions of the following
result [14]:

Theorem 3.1
Let W(z) == exp(— |z |?),8 =2,4,6,,... . Let 4 <p<oocand nRc R
satisfy .
R>——; 3.1
p (3.1)
and ; <0,if R#1—1
1 4 )1 -
—min{R,1 - - —(1-—-)y P 3.2
r —min{ o 75 p){<o,ifR=1—}D (32

Then for P € P,_1,
| (PW)(z)(1+ {2 )7 @< C{i: AinW ™2 (@) | PW [P (@70) (14 | 2 [)2}P.
"~ (3.3)
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For p=4, (3.3) holds if (3.1) holds and

1
r—min{R,1— 1_3} < 0. (3.4)

The conditions on r, R are disconcerting, but it was shown in {14] that (3.2) is
necessary for (3.3). (It is not clear if (3.1} is also necessary). In particular, (3.2)
requires r < R, so that for p > 4, we can never have r = R in (3.3). However,
there are always r, R that satisfy (3.2), (3.1), one just needs to choose r small
enough. More generally, we proved:

Theorem 3.2
Let W € F, with the additional condition that the orthonormal polynomials

{pn} for W? satisfy
sup I Prt1 — Pna | (m)W(m)1pn($)_1/2 < Ca;1/27n > 1. (3'5)
xR

Then if (3.1) holds and

. 1
a;—mm{R,l—%}n%(l_:%) _ { O(l)) R 7£ 1-— »

O((logn)~R), R=1— (3.6)

i
P

we have (3.3). For p=4, if (3.1) and (3.4) hold, then we have (3.3).

It was also shown in [14] that a slightly weaker form of (3.6) is necessary for
the converse estimate. In both the above results, we restricted ourselves to p > 4;
For p < 4, the next method will give better results.

Since the theory of mean convergence of orthogonal expansions for weights on
(—1,1) is far more developed than that for weights on R, it is hardly surprising
that more impressive results can be achieved by this duality method for weights
on (—1,1). Here is a result of Yuan Xu [45,p.82] for generalized Jacobi weights
that extends earlier results of P. Nevai. Recall that a generalized Jacobi weight
has the form

M
’UJ(CC) = H I 'T_tj |ﬂj:$ € (Mlal)
j=1

where
—l=t <ty <. <ty=LGeRI<j<M.
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(It is possible that some 3; < —1). We call i a generalized Jacobi distribution
if it is integrable and has the form w, where w is a generalized Jacobi weight,
and 4 is a continuous function on [—1, 1] with ¢~ bounded on [—1, 1], and whose
modulus of continuity w satisfies

flﬁ)-(t—)dt<oo
o t '

Corresponding to @, we define

M-1
Tal@) = Y@ VIT T+ 2 [ (|2~ ty | 45 (VI a4 )P,
j=2 '

Theorem 3.3 Let u,v be generalized Jacobi distributions on (—1,1) and w
be a generalized Jacobi weight on (—1,1). Let 1 < p < o0 and ¢ := p/(p — 1).
Then if {zjn}, {An} are the Gauss points and weights for u,

1 n
{f1 LP@t) [P U(t)dt}l/;o < C{Z Ajnn(Zjn) | P(Tjn) |p}1/pa PePra
_ =
provided the following four conditions hold:
w™u € L[-1,1];
w' ™ (z)u(z){u(z) Vi - 22}~ € Li[-1,1];
wy > Cv in (~1,1);

v(z){u(z)V1 — 22} 772 € [1[-1,1].

Xu’s paper also contains a converse quadrature sum inequality that involves
not just the values of P, but also of its derivatives [45,p.83]. These are useful in
studying mean convergence of Hermite interpolation. |

3.B Konig’s Method

Konig’s method is based on Lagrange interpolation, a clever estimate for
Hilbert transforms of characteristic functions of intervals, and bounds on the
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norms of linear operators derived via Holder’s inequality. It is technically the
most difficult amongst those we have presented, but is extremely powerful, and
relatively direct - it does not depend on deep results such as mean convergence of
orthogonal expansions or Markov-Bernstein inequalities.

We shall need some extra notation. Let

Lin o= [2jn, Bj—1,0); | Lin |= Tjmrn — Tjns L G <y
(recall g, = x1,(1 +n~2/%)) and the characteristic function of I, is denoted by
Xjn(Z) = x1;, (%)

The fundamental polynomials of Lagrange interpolation are

Pa(z) )
; = 1<7<n;
ljn(m) P;I(Ejn)(ﬁf . mj-n,)’ =1=n

The Hilbert transform H|[f] of f € L, (R} is

f @) dt, a.e. x € R.

le—t|ze § —

H{fl(z) := lim

g—0+

We write, for fixed P € P,_1,

Yim = o=V P(#jn)
T pu(#n)

| so that . |
P(s) = Ly[P](@) = af*pa(s) 3 —2—

=1 xr — a:jn

i 1 1
= a’:z,/szp'n (:E) Z yjn{

=1

HIxjn](x)}

& =T | L |

T

+arl'pn(@) ) ?jn Hlial(2) = Ji(2) + Ta(o). (3.7)

We first deal with the easier term J,. We shall use the bound (1.14) in the form

5 | (@) < Caz2 | 1= L2 1 g e g,

T
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and also the following bound on the Hilbert transform: For all functions g with
support in [—2ay, 2a,],

x T

I 2761 | 1= L gy € gto) 11 - L2 081 gy 39)
with C # C(n,g) provided 1 < p < 4. This bound is a variant of M. Riesz’
theorem that the Hilbert transform is a bounded operator from L, to L,, 1 <
p < oo. For the case a, = v/2n , this lemma already appears in a 1970 paper
of B. Muckenhoupt [32]. It was in this paper that the modern study of weighted
inequalities for the Hilbert transform began, leading ultimately to Muckenhoupt’s
A, condition. Then

. T
| FaW | 2,7-20 2001= 05/ 1| (P W Z X)) ||1,(zI<20n)

;ml

|zl - Yin
<Cl|1- |1/ Z y I‘" IX:m( ) || L] <20n)
an in

f |1 - |i| |—P/4 d:z:}l/p
Ijn a.

Ty

| Yin -
Z l bnbye | 1y | g4
in

It can be shown that um'formly in j, n,
a2 | oW [ (@) ~| L |7 904 @0); | I |~ AW 2 (20)  (3.9)

and hence
} ?jn || ~ PW [ ()00 (25m). (3.10)
in
Hence we deduce that
| JoW || Lotam,20n < Co{ > AinW2(m1) | PW P () 7. (3.11)
j=1

The estimation of J;(defined by (3.7)) is more difficult. If we set

|2 — 2 [ 2] Ljn |

fin(m) =y () X{ Zinl Uml}

+ b | 2= %in (> 2 Iin |

|z—24nl { |.’.L':—.’.Cjn|
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then it can be shown that uniformly in j,n and z € [Zan, Z14),

| 1 1

T —Tjn | Ljn |
[14,p.542, Lemma 5.2} so that

Hlxjnl(®) | 0% | oW | () € Cfinl2)

| SW | < OZ | Yin | fjn ) T e [-’Enmmln]-
Then as each f;, doesn’t change much in each Ij,,

| AW | Lolenn,a1a < C’{Z | Zen | [Z | Y | Sin(zan) I
k=2 =1
Taking account of the form of f;,, we see that

|| J]-W .”LP[mnn,Iln]S C{Sl + 82 + 83}

where

ki i y n I T —_
1= (30 i | 135 Ly pryin,
k=2 i=1 Jn
J#k
5'2 - {Z ! I, | Z | Yin || Ijn | ¢;1/4($kn)]'p}1/p;
1] Tin — Tien | (1| B4 [)
#k
and

= (3 | Lo | [P 9 Y.

Exactly as for Jo, we deduce that
S3 < Cs{3 MnW ™ (zj) | PW [P () }7.
=1
If we use

Yo 4 agn) ~ [ | T [V

n

and our estimate (3.10) for y;,, then we obtain

50 < OIS (3 buy | i VP PW | )]}

k=1 j=1

25
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where by = by = 0 Vk, and otherwise

e

-2

1,1 1
bkj ::| Ik"n. |p+2| Ijn | F (mkn - mjn)

Defining the n x n matrix
B = (bkj)g,j=1
(note the reversed order of our indices), we obtain

51 < Co |l B llig—ig D2 1 Iin || PW [P (20)]77
i=1

< G5 || B gy [D2 AW (zjn) | PW P (20)] 7.
i=1

If we can show that
| B llig—iz< Co (3.13)

then we obtain the desired estimate for $;. Similarly

82 < Cs || D llig—ty D2 XjaW ™ (wn) | PW I ()7

=1
where
D= (dkj)z,_;l:l
and | |
Ln — Tin .
dpj o= by I L5
ki ki 1+|$:m| Vj:
If we can show that
| D i< Cr (3.14)
we obtain the desired estimate for S;. Then (3.12) and (3.11) yield
| PW ||z, < Csld_ MW () | PW [P (25)]'/7. (3.15)
§=1

We proceed to prove (3.13) and (3.14). Konig’s method to bound these depends
on the following:

Proposition
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Let (2, 1) be a measure space, and 8,7 : Q@ x Q — R. Define the operator.

Tlf@) = [ s@)fy)duly).

Let M >0, p,q > 1 with [+ =1. Assume that
sup [ | s(z,9) || r(z,y) I* duly) < M;

sup [ | s(z,) | r(z,y) |7 du(z) < M.

Then
| Te 2, @=L < M,

that is, Vf € L,(du),

LI P @} < M{ [ | £(2) P du@)}.

This proposition is easily proved using Holder’s inequality - see [4], [9]. To
prove (3.1} one chooses 2 := {1,2,...,n}, p({7j}) =1,1<j <n, and

| Lin | 1+ | Zga |
| Ien | 1+ | 24 |

)1/:0q_

S(kvj) = ka)T(kvj) = (
One can show that [14]

sup > | s(k,5) || (k. j) < M;

j=1

sup 3 | s(k,5) || r(k,5) |7< M,

with M # M(n). The actual proof of these involves re-expressing certain sums in
terms of integrals and then careful estimation of the integrals. Similarly to prove
(3.14), one chooses the same (2, 2 and chooses

| Zjn | 14| %em |

T T T, |)1/pq(1+ Lz |)1/q¢i/4g($jn)¢i/4q($kn)-
) jn

8(k, ) == dis;r(k, 5) == (
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This is what we could prove using Konig’s method:

Theorem 3.4
Let l <p<4dand WeF. Let
1 1
r<l—=;r<R;R>—. (3.16)
P P
Then
| (PW)(=)(1+ |z )" {2, =< C[ Z H@in) | PW P (zjn) (1+ | 2 |)FIV2.

(3.17)
In [14] it is also shown that the first two conditions in (3.16) are necessary.

For Erdos weights, we proved [4,Thm. 3.1]:

Theorem 3.5 Let 1 <p <4 and W € . Then (8.17) holds with r = R = 0.

For Jacobi weights, Kénig and Nielsen [10} proved the following elegant theo-
rem using this method. In fact they worked in the more general setting of Banach
spaces that admit a Hilbert transform bound. For simplicity, we quote this result
for the case of polynomials:

Theorem 3.6
Let u(z) = (1 — 2)*(1 + )5, a,8 > —1 be a Jacobi weight and {A\jn}, {Zjn}
be the corresponding Gauss weights and points. Let

4{a+1) 4(8+1)

e, B) = max{l, —— 5 2ﬁ+5};
da+1) 4B8+1),
m(e, ) s=max{l, 5 ot ek
and
. m{a, )
M) = ) -1

The following are equivalent:
(i) For n>1 and P € P,,

([ 1P P uie < O3 N | PP (a7

-1 1
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(ii)
e, B) <p < M(a, B).

In comparing to Xu’s Theorem 3.3, we note that in the “unweighted case” of
that theorem, for which there v = w;w = 1, and u is a Jacobi weight, Konig's
result is more extensive.

3.C Complex Methods

In Section 2D, we discussed the results of Zhong and Zhu for forward quadra-
ture sum estimates. The same framework of ideas of Carleson measures and
Smirnov spaces, contour integral error formulas for Lagrange interpolation, and
conformal maps, enabled them to prove:

Theorem 3.7
Let 1 < p < co. Under the hypotheses of Theorem 2.2, the points {zr.}iZs
there satisfy

n—1
| P ll,m< C{7 | Plakn) Pl Zes1n — 2em |}2, P P,_,.
k=0

It is notable that all the methods we have presented for converse quadrature
surn estimates work only for p > 1. Using operator theoretic methods, and com-
plex ones, Peller [39,p.480] proved a converse quadrature sum for (4n — 1)st roots
of unity that works even for p < 1, but involving polynomials of degree at most
n—1:

Theorem 3.8
Let 0 < p < oo. For polynomials P of degree <n —1,

4dn—1
C Z |P(e27rz‘j/(4n)) |p_

=0

1

2
_ it |p <
— [ 1P P <

n

It seems likely that the same methods should allow one to replace 4 by 1+ ¢.
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4. Conclusions

We have seen four methods for proving forward quadrature sum estimates. For
purposes of weighted approximation, I believe that the “large sieve” method is
the most versatile, and the most generally applicable, yielding adequate results
most generally. However when full quadrature sums need to be estimated, without
damping factors, Nevai’s method is the most appropriate. The duality and com-
plex methods seem to yield less in weighted approximation, though are powerful
in some circumstances.

For converse quadrature sum estimates, I believe that Konig’s method is the
most direct and powerful, though at present it works only for p < 4. The method
based on duality and mean convergence of orthogonal expansions is elegant but the
mean convergence results required are very deep. Perhaps chiefly it can be used
to pass from mean convergence of orthogonal expansions to mean convergence of
Lagrange interpolation.

There are several worthwhile open problems:

(I) Make Konig’s method for converse estimates work for all 1 < p < co. One
of the main sticking points seems to be to extend the Hilbert transform inequality
(3.8) in some form to p > 4, by inserting suitable damping factors on both sides.

(II) There seems to be little on converse quadrature sum estimates in L, for
p < 1. As far as the author could determine, Peller’s Theorem 3.7 is about the
only one. Surely 4n there can be replaced by n? And what about weights on
(—1,1) or R?

(III) There are gaps between the necessary and sufficient conditions for con-
verse quadrature sum estimates in [14]. The gaps arise because the necessary
conditions are derived from results on mean convergence of Lagrange interpola-
tion, while the sufficient ones are derived via Koénig’s and the duality method.
Close these gaps!

(IV} Yuan Xu's extensive result for generalized Jacobi weights Theorem 3.3
involves sufficient conditions. Find the necessary and sufficient ones, thereby
extending the scope of Konig’s Theorem 3.6. Most probably, Konig’s methods
will have to be used.

(V) Explore the implications of Peller’s methods for converse quadrature sum
estimates.
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