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Abstract. Let µ be a positive measure on the unit circle that is regular
in the sense of Stahl, Totik, and Ullmann. Assume that in some subarc J ,
µ is absolutely continuous, while µ′ is positive and continuous. Let {ϕn}
be the orthonormal polynomials for µ. We show that for appropriate ζn ∈

J ,
{
ϕn(ζn(1+

z
n ))

ϕn(ζn)

}
n≥1

is a normal family in compact subsets of C. Using

universality limits, we show that limits of subsequences have the form ez +
C (ez − 1) for some constant C. Under additional conditions, we can set C = 0.
Dedicated to L. Zalcman
Research supported by NSF grant DMS1800251

1. Results

Let µ be a finite positive Borel measure on [−π, π) (or equivalently on the unit
circle) with infinitely many points in its support. Then we may define orthonormal
polynomials

ϕn (z) = κnz
n + ..., κn > 0,

n = 0, 1, 2, ... satisfying the orthonormality conditions

1

2π

∫ π

−π
ϕn (z)ϕm (z)dµ (θ) = δmn,

where z = eiθ. We shall often assume that µ is regular in the sense of Stahl, Totik
and Ullmann [14], so that

lim
n→∞

κ1/n
n = 1.

This is true if for example µ′ > 0 a.e. in [−π, π), but there are pure jump and
pure singularly continuous measures that are regular. We denote the zeros of ϕn
by {zjn}nj=1. They lie inside the unit circle, and may not be distinct.
The nth reproducing kernel for µ is

Kn (z, u) =

n−1∑
j=0

ϕj (z)ϕj (u).

One of the key limits in random matrix theory, the so-called universality limit [4],
[5], [7], [8], [13], [16], [17] can be cast in the following form for measures on the unit
circle [6, Thm. 6.3, p. 559]:

Theorem A
Let µ be a finite positive Borel measure on the unit circle that is regular. Let
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J ⊂ (−π, π) be compact, and such that µ is absolutely continuous in an open set
containing J. Assume moreover, that µ′ is positive and continuous at each point of
J . Then uniformly for θ ∈ J, z = eiθ and a, b in compact subsets of the complex
plane, we have

(1.1) lim
n→∞

Kn

(
z
(
1 + i2πa

n

)
, z
(

1 + i2πb̄
n

))
Kn (z, z)

= eiπ(a−b)S (a− b) ,

where S (t) = sinπt
πt .

There are several refinements and generalizations of this result, see for example,
[11], [13], [16], [17].
In this paper, we shall use the universality limit to establish "local" asymptotics

for the ratio ϕn
(
z
(
1 + u

n

))
/ϕn (z) with u as our variable. Analogous results for

orthogonal polynomials associated with measures on compact subsets of the real
line were established in [9], [10]. In [9], we showed that if µ is a regular measure
on [−1, 1] for which µ′ (x) (1− x)

−α has a finite positive limit as x→ 1−, then the
orthonormal polynomials {pn} for µ satisfy, uniformly for z in compact subsets of
C,

lim
n→∞

pn

(
1− z2

2n2

)
pn (1)

=
J∗α (z)

J∗α (0)
,

where J∗α (z) = Jα (z) /zα is the normalized Bessel function of order α. In [10], we
showed that if µ is a regular measure with compact support in the real line, and
in some closed subinterval J of the support, µ is absolutely continuous, while µ′

is continuous, then for points yjn in a compact subset of Jo with p′n (yjn) = 0, we
have

lim
n→∞

pn

(
yjn + z

nω(yjn)

)
pn (yjn)

= cosπz

uniformly in yjn and for z in compact subsets of the plane. Here ω is the density
of the equilibrium measure of the support.
The case of the unit circle turns out to be more diffi cult, because there is no ob-

vious analogue of the point 1 at the endpoint of [−1, 1], or the local maximum point
yjn of |pn| inside the support. The derivative ϕ′n of the orthonormal polynomial
ϕn has all its zeros inside the unit circle. Moreover,

∣∣ϕn (eiθ)∣∣ might have only a
few local maxima for θ ∈ [−π, π]. One could consider points where paraorthogonal
polynomials assume local maximal absolute values and indeed we shall do this in
Lemma 4.4. However, for the most part we shall consider points and rotations of
them through small angles. We prove:

Theorem 1.1
Let µ be a positive measure on the unit circle that is regular in the sense of Stahl,
Totik and Ullmann. Assume that J is a closed subarc of the unit circle such that µ
is absolutely continuous and µ′ is positive and continuous in J . Let J1 be a subarc
of the (relative) interior of J . Let {zn}n≥1 be a sequence in J1. For n ≥ 1, we can
choose at least one of ζn = zn or ζn = zne

iπ/n such that from any infinite sequence
of positive integers, we can extract a further subsequence S such that uniformly for
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u in compact subsets of C,

(1.2) lim
n→∞,n∈S

ϕn
(
ζn
(
1 + u

n

))
ϕn (ζn)

= eu + C(eu − 1)

where

(1.3) C = lim
n→∞,n∈S

(
ζn
n

ϕ′n (ζn)

ϕn (ζn)
− 1

)
.

Moreover, |C| ≤ 1.

Next, we consider when we may take C = 0 :

Theorem 1.2
Let µ be a positive measure on the unit circle that is regular in the sense of Stahl,
Totik and Ullmann. Assume that J is a closed subarc of the unit circle such that
µ is absolutely continuous and µ′ is positive and continuous in J . Let J1 be a
subarc of the interior of J . Let {ζn} ⊂ J1 and S be an infinite sequence of positive
integers. The following are equivalent:
(I) Uniformly for u in compact subsets of C,

(1.4) lim
n→∞,n∈S

ϕn
(
ζn
(
1 + u

n

))
ϕn (ζn)

= eu.

(II)

(1.5) lim
n→∞,n∈S

ϕn
(
ζne
±iπ/n)

ϕn (ζn)
= −1.

(III) Both

(1.6) lim
n→∞,n∈S

|ϕn (ζn)|2 µ′ (ζn) = 1

and

(1.7) lim
n→∞,n∈S

Im

(
ϕn
(
ζne
±iπ/n)

ϕn (ζn)

)
= 0.

(IV) If {zjn}nj=1 are the zeros of ϕn, both

(1.8) lim
n→∞,n∈S

1

n

n∑
j=1

1− |zjn|2

|ζn − zjn|
2 = 1

and (1.7) holds.

Remarks
(a) If (1.4) holds uniformly in ζn ∈ J1 and for u in compact sets, our proof shows

that (1.6) holds uniformly in J1, and in particular
{
|ϕn|

2
}
is uniformly bounded

in J1. The latter requires far more of µ than the initial hypotheses stated. Indeed,
there are measures µ satisfying the initial hypotheses of Theorem 1.2 for which{
|ϕn|

2
}
is not uniformly bounded [1], [2].

(b) Note that (II) is essentially the special case of (I) with u = ±iπ.
(c) What sort of explicit assumptions on µ guarantee that (1.4) holds? If we have
uniform pointwise asymptotics of {ϕn} on J1, then we have (1.5) and hence (1.4).
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The most general conditions that guarantee these are due to Badkov [3]. Let µ
satisfy Szegő’s condition

∫ π
−π logµ′ (θ) dθ > −∞. Assume in addition that in J , µ

is absolutely continuous, and the local modulus of continuity ω (·) of µ′ satisfies the
Dini-Lipschitz condition ∫ 1

0

ω (t)

t
dt <∞.

Then Badkov proved uniform pointwise asymptotics that imply (1.5). We note that
the conclusion of Theorem 1.2 is new even for the measures considered by Badkov.
Indeed, the standard asymptotics for Szegő measures outside the unit circle, hold
only at a positive distance to the unit circle, while Badkov’s asymptotics hold only
on the unit circle.
Theorem 1.1 is a consequence of a more general result:

Theorem 1.3
Let µ be a finite positive Borel measure on the unit circle with infinitely many points
in its support. Assume that {ζn} is a sequence of numbers on the unit circle, and
that uniformly for a, b in compact subsets of C,

(1.9) lim
n→∞

Kn

(
ζn
(
1 + i2πa

n

)
, ζn

(
1 + i2πb̄

n

))
Kn (ζn, ζn)

= eiπ(a−b)S (a− b) .

The following are equivalent:
(a)

(1.10) sup
n≥1

1

n

∣∣∣∣∣∣
n∑
j=1

1

ζn − zjn

∣∣∣∣∣∣ <∞; sup
n≥1

1

n2

n∑
j=1

1

|ζn − zjn|
2 <∞.

(b) From every infinite sequence of positive integers, we can choose an infinite
subsequence S such that uniformly for u in compact subsets of C,

(1.11) lim
n→∞,n∈S

ϕn
(
ζn
(
1 + u

n

))
ϕn (ζn)

= eu + C (eu − 1) ,

where

(1.12) C = lim
n→∞,n∈S

(
ζn
n

ϕ′n (ζn)

ϕn (ζn)
− 1

)
,

and C is bounded independently of the subsequence S.

Remarks
(a) An equivalent formulation of (1.11) is

(1.13) lim
n→∞,n∈S

ϕn
(
ζne

2πia/n
)

ϕn (ζn)
= e2πia + C1e

πia sin (πa) ,

uniformly for a in compact subsets of C, for some constant C1.
(b) We note that one can dispense with the first condition in (1.10) provided we
assume that u is restricted to the half plane in which

Re

u n∑
j=1

ζn
ζn − zjn

 ≤ 0,
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which in turn is true provided u lies in the quadrant where

Reu ≤ 0 and (Imu)

Im

n∑
j=1

ζn
ζn − zjn

 ≥ 0.

The second condition in (1.10) is somewhat easier to satisfy than the first, see

Lemma 4.3 below. This yields normality of
{
ϕn(ζn(1+ u

n ))
ϕn(ζn)

}
n∈S

at least for u in a

suitable quadrant, and subsequences S of integers.
(c) It is possible to formulate a version of Theorem 1.3 where µ is replaced at the
nth stage by a measure µn so that we are handling varying measures, as was done
in [9], [10] for measures on the real line. Moreover, we could consider an infinite
subsequence of integers rather than the full sequence of positive integers.
It is instructive to consider converse results, where we assume only the limit (1.2):

Theorem 1.4
Let µ be a positive measure on the unit circle with infinitely many points in its sup-
port. Let S be an infinite sequence of positive integers and assume that for n ∈ S,
we are given ζn on the unit circle. Assume that uniformly for u in compact subsets
of C, we have the limit (1.2), for some constant C. Then uniformly for a, b in
compact subsets of C,

lim
n→∞,n∈S

1

n
Kn

(
ζn

(
1 +

2πia

n

)
, ζn

(
1 +

2πib̄

n

))
/ |ϕn (ζn)|2

= (2 ReC + 1) eiπ(a−b)S (a− b) .(1.14)

In particular, if µ′ (ζn) exists and is finite and positive for n ∈ S, then we have
the usual universality limit
(1.15)

lim
n→∞,n∈S

1

n
Kn

(
ζn

(
1 +

2πia

n

)
, ζn

(
1 +

2πib̄

n

))
µ′ (ζn) = eiπ(a−b)S (a− b)

iff

(1.16) lim
n→∞,n∈S

1

|ϕn (ζn)|2 µ′ (ζn)
= 2 ReC + 1.

Our proofs very heavily use the fact that there is a Christoffel-Darboux formula
for orthogonal polynomials on the unit circle. Since such a formula is lacking for
more general contours, it will be a significant challenge to extend the results of this
paper to such a setting.
Normal families of analytic functions play an important role in the research of

Larry Zalcman. They also play a role in our proofs, so this paper is appropriate for
dedication to Larry Zalcman.
This paper is organised as follows: Theorem 1.3 is proved in Section 2. Theorem

1.4 is proved in Section 3. Theorems 1.1 and 1.2 are proved in Section 4.

Acknowledgement
The author thanks the referee for a very careful reading of the paper, for finding
several misprints, and for providing references.
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2. Proof of Theorem 1.3

We shall use the Christoffel-Darboux formula [12, p. 125], [15, p. 293]

(2.1) Kn (z, t) =

n−1∑
k=0

ϕk (z)ϕk (t) =
ϕ∗n (t)ϕ∗n (z)− ϕn (t)ϕn (z)

1− t̄z ,

where

ϕ∗n (z) = znϕn

(
1

z̄

)
is the reversed polynomial. (Note that Simon [12, p. 120] sums to n in the definition
of Kn.) Let

(2.2) Hn (z, t) =
ϕ∗n (z)

ϕn (z)
− ϕ∗n (t)

ϕn (t)
.

Lemma 2.1
(a)

(2.3) Hn (z, t) =
tnKn

(
z, 1

t̄

) (
1− z

t

)
ϕn (t)ϕn (z)

.

(b)

(2.4) Hn (z, t) = Hn (z, u) +Hn (u, t) .

Proof
(a) From the Christoffel-Darboux formula,

tnKn

(
z,

1

t̄

)(
1− z

t

)
= tn

[
ϕ∗n

(
1

t̄

)
ϕ∗n (z)− ϕn

(
1

t̄

)
ϕn (z)

]
= ϕn (t)ϕ∗n (z)− ϕ∗n (t)ϕn (z) ,

so (2.3) follows from the definition of Hn (z, t).
(b) This is immediate from the definition of Hn. �

Lemma 2.2
Let {ζn} be a sequence on the unit circle. The following are equivalent:
(a)

(2.5) sup
n≥1

1

n

∣∣∣∣∣∣
n∑
j=1

1

ζn − zjn

∣∣∣∣∣∣ <∞; sup
n≥1

1

n2

n∑
j=1

1

|ζn − zjn|
2 <∞.

(b) The functions
{
ϕn(ζn(1+ u

n ))
ϕn(ζn)

}
n≥1

are uniformly bounded for u in compact sub-

sets of C.
Proof
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(a)⇒(b)
Now

log

∣∣∣∣∣ϕn
(
ζn
(
1 + u

n

))
ϕn (ζn)

∣∣∣∣∣
=

1

2

n∑
j=1

log

(
1 + 2 Re

(
uζn

n (ζn − zjn)

)
+

∣∣∣∣ uζn
n (ζn − zjn)

∣∣∣∣2
)

(2.6)

≤ Re

uζn
n

n∑
j=1

1

ζn − zjn

+
|u|2

2n2

n∑
j=1

1

|ζn − zjn|
2 .

Then given R > 0, we obtain from (2.5),

sup
n≥1

sup
|u|≤R

∣∣∣∣∣ϕn
(
ζn
(
1 + u

n

))
ϕn (ζn)

∣∣∣∣∣ <∞.
(b)⇒(a)
Let

A = sup
n≥1

sup
|u|≤1

log

∣∣∣∣∣ϕn
(
ζn
(
1 + u

n

))
ϕn (ζn)

∣∣∣∣∣ .
We use the fact that for each j,

Re

(
ζn

ζn − zjn

)
=

1− Re (ζnzjn)

|ζn − zjn|
2 ≥ 0,

so that

2 Re

(
ζn

n (ζn − zjn)

)
+

∣∣∣∣ 1

n (ζn − zjn)

∣∣∣∣2 ≥ 0.

Then also, for each j, we have from the identity (2.6) above,

e2A − 1 ≥ 2 Re

(
ζn

n (ζn − zjn)

)
+

∣∣∣∣ 1

n (ζn − zjn)

∣∣∣∣2 ≥ 0.

Choose C1 > 0 such that

log (1 + t) ≥ C1t for t ∈ [0, e2A − 1].

Then from (2.6),

A ≥ C1

2

n∑
j=1

(
2 Re

(
ζn

n (ζn − zjn)

)
+

∣∣∣∣ 1

n (ζn − zjn)

∣∣∣∣2
)

=
C1

n
Re

ζn n∑
j=1

1

ζn − zjn

+
C1

2n2

n∑
j=1

1

|ζn − zjn|
2 .

As both terms are nonnegative, we obtain

sup
n≥1

1

n2

n∑
j=1

1

|ζn − zjn|
2 <∞ .
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Next, we apply Cauchy’s inequalities for derivatives to fn (u) =
ϕn(ζn(1+ u

n ))
ϕn(ζn) . We

obtain ∣∣∣∣∣∣ζnn
n∑
j=1

1

ζn − zjn

∣∣∣∣∣∣ = |f ′n (0)| ≤ sup
|u|≤1

|fn (u)| ≤ eA.

�

Proof of Theorem 1.3
(a)⇒(b)

By Lemma 2.2, the functions {fn (u)}n≥1 =

{
ϕn(ζn(1+ u

n ))
ϕn(ζn)

}
n≥1

form a normal

family in C. Assume that S is an infinite subsequence of integers such that

lim
n∈S

fn (u) = G (u) ,

uniformly for u in compact subsets of the plane, where G is an entire function.
Note too that G (0) = 1. Let

∆n =
nϕn (ζn)

2

ζnnKn (ζn, ζn)
.

Then uniformly for u, v in compact sets, and u, v with G (u) , G (v) non-zero, Lemma
2.1(a) gives

∆nHn

(
ζn

(
1 +

u

n

)
, ζn

(
1 +

v

n

))

=

(
ζn
(
1 + v

n

))n Kn

ζn(1+ u
n ), 1

ζn(1+ v
n )


Kn(ζn,ζn) n

(
1− ζn(1+ u

n )
ζn(1+ v

n )

)
ζnn

[
ϕn(ζn(1+ u

n ))
ϕn(ζn)

ϕn(ζn(1+ v
n ))

ϕn(ζn)

]

=
ev

G (u)G (v)

Kn

(
ζn
(
1 + u

n

)
, 1

ζn(1+ v
n )

)
Kn (ζn, ζn)

(v − u) (1 + o (1)) .

Write u = 2πia, −v̄ = 2πib̄ so that v = 2πib. Here by the uniform convergence in
(1.9),

Kn

(
ζn
(
1 + u

n

)
, 1

ζn(1+ v
n )

)
Kn (ζn, ζn)

=
Kn

(
ζn
(
1 + i2πa

n

)
, ζn

(
1 + i2πb̄

n +O
(

1
n2

)))
Kn (ζn, ζn)

= eiπ(a−b)S (a− b) + o (1)

= e(u−v)/2S
(
u− v
2πi

)
+ o (1) ,
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so

∆nHn

(
ζn

(
1 +

u

n

)
, ζn

(
1 +

v

n

))
=

ev

G (u)G (v)
e(u−v)/2S

(
u− v
2πi

)
(v − u) + o (1)

= 2i
e(u+v)/2

G (u)G (v)
sin

(
v − u

2i

)
+ o (1) .

Now we use this in (2.4). We have for u, v, w ∈ C,

∆nHn

(
ζn

(
1 +

u

n

)
, ζn

(
1 +

v

n

))
= ∆nHn

(
ζn

(
1 +

u

n

)
, ζn

(
1 +

w

n

))
+ ∆nHn

(
ζn

(
1 +

w

n

)
, ζn

(
1 +

v

n

))
and hence for u, v, w with G (u)G (v)G (w) 6= 0,

e(u+v)/2

G (u)G (v)
sin

(
v − u

2i

)
=

e(u+w)/2

G (u)G (w)
sin

(
w − u

2i

)
+

e(w+v)/2

G (w)G (v)
sin

(
v − w

2i

)
.

Then

G (w) e(u+v)/2 sin

(
v − u

2i

)
= G (v) e(u+w)/2 sin

(
w − u

2i

)
+G (u) e(w+v)/2 sin

(
v − w

2i

)
.

By analytic continuation, this holds for all u, v, w. Next, we note the elementary
identity

ewe(u+v)/2 sin

(
v − u

2i

)
= eve(u+w)/2 sin

(
w − u

2i

)
+ eue(w+v)/2 sin

(
v − w

2i

)
.

(This can be verified directly, or by simply applying the identity above to the case
of normalized Lebesgue measure on the unit circle, where we know that ϕn (z) = zn

and G (u) = eu). Subtracting the two, we have

[G (w)− ew] e(u+v)/2 sin

(
v − u

2i

)
= [G (v)− ev] e(u+w)/2 sin

(
w − u

2i

)
+ [G (u)− eu] e(w+v)/2 sin

(
v − w

2i

)
.

Now we set w = 0 and use G (0) = 1 :

0 = − [G (v)− ev] eu/2 sin
( u

2i

)
+ [G (u)− eu] ev/2 sin

( v
2i

)
so that

G (v)− ev

ev/2 sin
(
v
2i

) =
G (u)− eu

eu/2 sin
(
u
2i

) .
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Then both sides are constant, so calling the right-hand side C1,

G (v) = ev + C1e
v/2 sin

( v
2i

)
= ev − 1

2
iC1 (ev − 1) .

To determine C1, we note that

G′ (0) = 1− 1

2
iC1

and also

G′ (0) = lim
n∈S

f ′n (0) = lim
n∈S

ζn
n

ϕ′n (ζn)

ϕn (ζn)
.

Thus

−1

2
iC1 = lim

n∈S

(
ζn
n

ϕ′n (ζn)

ϕn (ζn)
− 1

)
.

Now set C = − 1
2 iC1 to obtain (1.11). Since {fn}n≥1 are uniformly bounded, it

also follows that C is bounded independent of the subsequence.
(b)⇒(a)
Since C is bounded independently of the subsequence S, the uniform convergence
we are assuming gives that {fn} is uniformly bounded in compact subsets of the
plane. Lemma 2.2 gives (1.10). �

3. Proof of Theorem 1.4

Proof of Theorem 1.4
We assume that uniformly for u in compact subsets of C,

lim
n→∞,n∈S

ϕn
(
ζn
(
1 + u

n

))
ϕn (ζn)

= eu + C(eu − 1).

Equivalently, uniformly for a in compact subsets of C,

lim
n→∞,n∈S

ϕn
(
ζne

2πia/n
)

ϕn (ζn)
= e2πia + C(e2πia − 1).

Then, uniformly for a in compact subsets of C,

lim
n→∞,n∈S

ϕ∗n
(
ζne

2πia/n
)

ϕ∗n (ζn)
= lim

n→∞,n∈S
e2πia

[
ϕn
(
ζne

2πiā/n
)

ϕn (ζn)

]
= e2πia[e2πiā + C(e2πiā − 1]

= 1 + C̄
(
1− e2πia

)
.

Then assuming a 6= b,

gn (a, b) : =
1

n
Kn

(
ζne

2πia/n, ζne
2πib̄/n

)
/ |ϕn (ζn)|2

=
1

n
(
1− e2πi(a−b)/n

)


[
ϕ∗n(ζne2πib̄/n)

ϕ∗n(ζn)

] [
ϕ∗n(ζne2πia/n)

ϕ∗n(ζn)

]
−
[
ϕn(ζne2πib̄/n)

ϕn(ζn)

] [
ϕn(ζne2πia/n)

ϕn(ζn)

]


=
1 + o (1)

−2πi (a− b)

{ [
1 + C̄

(
1− e2πib̄

)] [
1 + C̄

(
1− e2πia

)]
−
[
e2πib̄ + C(e2πib̄ − 1)

] [
e2πia + C(e2πia − 1)

] } .
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This holds uniformly for (a, b) in compact subsets of C2 for which a 6= b. We
continue this as

=
1 + o (1)

−2πi (a− b)


1 + |C|2

(
1− e−2πib

) (
1− e2πia

)
+C

(
1− e−2πib

)
+ C̄

(
1− e2πia

)
− |C|2 (e−2πib − 1)(e2πia − 1)− e2πi(a−b)

−C(e2πia − 1)e−2πib − C̄(e−2πib − 1)e2πia


=

1 + o (1)

−2πi (a− b)e
iπ(a−b)

[
e−iπ(a−b) − eiπ(a−b)

] (
1 + C + C̄

)
= (1 + o (1)) (1 + 2 ReC) eπi(a−b)S (a− b) .

(3.1)

Thus we have (1.14). Next, we remove the restriction that a 6= b. Let r > 0. We
have (3.1) uniformly for |a| ≤ r and |b| = r + 1. But then the maximum modulus
principle and convergence continuation shows that we have (3.1) for all |a| , |b| ≤ r.
Finally, if we have the usual universality limit (1.15), then (1.16) follows from (1.14).
�

4. Proof of Theorems 1.1 and 1.2

As we have noted, it is not trivial to verify the conditions (1.10) in the case of
the unit circle. Recall that the zeros of ϕn are denoted by {zjn}

n
j=1. In the sequel,

we use the notation

(4.1) Rn (z) =

n∑
j=1

1− |zjn|2

|z − zjn|2
.

Lemma 4.1
Let |z| = 1. Then
(a)

(4.2) Re

[
z

n

ϕ′n (z)

ϕn (z)
− 1

]
=

1

2

[
1

n
Rn (z)− 1

]
.

(b)

(4.3) z
ϕ∗′n (z)

ϕ∗n (z)
− zϕ

′
n (z)

ϕn (z)
= −Rn (z) .

Proof
(a) Now

Re

[
z
ϕ′n (z)

ϕn (z)

]
=

n∑
j=1

1− Re (zzjn)

|z − zjn|2
.

Substituting the identity

−Re (zzjn) =
1

2

(
|z − zjn|2 − 1− |zjn|2

)
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in the sum and rearranging yields (4.2).
(b)

ϕ∗′n (z)

ϕ∗n (z)
− ϕ′n (z)

ϕn (z)

=

n∑
j=1

−zjn
1− zjnz

−
n∑
j=1

1

z − zjn

= −1

z

n∑
j=1

1− |zjn|2

|z − zjn|2
.

�
Next we turn to quantitative estimates.

Lemma 4.2
Let µ be a positive measure on the unit circle that is regular. Assume that J is
a closed subarc of the unit circle such that µ is absolutely continuous and µ′ is
positive and continuous in J . Let J1 be a subarc of the (relative) interior of J .
(a) As n→∞,

(4.4) n inf

{
1− |zjn| : zjn 6= 0 and

zjn
|zjn|

∈ J1

}
→∞.

(b) Uniformly for a in compact subsets of C, for z ∈ J1, and ζ = ζ (a, n) =
ze2πia/n,

(4.5) lim
n→∞

[
ϕ∗n (z)ϕ∗n (ζ)− ϕn (z)ϕn (ζ)

]
µ′ (z) = −2ieiπa sinπa,

and

(4.6) lim
n→∞

[
ϕ∗n (z)ϕ∗′n (ζ)− ϕn (z)ϕ′n (ζ)

] ζ
n
µ′ (z) = −ieiπa sinπa− eιπa cosπa.

(c) Uniformly for z ∈ J1,

(4.7) lim
n→∞

Re
[
ϕn (z)ϕn

(
zeiπ/n

)]
µ′ (z) = −1.

(d) Uniformly for z ∈ J1,

(4.8) lim
n→∞

1

n
Rn (z) |ϕn (z)|2 µ′ (z) = 1.

(e) Uniformly for z ∈ J1,

(4.9) Re

(
zϕ′n (z)

nϕn (z)
− 1

)
=

1

2

(
1

|ϕn (z)|2 µ′ (z) (1 + o (1))
− 1

)
.

Proof
(a) Suppose for infinitely many j, with zjn

|zjn| ∈ J1, we have

1− |zjn| ≤ C/n.

Write

zjn = ζn

(
1 +

i2πan
n

)
,
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where arg (zjn) = arg (ζn) and |ζn| = 1. We can assume that in a subsequence
an → a. Let

tjn = 1/zjn.

Then

tjn = ζn

(
1 +

i2πan
n

)−1

= ζn

(
1 +

i2πan
n

+O

(
1

n2

))
.

Now

Kn (zjn, tjn) =
ϕ∗n (tjn)ϕ∗n (zjn)− ϕn (tjn)ϕn (zjn)

1− t̄jnzjn
= 0

but from the universality (1.1), and the uniform convergence,

lim
n→∞

Kn (zjn, tjn)

Kn (ζn, ζn)
= lim
n→∞

Kn

(
ζn
(
1 + i2πan

n

)
, ζn

(
1 + i2πan

n

))
Kn (ζn, ζn)

= 1,

a contradiction.
(b) First we note the classical limit for Christoffel functions [13, p. 123, Thm.
2.16.1]: uniformly for z in J1,

(4.10) lim
n→∞

1

n
Kn (z, z) = µ′ (z)

−1
.

Next we recast a special case of the universality limit (1.1) in the form

(4.11) lim
n→∞

Kn

(
ze2πia/n, z

)
Kn (z, z)

= eiπaS (a) ,

uniformly for z ∈ J1 and a in compact subsets of C. Then by the Christoffel-
Darboux formula,

lim
n→∞

ϕ∗n (z)ϕ∗n
(
ze2πia/n

)
− ϕn (z)ϕn

(
ze2πia/n

)[
1− z̄

(
ze2πia/n

)]
Kn (z, z)

= eiπaS (a) .

Here by (4.10),

lim
n→∞

[
1− z̄

(
ze2πia/n

)]
Kn (z, z) = −2πiaµ′ (z)

−1
.

Then (4.5) follows. Because of the uniformity, we can differentiate (4.5) with respect
to a :

lim
n→∞

[
ϕ∗n (z)ϕ∗′n

(
ze2πia/n

)
− ϕn (z)ϕ′n

(
ze2πia/n

)] 2πize2πia/n

n
µ′ (z)

= 2πeiπa sinπa− 2iπeιπa cosπa.

Dividing by 2πi yields (4.6).
(c) Taking a = 1

2 in (4.5) gives ζ = zeiπ/n and

lim
n→∞

[
ϕ∗n (z)ϕ∗n (ζ)− ϕn (z)ϕn (ζ)

]
µ′ (z) = 2,

so that
lim
n→∞

[
(z̄ζ)

n
ϕn (z)ϕn (ζ)− ϕn (z)ϕn (ζ)

]
µ′ (z) = 2.
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Since (z̄ζ)
n

= −1, we obtain (4.7).
(d) Taking a = 0 in (4.6) gives,

lim
n→∞

[
ϕ∗n (z)ϕ∗′n (z)− ϕn (z)ϕ′n (z)

] z
n
µ′ (z) = −1

so as |ϕ∗n (z)| = |ϕn (z)| ,

lim
n→∞

[
zϕ∗′n (z)

ϕ∗n (z)
− zϕ′n (z)

ϕn (z)

]
|ϕn (z)|2

n
µ′ (z) = −1.

Now apply (4.3).
(e) This follows directly from (d) and Lemma 4.1(a). �

Lemma 4.3
Let µ be a positive measure on the unit circle that is regular. Assume that J is
a closed subarc of the unit circle such that µ is absolutely continuous and µ′ is
positive and continuous in J . Let J1 be a subarc of the (relative) interior of J .
(a) Uniformly for z ∈ J1,

(4.12)
zϕ′n (z)

nϕn (z)
− 1 = −1

2

{
1 + (1 + o (1))

ϕn
(
ze±iπ/n

)
ϕn (z)

+ o (1)

}
.

(b) For z ∈ J1, if |ϕn (z)| ≥
∣∣ϕn (zeiπ/n)∣∣, then

(4.13)

∣∣∣∣ ϕ′n (z)

nϕn (z)

∣∣∣∣ ≤ 1 + o (1)

and

(4.14) |ϕn (z)|2 µ′ (z) ≥ 1 + o (1) .

(c) In the contrary case where |ϕn (z)| <
∣∣ϕn (zeiπ/n)∣∣, both (4.13) and (4.14) hold

with z replaced by zeiπ/n.
(d) For z ∈ J1 and at least one of ζn = z, ζn = zeiπ/n, for which |ϕn (ζn)|2 µ′ (ζn) ≥
1 + o (1) ,

(4.15)
1

n2

n∑
j=1

1

|ζn − zjn|
2 = o (1) .

Proof
(a) Let σ = ±1. Because of the uniformity in z in (4.6), we can apply it with z
replaced by zeσiπ/n and a = −σ2 , so that ζ =

(
zeσiπ/n

)
e2πia/n = z, so

lim
n→∞

[
ϕ∗n
(
zeσiπ/n

)
ϕ∗′n (z)− ϕn

(
zeσiπ/n

)
ϕ′n (z)

] z
n
µ′
(
zeσiπ/n

)
= 1.

Let us set ξ = ξ (n, z) = zeσiπ/n, so that the last limit becomes

(4.16) lim
n→∞

[
ϕ∗n (ξ)ϕ∗′n (z)− ϕn (ξ)ϕ′n (z)

] z
n
µ′ (ξ) = 1.

Next from (4.3),

ϕ∗′n (z) = ϕ∗n (z)

[
ϕ′n (z)

ϕn (z)
− Rn (z)

z

]
,

so substituting in (4.16), we obtain

lim
n→∞

[
ϕ∗n (ξ)ϕ∗n (z)

[
ϕ′n (z)

ϕn (z)
− Rn (z)

z

]
− ϕn (ξ)ϕ′n (z)

]
z

n
µ′ (ξ) = 1
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⇒ lim
n→∞

[
ϕ′n (z)

ϕn (z)

{
ϕ∗n (ξ)ϕ∗n (z)− ϕn (ξ)ϕn (z)

}
− Rn (z)

z
ϕ∗n (ξ)ϕ∗n (z)

]
z

n
µ′ (ξ) = 1.

(4.17)

Here from the Christoffel-Darboux formula, and then the universality (1.1),

lim
n→∞

{
ϕ∗n (ξ)ϕ∗n (z)− ϕn (ξ)ϕn (z)

}
µ′ (z)

= lim
n→∞

(
1− ξ̄z

)
Kn (z, ξ)µ′ (z)

= lim
n→∞

σiπ

n
Kn

(
z, zeσiπ/n

)
µ′ (z) = 2,

recalling σ = ±1. Moreover,

ϕ∗n (ξ)ϕ∗n (z) =
(
ξ̄z
)n
ϕn (ξ)ϕn (z) = −ϕn (ξ)ϕn (z) = − |ϕn (z)|2 ϕn (ξ)

ϕn (z)
,

so from (4.8),

− 1

n
Rn (z)ϕ∗n (ξ)ϕ∗n (z)µ′ (z) = (1 + o (1))

ϕn (ξ)

ϕn (z)
.

Substituting all this in (4.17) yields

zϕ′n (z)

nϕn (z)
(2 + o (1)) + (1 + o (1))

ϕn (ξ)

ϕn (z)
= 1 + o (1) .

We obtain (4.12) after dividing by 2 (1 + o (1)) and subtracting 1.
(b) Our hypothesis |ϕn (z)| ≥

∣∣ϕn (zeiπ/n)∣∣ and (4.12) give (4.13). Next Lemma
4.2(c) gives

|ϕn (z)|2 µ′ (z) ≥
∣∣∣ϕn (z)ϕn

(
zeiπ/n

)∣∣∣µ′ (z) ≥ 1 + o (1) .

(c) Replacing z by zeiπ/n in (4.12), and choosing the − sign so that ze−iπ/n becomes(
zeiπ/n

)
e−iπ/n = z,

zeiπ/nϕ′n
(
zeiπ/n

)
nϕn

(
zeiπ/n

) − 1 = −1

2

{
1 +

ϕn (z)

ϕn
(
zeiπ/n

) (1 + o (1)) + o(1)

}
.

Since |ϕn (z)| <
∣∣ϕn (zeiπ/n)∣∣, we then obtain∣∣∣∣∣zeiπ/nϕ′n

(
zeiπ/n

)
nϕn

(
zeiπ/n

) ∣∣∣∣∣ ≤ 1 + o (1)

and then (4.13) follows with z replaced by zeiπ/n, while (4.14) follows from our
hypothesis, as in (b).
(d) Since |ϕn (ζn)|2 µ′ (ζn) ≥ 1 + o (1), we have from Lemma 4.2(d) ,

(4.18) lim sup
n→∞

1

n
Rn (ζn) ≤ 1.

Choose an arc J2 contained in the interior of J but such that the interior of J2

contains J1. For ζn ∈ J1, we have from Lemma 4.2(a) (applied to J2),∑
zjn∈J2

1

|ζn − zjn|
2 = o (n)

∑
zjn∈J2

1− |zjn|2

|ζn − zjn|
2 = o

(
n2
)
,
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by (4.18). Next, for ζn ∈ J1, and zjn /∈ J2, we have |ζn − zjn|
2 ≥ C so∑

zjn /∈J2

1

|ζn − zjn|
2 ≤ C

−1n.

Combining the last two estimates gives (4.15). �

Proof of Theorem 1.1
It follows from the previous lemma that the conditions (1.10) of Theorem 1.3 are
satisfied for n ≥ 1 and for at least one of ζn = zn or ζn = zne

iπ/n. By Theorem
1.3, from any subsequence of integers, we can extract another subsequence S for
which (1.11) holds. Moreover, from Lemma 4.3(a),

|C| = lim
n→∞,n∈S

∣∣∣∣ζnϕ′n (ζn)

nϕn (ζn)
− 1

∣∣∣∣ ≤ 1,

recall that above we had
∣∣ϕn (ze±iπ/n) /ϕn (z)

∣∣ ≤ 1 in the right-hand side of (4.12)
with appropriate z. �

Proof of Theorem 1.2
(I)⇒(II)
If we have (1.4), then necessarily C = 0 in Theorem 1.3, so that

(4.19) C = lim
n→∞,n∈S

(
ζnϕ

′
n (ζn)

nϕn (ζn)
− 1

)
= 0.

Lemma 4.3(a) gives

lim
n→∞,n∈S

ϕn
(
ζne
±iπ/n)

ϕn (ζn)
= −1.

(II)⇒(III)
Lemma 4.3(a) gives (4.19) and then Lemma 4.2(e) gives

(4.20) lim
n→∞,n∈S

|ϕn (ζn)|2 µ′ (ζn) = 1,

while we have also assumed (1.7).
(III)⇒(IV)
Lemma 4.2(d) and (1.6) give

lim
n→∞,n∈S

1

n
Rn (z) = 1

while we also assumed (1.7).
(IV)⇒(I)
From Lemma 4.2(d), we have (4.20), so from Lemma 4.2(e),

lim
n→∞,n∈S

Re

(
ζnϕ

′
n (ζn)

nϕn (ζn)
− 1

)
= 0.

We also have (1.7), so that (4.19) follows. Next, Lemma 4.3(d) and (4.19) show
that the conditions (1.10) of Theorem 1.3 are fulfilled. By Theorem 1.3, from every
subsequence of S, we can extract a further subsequence S1, for which

(4.21) lim
n→∞,n∈S1

ϕn
(
ζn
(
1 + u

n

))
ϕn (ζn)

= eu,
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recall that C given by (4.19) is 0. As the limit is independent of the subsequence
S1 of S, we obtain (1.4). �

We end by showing that we can find sequences {ζn} close to other given sequences
with limn→∞ |ϕn (ζn)|2 µ′ (ζn) = 1. Of course this on its own is not enough to give
the local limit, as we still need something such as (1.7). Recall [13] that given
|β| = 1, we can define the paraorthogonal polynomial

ϕn+1 (t;β) = tϕn (t)− β̄ϕ∗n (t)

and the related finite Blaschke product

Bn (z) =
zϕn (z)

ϕ∗n (z)
.

There are n + 1 simple distinct zeros of ϕn+1 (·;β) on the unit circle. Moreover,
they interlace for different β [13, p. 113 ff.].

Lemma 4.4
Assume the hypotheses of Theorem 1.1 on µ, J, J1. For n ≥ 1, let wn ∈ J1. There
exists a sequence {εn} with limit 0 and for large enough n, ζn = wne

2πidn/n, where
dn ∈ [0, 1 + εn], n ≥ 1, with

(4.22) lim
n→∞

|ϕn (ζn)|2 µ′ (ζn) = 1.

Proof
For n ≥ 1, let

βn = Bn (wn) =
wnϕn (wn)

ϕ∗n (wn)
.

Then

ϕn+1 (t;βn) = tϕn (t)− β̄nϕ∗n (t)

=
β̄n

ϕ∗n (wn)

[
twnϕn (wn)ϕn (t)− ϕ∗n (t)ϕ∗n (wn)

]
= − β̄n

ϕ∗n (wn)
(1− tw̄n)Kn+1 (t, wn) ,

by an alternative form of the Christoffel-Darboux formula [12, p. 954]. Note that
this also essentially appears as (2.4) in [18] and that our Kn+1 is Simon’s Kn. Then

ϕn+1

(
wne

2πia/n;βn

)
= − β̄n

ϕ∗n (wn)

(
1− e2πia/n

)
Kn+1

(
wne

2πia/n, wn

)
so ∣∣∣ϕn+1

(
wne

2πia/n;βn

)∣∣∣ |ϕn (wn)|

=
2π |a| (1 +O

(
1
n

)
)

n
Kn+1 (wn, wn)

∣∣∣∣∣Kn+1

(
wne

2πia/n, wn
)

Kn+1 (wn, wn)

∣∣∣∣∣
= 2µ′ (wn)

−1 |sinπa| (1 + o (1)) ,

(4.23)
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uniformly for a in compact subsets of the real line, by (1.1). Next ϕn+1 (wn;βn) = 0

and from the last formula, there exists an = 1+o (1) such that ϕn+1

(
wne

2πian/n;βn
)

=

0, while ϕn+1

(
wne

2πia/n;βn
)
6= 0 for all other a ∈ (0, an). Equivalently,

Bn (wn) = β̄n and Bn
(
wne

2πian/n
)

= β̄n

and there are no other zeros of Bn− β̄n in the closed minor arc In of the unit circle
joining wn and wne2πian/n. We claim that as t traverses In, Bn traverses the unit
circle exactly once. If not, as Bn is not constant, it would have to assume some
value ∆̄ 6= β̄n twice. Then the paraorthogonal polynomial ϕn+1 (·; ∆) would have
two zeros in the arc In, contradicting that its zeros interlace those of of ϕn+1 (·;βn)
[13, p. 116, Thm. 2.14.4]. It follows that we can find ζn ∈ In such that

Bn (ζn) = −β̄n,
or equivalently

ϕn+1 (ζn;βn) = −2β̄nϕ
∗
n (ζn) .

Write ζn = wne
2πidn/n, where for large enough n, dn ∈ (0, an). By (4.23),

2 |ϕn (ζn)| |ϕn (wn)|

=
∣∣∣ϕn+1

(
wne

2πidn/n;βn

)∣∣∣ |ϕn (wn)|

= 2µ′ (wn)
−1 |sinπdn| (1 + o (1)) ≤ 2µ′ (wn)

−1
(1 + o (1)) .

Hence, using also that µ′ is continuous,

(4.24) min
t∈In
|ϕn (t)|2 µ′ (t) ≤ 1 + o (1) .

In the other direction, from the definition of ϕn+1 (·;βn), and from (4.7),∣∣∣ϕn (wneπi/n)∣∣∣ |ϕn (wn)|µ′ (wn) ≥
∣∣∣Re

[
ϕn (wn)ϕn

(
wneπi/n

)]∣∣∣µ′ (wn) = 1 + o (1)

so that
max
t∈In
|ϕn (t)|2 µ′ (t) ≥ 1 + o (1) .

Combining this and (4.24) and the continuity of |ϕn (·)|2 µ′ (·), we see that there
must exist for large enough n, ζn ∈ In with the property (4.22). �
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