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Abstract

We study the expected number of real zeros for random linear combinations
of orthogonal polynomials. It is well known that Kac polynomials, spanned
by monomials with i.i.d. Gaussian coefficients, have only (2/7 + o(1))logn
expected real zeros in terms of the degree n. If the basis is given by the
orthonormal polynomials associated with a compactly supported Borel mea-
sure on the real line, or associated with a Freud weight, then random linear
combinations have n/v/3+ o(n) expected real zeros. We prove that the same
asymptotic relation holds for all random orthogonal polynomials on the real
line associated with a large class of weights, and give local results on the
expected number of real zeros. We also show that the counting measures of
properly scaled zeros of these random polynomials converge weakly to either
the Ullman distribution or the arcsine distribution.

Key words: Polynomials, random coefficients, expected number of real
zeros, random orthogonal polynomials.

1. Background

Problems on the number of real zeros for polynomials with random coef-
ficients date back to 1930s, and they are considered as some of the most clas-
sical in the area of random polynomials. These original contributions dealt
with the expected number of real zeros E[N,,(R)] for polynomials of the form
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P.(z) = Y i, ckz®, where {c;}5_, are independent and identically distrib-
uted random variables. Apparently the first paper that initiated the study
is due to Bloch and Pélya [4], who gave an upper bound E[N,(R)] = O(y/n)
for polynomials with coefficients selected from the set {—1,0,1} with equal
probabilities. Further results generalizing and improving that estimate were
obtained by Littlewood and Offord [26]-[27], Erdés and Offord [11] and oth-
ers. In particular, Kac [19] established the important asymptotic result

E[N,(R)] = (2/7+ o(1))logn asn — oo,

for polynomials with independent real Gaussian coefficients. More precise
forms of this asymptotic were obtained by many authors, including Kac [20],
Wang [37], Edelman and Kostlan [10]. It appears that the sharpest known
version is given by the asymptotic series of Wilkins [38]. Many additional
references and further directions of work on the expected number of real zeros
may be found in the books of Bharucha-Reid and Sambandham (1], and of
Farahmand [12]. In fact, Kac [19]-[20] found the exact formula for B[N, (R)]
in the case of standard real Gaussian coeflicients:

m, @) = 2 [ VAR 2

B2(z)

dx,
where

A= B~ S amd Ol =
Jj=0 j=1 o=

In the subsequent paper Kac [21], the asymptotic result for the number of
real zeros was extended to the case of uniformly distributed coefficients on
[—1,1]. Erdés and Offord [11] generalized the Kac asymptotic to Bernoulli
distribution (uniform on {—1,1}), while Stevens [35] considered a wide class
of distributions. Finally, Ibragimov and Maslova [17, 18] extended the result
to all mean-zero distributions in the domain of attraction of the normal law.

We state a result on the number of real zeros for the random linear com-
binations of rather general functions. It originated in the papers of Kac
[19]-[21], who used the monomial basis, and was extended to trigonometric
polynomials and other bases, see Farahmand [12] and Das [7]-[8]. We are
particularly interested in the bases of orthonormal polynomials, which is the
case considered by Das [7]. For any set E C C, we use the notation N, (E) for
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the number of zeros of random functions (1.1) (or random orthogonal poly-
nomials of degree at most n) located in E. The expected number of zeros
in E is denoted by E[N,,(E)], with E[N,(a,b)] being the expected number of
zeros in (a,b) C R.

Proposition 1.1. Let [a,b] C R, and consider real valued functions g;(x) €
C'(la,b]), 7 = 0,...,n, with go(z) being a nonzero constant. Define the

random function
z) =Y cigi(w), (1.1)
=0

where the coefficients c; are i.i.d. random variables with Gaussian distribu-
tion N'(0,02),0 > 0. If there is M € N such that G}, (x) has at most M zeros
in (a,b) for all choices of coefficients, then the expected number of real zeros
of Gn(x) in the interval (a,b) is given by

E[N,(a, b)] \F C}g B2 4, (1.2)

where

= Zg?(m), B(z) = Zgj(m)g;(m) and C(z Z[g (1.3)

Clearly, the original formula of Kac follows from this proposition for
gi(z) = 27, 7 = 0,1,...,n. For a sketch of the proof of Proposition 1.1,
see [28]. We note that multiple zeros are counted only once by the standard
convention in all of the above results on real zeros. However, the probabil-
ity of having a multiple zero for a polynomial with Gaussian coefficients is
equal to 0, so that we have the same result on the expected number of zeros
regardless whether they are counted with or without multiplicities.

2. Random orthogonal polynomials

Let W = €79, where @ : R — [0, 00) is continuous, and all moments

/CUjW2($) de, j=0,1,2,---,
R
are finite. For n > 0, let

P (x) = pn (W2, 2) = 7,8" + ...
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denote the nth orthonormal polynomial with v,, > 0, so that

/ pnme2 = 5mn‘

Using the orthonormal polynomials {p;}52, as the basis, we consider the
ensemble of random polynomials of the form

n

P.(z) = chpj(x), n €N, (2.1)
=0
where the coefficients c¢g, c1, ..., ¢, are i.i.d. random variables. Such a fam-

ily is often called random orthogonal polynomials. If the coefficients have
Gaussian distribution, one can apply Proposition 1.1 to study the expected
number of real zeros of random orthogonal polynomials. In particular, Das
[7] considered random Legendre polynomials, and found that B[N,(—1,1)]
is asymptotically equal to n/v/3. Wilkins [39] improved the error term in
this asymptotic relation by showing that B[N,(—1,1)] = n/v/3 + o(n) for
any € > 0. For random Jacobi polynomials, Das and Bhatt [9] concluded that
E[N,(—1,1)] is asymptotically equal to n/+/3 too. They also stated estimates
for the expected number of real zeros of random Hermite and Laguerre poly-
nomials, but those arguments contain significant gaps. The authors recently
showed [28] that if the basis is given by orthonormal polynomials associated
to a finite Borel measure with compact support on the real line, then random
linear combinations have n/v/3 + o(n) expected real zeros under mild condi-
tions on the weight. The second author and the third author recently also
showed [32] that if the basis is given by orthonormal polynomials associated
with a Freud weight, then random linear combinations have n/v/3 + o(n)
expected real zeros. The results of this paper provide detailed information
on the expected number of real zeros for random polynomials associated with
a large class of weights. In particular, they cover the case of random Freud
polynomials. Interesting computations and pictures of zero distributions of
random orthogonal polynomials may be found on the CHEBFUN web page of
Trefethen [36].

For the orthonormal polynomials {p;(z)}$2,, define the reproducing ker-
nel by

Kale) = Y pi(ons(0),
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and the differentiated kernels by
K®D (g, ) Zp]k) §” (), k,1eNu{o}.

The strategy is to apply Proposition 1.1 with g; = p;, so that
Az) = Knn(2,2), B(z) = K33 (z,5) and C(2) = K3 (z,2). (22)

We use universality limits for the reproducing kernels of orthogonal polyno-
mials (see Levin and Lubinsky [24]-[25]), and asymptotic results on zeros of
random polynomials (cf. Pritsker [31]) to give asymptotics for the expected
number of real zeros for a class of random orthogonal polynomials associated
with weights from the class F(C?).

Definition 2.1. Let W = ™9, where Q : R — [0, 00) satisfies the following
conditions:
(a) @ is continuous in R and Q(0) = 0.
(b) Q' is non-decreasing in R, and Q" exists in R\ {0}.
(c)
lim Q(t) =

[t|—o0

(d) The function

tQ'(t)
O

is quasi-increasing in (0,00), in the sense that for some C' > 0,

T(t) =

O0<z<y=T(z) <CT(y).

We assume an analogous restriction for y < x < 0. In addition, we assume
that for some A > 1,
T(t) > A in R\ {0}.

(e) There exists Cy > 0 such that

Qll(x)
Q) =

Then we write W € F(C?).

Q' ()]
Q(z)

, € R\ {0}.



Theorem 2.2. Let W = e™@ € F(C?), where Q is even. If the function T
in the definition of F(C?) satisfies

lim T(z) = a € (1, 00, (2.3)
then the expected number of real zeros of random orthogonal polynomials (2.1)
with independent real Gaussian coefficients satisfy
1 i
lim —E[N,(R)| = —.
lim E{N,(R)) = -
Theorem 2.2 is a combination of two results on zeros of random orthogonal
polynomials given below. Define the Ullman distribution g, for 0 < o < oo,

by,

’ (8 ! ta_l
J(2)=— | ———=dt, z€[-11],
o) W/|z| — [-1,1]
and for « = 00, the arcsine distribution p., by
, 1
z € [-1,1].

foo(T) = F———fmg,

Also define the contracted version of P,:
P:(s) := P.(ans), mne€N,

where a,, is the Mhaskar-Rakhmanov-Saff number associated with the weight
W, see [23], [29], [34] and Section 3 below.

For any set E C C, we use the notation N*(E) for the number of zeros
of random functions P(s) located in E. The expected number of zeros of
P*(s) in E is denoted by E[Nz(E)], with E[N; ([a,b])] being the expected
number of zeros in [a,b] C R.

Theorem 2.3. Let W = e~ € F(C?), where @ is even. Assume that the
function T in the definition of F(C?) satisfies (2.3). If [a,b] C (—1,1) is any
closed interval, then

Jim BN (f0, b)) = zpalla ) (2.4



We will establish a generalization of Theorem 2.3 for non-even weights
in Section 3. Define the normalized zero counting measure 7, = % > et Oz
for the scaled polynomial P*(s) of (??), where {z}}_, are its zeros, and 4,
denotes the unit point mass at z. We can determine the weak limit of 7, for
random polynomials with quite general random coefficients {c;}32,.

Theorem 2.4. Let the coefficients {c;}52, of random orthogonal polynomials
(2.1) be complex i.i.d. random variables such that B[|log |col|] < oo. If
W = e 9 € F(C?), where Q is even, and the function T in the definition
of F(C?) satisfies (2.3). Then the normalized zero counting measures Tp for
the scaled polynomials P*(s) converge weakly to p with probability one.

Related results on the asymptotic zeros distribution of random orthogonal
polynomials with varying weights were proved by Bloom [5] and Bloom and
Levenberg [6]. Theorem 2.4 allows to find asymptotics for the expected
number of zeros in various sets. In particular, we need the following corollary
for the proof of Theorem 2.2.

Corollary 2.5. Suppose that the assumptions of Theorem 2.4 hold. If E C C
is any compact set satisfying p(0F) = 0, then

lim ~E[N(E)] = u(E), (2.5)

n—oo M,
where NY(E) is the number of real zeros of Py(s) in E.

It is of interest to relax conditions on random coefficients ¢;, e.g., by
considering probability distributions from the domain of attraction of normal
law as in [17, 18].

3. Proofs

Our proofs require detailed knowledge of potential theory with external
fields, see [23] and [34].

Let W be a continuous nonnegative weight function on R such that W is
not identically zero and lim|_eo [z| W(z) = 0. Set Q(z) := —log W(z). The
weighted equilibrium measure py;, of R is the unique probability measure with
compact support Sy = supp gy C R that minimizes the energy functional

Iv] = —//loglz — t| dv(t)dv(z) + 2/Qd1/
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amongst all probability measures v with support on R. It satisfies

1

and

' 1
/ logmduw(t) +Q(2) >C, ze€eR,

where C' is a constant.
For a weight function W(z) = e~9®), for which @ is convex on R, the
Mhaskar-Rakhmanov-Saff numbers

a_, < 0<a,

are defined for n > 1 by the relatiogs
I zQ'(z)

n= dzr

" o V@ —a_n)(an — 1)

. L Q)
= = dz.
T Jan \/(37 — a_n)(an — T}
We also let i g
Op = 5 (an + |a—n|) and B, = P (@_p + an) .
For even @, a_, = —a,, and we may define a,, by

2 [ a,tQ (ant)
m™Jo V1 — 12
Existence and uniqueness of these numbers is established in the monographs

(23], [29], [34], but goes back to earlier work of Mhaskar, Saff, and Rakhmanov.
One illustration of their role is the Mhaskar-Saff identity:

dt = n. (3.1)

||[PW||poo®) = [|PW]|Lo0 (lam,an])»

which is valid for all polynomials P of degree at most n. We define the

Mhaskar-Rakhmanov-Saff interval A,, as A, := [a_n, a,]. The linear trans-
formation 5
Ly(z) = mg =, zER,
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maps A, onto [—1,1]. Its inverse is
LEU(s) = B, + 6n8, s € R.

For ¢ € (0,1), we let
|

Jn(e) = LEU[—1 46,1 — €] = [a_n + €0, an — €05] .
Then the equilibrium density is defined as

= Viz—a (e —z) [ Q(s) — Q(z) ds
" us a—n §—Z V(s —a_n)(an —s)

The equilibrium density satisfies [23, p. 41]:

, T € Ay,

an 1
/ log P S|an(s) ds+ Q(z) =C, z € Ay,

and

/ " log e ! Jon(9)ds + Q@) 2 Oz € R

Note that the measure o,(z) dz has total mass n:

/ ' on(z) dz = n.

We also define the normalized version of o,, as follows:

ot (s) = %an(L,;l (5)), sel-1,1].

1
/ or(s)ds =1.
-1

For details on o, and ¢ one should consult the book [23].

In particular, the Ullman distribution x/, is the normalized equilibrium
density for the standard Freud weight w(z) = e™7=1*l" on R, see Theorem 5.1
of [34, p. 240], where

P(g)I(

(
2T

Note that

Ya =

—~
R
_|_
~—



W}A

An alternative formula for the Ullman distribution follows from that for o,
above, namely,

' () 2”‘”32/ - c-11, (32
Hel®) = "12p o 1—t2 Y '
where ;

2 T tf.k'

B, =-— / dt.
™ Jo vV 1 —¢2
For n > 1, we also define the square root factor
p(2) = (& —a_y)(an — ), T €A, (3.3)

In the sequel C, Cy, Cy, - -+ denote constants independent of n, z, and polyno-

mials of degree < n. The same symbol does not necessarily denote the same
constant in different occurrences. We shall write C' = C(a) or C # C(a)
to respectively denote dependence on, or independence of, the parameter «.
Given sequences {c,}, {d,}, we write

Cn ~ dp
if there exist positive constants C; and C; such that for n > 1,
C1 < ¢p/dn < Co.

Similar notation is used for functions and sequences of functions.

We start with a general result, our only one that allows non-even weights:
Theorem 3.1 -
Let W = e @ € F(C?) and [a,b] C (—1,1) be any given closed interval.
Then as n — o0,

LB (0] = 2 [ ot dy

Proof (Revised)
The strategy is to apply Theorem 1.6 of [24]. It states that for all r,5 > 0
and any € € (0,1), we have uniformly for z € J, (¢) as n — oo,

MR 02 5 ()5 (e (L) o,

j=0 k=0
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where

Tr,s =

)

(_12 (r—s)/2

{ 0, r+ s odd
r+s+1

r+seven
In particular, uniformly for z € Jn41 (€),

W2 (z) K3} (w, )

Ons1 ()
Wi (2) K (@) _ Q@) o
Con @ on@ oW
W (@) K (@,2) _ (@@ \*,
(On+1 (z ))3 (Un+1 (x)) * 3

Next, from Proposition 1.1, for any closed interval [¢,q] C Jnt1(€) (Where
£, q may depend on n),

1 K'r(zll) ) Iu{—}fr] Ly D :
_E[N ([¢,q])] = nﬂ'/e \JK(:S)E ,xi (I:(U(l (1:,:1:;) dz.

n+l n41

=1+o0(l);

and

+o(1).

Substituting the asymptotics above, and cancelling, yields

LB [N (16, q)

Y R (ET N I (KT R

Next, we note that [24, p. 87, Lemma 5.1(a), (d)] uniformly for z € Jn41 (€),

Ons1(z) > C n

n+l
and , - -
Q' (z)] < C\/(T S - < Clé_n:,
so that )
@@ |0
On+1 (*’L')
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Thus, uniformly for all intervals [¢,q] C Jn41 (€),
1

LB [, (16, 0]
= [T +os

= (1+o0(1)) ni\/g /eq Oni1 () dz.

Note that the number N, (E) of real zeros of P, in E equals the number
N (E) of real zeros of P; in E* := Lyy1 (E) = {Lny1(2) : z € E}, since
Ly, is a bijection. Finally, if [a,b] C (—1,1), then by a simple calculation,

Ln+1 [a b] [a—n-—l + (Sn—i—l (1 + a’) y On41 — 5n+1 (1 - b)] C Jn+1 (6) ’
if 0 <e <min{l+a,1—b}. Then

BN (8] = 2B [L5 [a,bﬂ

1
L)

= (1+o0(1 / On+1(z)dr
n\f A

= (+o() / ot 1 (4) dy,

by the substitution z = LL_Jﬂ (y). A

Lemma 3.1. Let W = e~ % € F(C?), where Q is even. Let a € (1,00]. If
the function T in the definition of F(C?) satisfies

lim T'(z) = a € (1,00,

Tr—00
then

lim 07(z) = pa(2), =€ (=1,1)\ {0}.

n—oo

Remark 3.2. An equivalent form of
lim T(z) = a € (1, 00)

» Q (t)
lim _ sa—1
o Q)

12

te(0,1). (3.4)



Indeed, if this last condition holds, then as T — oo,

L Qe

Ty = x@f - 2w, 2
o —
G -

Here we also used 0 < Q'(zt)/Q'(xz) < 1 and dominated convergence. In the
other direction, as x — oo,

Q(xt) _ T(at) Q(at) _ T(at)
Qz) T(z)tQz) tT(x)
_T(et) T Q' (u)

o

exp{log Q(zt) — log Q(z)}

tT(z »{= [ Qw i
o= [ 5
{ / rv—I—o
- 1+t0( )eXP{ (a+o(1))log — }—ta H1+o(1)).

Proof of Lemma 3.2. We prove the case 0 < a < oo first:
From (3.1), as n — oo,

I
/ tQ ant) i
an n) Q' (a,)V1 ~ 2

H_/ dt = B,. (3.5)
™ .Jo 1—1¢2

Indeed the integrand converges pointwise, and because @ is convex, so Q' (ant)/Q'(an) <
1, so we may apply Lebesgue’s Dominated Convergence Theorem. In partic-
ular, then, for n > 1, and some C; > 1 independent of 7,

Crn < a,Q'(an) < Cin. (3.6)
Next, we know that for z € (0,1),

2\/1 — z2 antQ (ant) — anz@ (anz) dt
/ n(t? — z?) V1—¢12

o (2) =
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Here, for t € (0,1) \ {z},

! _ /
i @t (@) = 0n3Q(a2)
n—00 'I‘L(tz = 1152)
. 1 1. anth(ant) - aanl(anm)
=B I = )@ — o)

We need a bound on the integrand so as to apply dominated convergence.
First T'(u) is bounded above. Next, for some £ between ¢ and z,

ant@ (ant) — a,2Q' (anz)
(7~ 27)

. dl(aan (anw))|u=e

- n(t + z)

< n@(anf) + a7£Q" (anf)
- n(t + ) '

Here (3.6) gives (since ' is increasing)

aan(ang) < anQ/(a'n)
nt+z) ~ n(t+z)

Next, by definition of F(C?) and boundedness of T', if y > 0,

C
<=
xz

I
OSQ()SCT(y)Sg,
Q'(y) Y y
= 2 1" 2 ! /
a‘n&Q (ané.) < Cané‘Q (anf) = CanQ (ané.) < g
n(t + x) anén(t + z) n(t+z) ~ z
as above. Thus, for all ¢t € (0,1),
ant@ (ant) — anz@'(a,x) C
< =
n(t? — z?) = i
s0 we can apply dominated convergence, to deduce that
. " 2 V4 1 s .’172 = 7
lim o} (z) = Uo(T).

n—00 t2 — ;[;2 1 . t2



Next, we deal with the case a = oco:
Let 0 < r < s < 1. We consider z € (0,r] and split

“(2) = 2\/17;_535 ( /08—|- /31) ant@’ (a;:i;—_a;gc)Q’ (an) \/Tdi_ﬁ
=:I; + I. (3.7)

g

We shall show that the main contribution to o}, comes from I;. Now the
integrand in the integral defining o7, is nonnegative, so for z € (0,7],

I, = 21 — g# /'1 ant@ (ant) — anzQ'(anr)  dt
w2 J, n(t? — z2?) V1—1¢t2
< 2V1- z? /1 at@ (ant) dt
-z s n(t2—a?)/1-¢2

& 2y/1 — 22 /1 1Q (ant) dt
= 7w2(s?2 —a*)n J, n " V1—t2
vi—z? 2 ! dt

__x__/ ant@'(ant)
(2 —z¥)nm Jy V1 —t2
V1 —z?

- oy / (3.8)

Next, note that by the lower bound in (3.5) in [23, p. 64], for ¢ € [0,7],

IA

ant@ (ant)  anr@(anr) _ T(anpr) (r\max{ACoT(anr)}
0< < < (%)
an5Q' (ans) ~ ansQ'(ans) ~ T(ans)

< c (C)CaT(an'r) ,
S

S

since T is quasi-increasing. Our hypothesis

lim T'(z) = oo

—0o0

gives
) ant@ (ant)
lim max ————=
n—co t€[0,r] an 8@ (ans)

It also then follows easily from (3.1) that for each fixed 7 € (0, 1),

'
lim anTQ (anT)

n—oo n

= 0. (3.9)

=0. (3.10)
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Now uniformly for z € [0, 7],

- 2v/1 — x2 /’1 ant@' (ant) — an,2Q'(anx) dt
2T (1 —a?) n V1-12
> ; )(1+ o1 o
N mm/anQan (o) =5
dt
L Twzm/ it (ant)(1 + (1)) =
... (1+ o(1)), (3.11)

/1 — 22

by (3.1) and using (3.9). Now we deal with I; - it clearly suffices to show
only an upper bound. Let s < p < 1. Now

2\/1 — a2 / antQ' (ant) — anz@'(anz) dt
n(t? — z2) V1—1¢2
2\/1 — z2
< max

d
Cmnx udos) (aan (anu))

I =

/S dt
0o V1—1t2

Q

< Zan@ (ans) + max a2u@” (a,u)]
n u€(0,s]

’

<o(l) + = max a,Q (a,u)T(ayu),

- n u€el0,s]

by definition of the class F(C?) and (3.10). Using the fact that T" is quasi-
increasing and the lower bound in (3.5) in [23, p. 64], we continue this as

I <o(l)+ %anQ’(ans)T(ans)

C T(ans s max{A,CoT (ans)}—1

<o)+ Fan@ ey () S
C e max{A,Coy}—1

< o(1) + —anQ'(anp) sup (—) y =o(1),
n yel0,00) \ P

by (3.10) again, and that s/p < 1. Together with the fact that I; > 0, and
using (3.7), (3.8), (3.11), we have shown that for = C (0, 7],

1 : V1—z?

< liminfo}(z) < limsupo;(z) <

a1 —x2 = noeo MU T e ~ w(s? —x?)
16



As s is independent of r, we can let s — 1— to deduce that for z € (0,7],

lim o7} (z) - ()
o == .
n—oo /1 — 12 Hoo

Proof of Theorem 2.3. By Lemma 77,

Y iv; o0 = 22 [ o ay

| 4 x 200
By Lemma 3.1, if O-<-a<-00 then

lim 07,0,(9) = pa(v), ¥ € (-1, 1)\ {0};

and if @ = oo then

lim o71(y) = Heoly), ¥ € (-1,1).

Since ; .
0= / onp(y) dy < / Ona(y)dy =1 < oo,

0< /p:f.( )dy</ po(y)dy =1< o0

-1

A o 2y -~
'i'ltk 4 and T = N N \

i 80‘ S ] i " 'l ) '.\.\
NE L . 3 \\\ < / oo (Y) ey < ] oo (V) Ay = 1 < 0o,

1
Lebesgue’s Dominated Convergence Theorem gives that

% 1k l1m E[N* ([a, b])] \/_/ lim O'n_H (y) dy

~

?\vﬁ,‘ - Mf dps \/—,u([u b)).

N cesse?)

Lemma 3.3. I[f W =¢e¢~% € F(C?) then

lim a/™ = 1.

n—o0

17
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Proof. Lemma 3.5(c) of [23, p. 72| implies that there is a constant C' > 0
such that

1< =% < On'A for allm > 1,
a

which immediately implies the.result. a

Lemma 3.4. Let W = e=% € F(C?), where Q) is even. If the coefficients
{c;}20 of random orthogonal polynomials (2.1) are complex i.i. d random
variables such that E[|log |col|] < oo, then

7}1_{{.10 ]|PnW||1L/£(R) = 1 with probability one.

Proof. Using orthogonality, we obtain for polynomials defined in (2.1) that
/ | P (2)|2W?(x) dx = Z |c;|* with probability one.
s g

Hence

oo 1/2
woxlel < ([ IP@PW ) < oo+ D el
3jan

0<j<n =5
Lemma 4.2 of [31] (see (4.6) there) implies that
oo 1/(2n) 1/n
lim (/ | P ()2 W?(z) da:) = lim (max |cJ|> =1
n—00 n—oo \ 0<j<n

—0o0

with probability one. That is,

Jim ||PnW||1L/27(LR) = 1 with probability one. (3.12)

Theorem 10.3 of [23, p. 295] states that
||PnW“Loo(R) < C1N(o0,2,n) ||PnW||L2(1R) ’

[PaW | L2 y] < C2N (2,00, 1) || PaW | oo
where C1, Cy > 0 are constants and for 0 < p,q < oo,

S =
-e|>—A

a

q>p
1
[ \/max T(a") —“ an )J p,Q<p.

Q=

N(p,q,n) :=

18



Note that in our case () is even, so is 7. Hence
1
VAL

Lemma, 3.7 of [23, p. 76] states that there exists ¢p > 0 and C' > 0 such that
for large n,

N(00,2,n) = n'?—=[T(a,)]"/* and N(2,00,n) = \/an.

T(a,) < Cn*®,
Since lim,,_,o a, = 0o, we have for large n that

Ii
N(oo,2,n) < nl/2——

[On2—eo]1/4 < C*n.
Jan

Hence
11 .
G e 1PV | 2y < 1PaW | ooy < Cn | PaW || Loy -
and the result follows by applying Lemma 3.3 and (3.12). O

Lemma 3.5. Let W = e~ € F(C?), where Q is even. If the function T in
the definition of F(C?) satisfies

lim T'(z) = oo,

—00

then
1/n

lim v,/ a, = 2,

n—oo

where 7,, is the leading coefficient of the orthonormal polynomial p,(x) asso-
ciated with the weight W.

Proof. Theorera 1.22 of [23, p. 25| gives

1 N —n—% 1 fon QB 4.
n SRS 2 _ 2
Vo= —7=—|—= e = (14 o0(1)) as n — o0,
27 ( 2 )
so that
1 =il BB —J—LQ; ds
yra, = (21) " mag e =% (14 0(1)) as n — oo. (3.13)
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Considering Lemma 3.3, we only need to show that

an 1
lim i/ _ 06 o i [ D)y
n—oo NI : n—o0 J_1q mrx/I——tz
We first prove that
lim Qlant) _ 0 uniformly on t € [-1,1]. (3.14)
n—oo n

Indeed, Lemma 3.4 of [23, p. 69] says that uniformly for n > 0,

Q(an) ~ | '
L T(an)

Since lim, o 7'() = oo and lim,, o ¢, = 00, we obtain that lim, ., Q(an)/n =
0. On the other hand, Q(a,t)/n is increasing as a function of ¢t € (0, 1], which
implies (3.14). Furthermore,

S} Q(f’en’) dt < Cp) Uy / dt = Q(an)
_1nmy/1 —¢2 1'rr\/L—f3 ' n

Lemma 3.6. Let W = e~ @ € F(C?), where Q is even. If the function T in
the. definition of F(C?) satisfies

{J< — 0 asn— o0.

O

lim T'(z) = a € (1, 00),

I—00

then

lim v/"a, = 2,
n—od

where 1,, is the leading coefficient of the orthonormal polynomial p,(z) asso-
ciated with the weight W.

Proof (New)
Considering Lemma 3.4 and (3.13), we only need to show that

L [ Qens) ds = lim — 1 Qlant) (ant) dt = =

n—oo NI J_q, /a2 — §? n—oon J_y /1 —t2 a

20



In terms of the function T', we can recast this as

1 !
n n ]‘
fm L[ @@t 1 g 1 (3.15)

n—oo N J_4 ﬁm T(ant) «

Using our assumption that lim .., T (s) = 0o, we have uniformly for lt| >
an'’? that T (ant) = a (1 +o(1)), so as the integrand is non-negative,

1 / ant@ (ant) 1 T 1+o0(1) l/ ant@Q' (ant) antQ’ (aut) .,
o<1 w1 — 2 T (ant) a  ntorrgua w12

(3.16)
Also, the integral over the remaining range is small: for j = 0,1,

1 ant@ (ant) 1
0 < — -dt
- /,¢,|<a—1/2 71 —t2 T (aut)

/ / /
= nw\l/le—l gnl 12/2 20, /" < C&(ZEQ_) =o(l),

recall (3.4) and (3.6). Thus (3.16) yields

1 [ antQ (ant) 1 - +o(1)1 [ ant@ (ant) e 140(1)
1 /1 — 2 T (ant) a nJj_o1 m1— 12 . 4} l
|
Proof of Theorem 2.4. We first deal with the case

lim T(z) = oo,
and show that the normalized zero counting measures 7, for the scaled poly-
nomials P*(s) converge weakly to y with probability one. Theorem 2.1 of [3,
p. 310] states that if {M,} is any sequence of monic polynomials of degree
deg(M,) = n satisfying

lim sup || M, I < - (3.17)

= [11]—2

then the normalized zero counting measures 7, for the polynomials M, con-
verge weakly to j,. Note that 1/2 in the above equation is the logarithmic
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capacity of [—1, 1], see Corollary 5.2.4 of [33, p. 134], and || - [|-1,1 is the
supremum norm on [—1,1]. We show that the monic polynomials

Mn(z) := P(z)/(caVnan), n €N,

satisfy (3.17) with probability one, so that the result of Theorem 2.4 follows
for a = co. We know from Lemma 3.4 that

lim sup || P, W]]l/ " < 1 with probability one.

n—oe
Using the contracted weight

w(s) = Y W(ans) = e~ , S€ER,

and the properties of a, [23, p. 4], we obtain that

IPrwnlli-sy = 1PaWll—ap an = 1PV [ -

Gn,an]

It follows that

1/n

i) S < 1 with probability one.

lim sup || P wy||

n—oo

Since lim,_,co Q(ay)/n = 0 by (3.14), we have that

hmsupHP*H[ 1 < < hmsupHP* ”H[l/’lll eQlan)/n < 1

with probability one. We use below that lim,,_, %11/ "a, = 2 by Lemma 3.5,

and that lim,_ |cx|}/™ = 1 with probability one by Lemma, 4.2 of [31]. This
implies that

|(2/m 1 1

= limsup || P} || T
[-11 ~ noo “tl e n |17 Y

<

limsup || M, |][ L1 = hmsup

n—od

n
CnYnln Gn

with probability one.
Next, we prove the case

lim T(z) = a € (0,00).

T—00

Recall that the standard Freud weight with index « is given by

w(s) = e—7a|5|a, = R,
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where

see [34, p. 239]. Since v,,1 = Baw/2, we apply I'(1/2) = /m and I'(t +1) =
tI'(t) to obtain that

o |~

Ba: = — —
TeZe =T = 2OT(g + Dy2T (2 + )

Note that by [34, p. 240], F,, = log2 + 1/a is the modified Robin constant
and p, = p, is the equlibrium measure corresponding to w. Following
[34], we call a sequence of monic polynomials {M,}2,, with deg(M,) = n,
asymptotically extremal with respect to the weight w if it satisfies

lim [|w" M, Y™ =e P = e V/*/2, (3.18)

where || - ||r is the supremum norm on R. Theorem 4.2 of [34, p. 170] states
that asymptotically extremal monic polynomials have their zeros distributed
according to the measure p,,. Namely, the normalized zero counting measures
of M, converge weakly to u,, = p,- On the other hand, by Corollary 2.6 of
[34, p. 157] and Theorem 5.1 of [34, p. 240,

|w"Ma|lg = ||w™ Mal[{-1,1)-
Together with Theorem 3.6 of [34, p. 46], (3.18) is equivalent to

lim sup ||[w" M, |[|}} | < 7 = e7H/*/2.

11 =
P [~1,1]

We show that the monic polynomials
My (z) == Py(z)/(cn1nan), m €N,

are asymptotically extremal in this sense with probability one, so that the
result of Theorem 2.4 follows. Note that

lim ||P,W]||¥™ = 1 with probability one
by Lemma 3.4, and that

o= HPnWH]R

n

1Erwall—ay = 1BV

—an,an]
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by [23, p. 4]. Hence

1/n <

limsup || Pywy || 7} ;) < 1 with probability one.
n—oo

Since
lim ~Y/"a, = 2e!/®
n—oo

by Lemma 3.6, and lim,, .« |c,|*/™ = 1 with probability one by Lemma 4.2
of [31], it follows that /

8 n 1/n . : % 1/n ]- 1 . *x n 1/n
lim sup || M, w ||[11Y1] = limsup ||in”||[£1,1] o},/"fyl/”a =S limsup || Pyw ||[11’1]
1/n

= e T limsup || Pw"||

-1,1] °
n—00 [-1.1]

On the other hand,

. 1 : 1 :
lim sup ||P;:w"||[_/rf,1] < lim sup HP;wZH[fT,l] “w/wn||[_1,1] < limsup ||w/wn||[_1,1] .
n—oo n—oo n—oo

Since wy, and w are both even, it remains to show that

limsup |[w/wn/[jg 4 < 1.

Let € € (0,1). We first show that

/ a—1
lim an@(anz) _ 2 , uniformly for z € [e, 1]. (3.19)
n—oo n B,

Indeed, (?7) and (??) give that

2@’ (an) _ an@'(an) T'(anz) om Iy Tyl g [e1].
n n T(an)

Since lim,—,c T'(x) = «, for all § > 0 there exists Cs > 0 such that |T(z) — o] <
0 whenever z > Cjs. As lim, ,,a,e = 00, there is N € N such that
anZ > ane > Cs for all n > N. Thus

lim T(a,z) = uniformly for z € [¢, 1] (3.20)
and )
lim e~ Jo T@W/¥dy — zo  yniformly for z € [e, 1]. (3.21)

n—oo
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Recalling that a,@’(a.)/n — 1/B, by (3.5), we obtain (3.19) by applying
(3.20) and (3.21). It now follows that

1 / 1,.a-1 e
Qlan) Qans) =/ a, Q' (a,z) i _)/ e 1 s

r = as n — 0o
n n n B, aB, aB, ’

uniformly for s € [e, 1]. Hence

lim @ = 7,8% uniformly for s € [e, 1].

This gives that

lim sup ||w/wn||[6 ;) = limsup max eQans)/n—vas* _ 1
n-200 n—oo 56[6,1]

Using monotonicity of ¢) and the above convergence, we also have that

lim sup [lw/wn|jp ¢ = lim sup max eQ@n8)/n=7a5% < [im sup e@@E)/1 = Vac"

n—00 n—oo 8€[0,e n—o0
Consequently,
limsup [[w/wn/[jg ) < "
n—oo
and we finish the proof by letting € — 0. g

Proof of Corollary 2.5. Consider the normalized zero counting measure 7, =
LS %10, for the scaled polynomial P;(s) of (?7), where {2 }f_, are the
zeros of that polynomial, and ¢, denotes the unit point mass at z. Theorem
2.4 implies that measures 7,, converge weakly to y with probability one. Since
p(OF) = 0, we obtain that 7,|r converges weakly to u|r with probability one
by Theorem 0.5" of {22] and Theorem 2.1 of [2]. In particular, we have that
the random variables 7,(E) converge to u(E) with probability one. Hence
this convergence holds in L? sense by the Dominated Convergence Theorem,
as Tp(L) are uniformly bounded by 1, see Chapter 5 of [16]. It follows that
lim B[|7,,(E) — u(E)[] =0

for any compact set E such that u(0F) = 0, and
BT (E) — p(B)]| < Bl|7n(E) = w(E)[] =0 asn— oo.

But E[7,.(F)] = E[N:(E)]/n and E[u(E)] = u(E), which immediately gives
(2.5). O
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Proof of Theorem 2.2. Theorem 2.3 gives that

1 1
lim —E [N} ([a,b])] = —=u([a,b
lim B IN; (o8] = Zzllo,t)
for any interval [a,b] C (—1,1). Note that both E[N* (H)] and u(H) are
additive functions of the set H. Moreover, they both vanish when H is a
single point by (2.5) and the absolute continuity of x4 with respect to Lebesgue
measure on [—1,1]. Hence (2.5) gives that

lim ~E [N (R \ (1, 1))] = 4R\ (~1,1)) = 0.

n—oo 1,

It now follows that

im LEINVAR)] = ——u((—1.1)) = ——

To complete the proof, observe that N(R) = N,(R), so that E[N(R)] =
E[N,(R)], since L, is a bijection for each fixed n. Therefore (??) is proved.
o
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