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Abstract The connection between polynomials and entire functions of ex-
ponential type is an old one, in some ways harking back to the simple limit

lim
n→∞

(
1 +

z

n

)n

= ez.

On the left-hand side, we have Pn

(
z
n

)
, where Pn is a polynomial of degree n,

and on the right, an entire function of exponential type. We discuss the role
of this type of scaling limit in a number of topics: Bernstein’s constant for ap-
proximation of |x|; universality limits for random matrices; asymptotics of Lp

Christoffel functions and Nikolskii inequalities; and Marcinkiewicz-Zygmund
inequalities. Along the way, we mention a number of unsolved problems.

1 Introduction

The classical limit

lim
n→∞

(
1 +

z

n

)n

= ez, (1.1)

plays a role in many areas of mathematics, expressing very simply the scaling
limit of a sequence of a polynomials as an entire function of exponential type
1. Recall that an entire function f has exponential type A if for every ε > 0,

|f (z)| = O
(
e(A+ε)|z|

)
, as |z| → ∞,
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and A is the smallest number with this property. Within approximation the-
ory, this connection has long been recognized, perhaps most notably in relat-
ing asymptotics of errors of polynomial approximation to errors of approxima-
tion by entire functions of exponential type. Indeed, the classical monograph
of Timan (see [58] for a translation of the Russian original) presents some
of this theory, and this topic continues to be explored to this day, notably
in the works of Michael Ganzburg [21], [23]. In this survey, we explore this
connection in a number of topics in approximation theory.

A less trivial example than (1.1) involves Lagrange interpolation at roots
of unity. Given n ≥ 1, the fundamental polynomials of Lagrange interpolation
at the nth roots of unity are

ℓjn (z) =
1

n

zn − 1

ze−2πij/n − 1
, 0 ≤ j ≤ n − 1,

satisfying

ℓjn

(
e2πik/n

)
= δjk.

Let us fix t and take the scaling limit: As n → ∞,

ℓjn

(
e2πit/n

)
=

1

n

e2πit − 1

e2πi(t−j)/n − 1

=
1

n

eπit

eπi(t−j)/n

sin πt

sin π(t−j)
n

→ eiπt sinπt

π (t − j)
.

Thus
lim

n→∞
ℓjn

(
e2πit/n

)
= eiπt (−1)j S (t − j) , (1.2)

where S is the classical sinc kernel

S (t) =

{
sin πt

πt , t 6= 0,

1, t = 0.

If ∞∑

j=0

|cj |2 < ∞,

and for n ≥ 1, we let

Pn (z) =
n−1∑

j=0

(−1)j cjℓjn (z) ,

then one can use (1.2) to show
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lim
n→∞

Pn

(
e2πit/n

)
= eiπt

∞∑

j=0

cjS (t − j) = eiπtf (t) , (1.3)

where

f (t) =
∞∑

j=0

cjS (t − j)

is entire of exponential type ≤ π, and its restriction to the real line lies in
L2 (R). The space of all such entire functions with the usual L2 norm on the
real line is L2 Paley-Wiener space PW2. Its remarkable reproducing kernel S

plays a role in everything from sampling theory to random matrices, satisfying
the orthonormality relation

∫ ∞

−∞
S (t − j) S (t − k)dt = δjk.

The reproducing kernel relation is

f (z) =

∫ ∞

−∞
f (t) S (t − z) dt, z ∈ C, f ∈ PW2.

The paper is organized as follows: in the next section, we discuss approx-
imation of |x| by polynomials. Section 3 deals with universality limits for
random matrices, Section 4 deals with asymptotics of Christoffel functions,
Section 5 with Nikolskii inequalities, and Section 6 deals with Marcinkiewicz-
Zygmund inequalities.

2 Bernstein’s Constant in approximation of |x|

Let f : [−1, 1] → R. For n ≥ 1, let En [f ] denote the error in best uniform
approximation of |x| by polynomials of degree ≤ n, so that

En [f ] = inf
{
‖ f − P ‖L∞[−1,1]: deg (P ) ≤ n

}
.

In a 1913 paper [6], S. N. Bernstein established that the error in approximat-
ing f (x) = |x| decays exactly like 1

n , that is,

Λ1 = lim
n→∞

nEn [|x|]

exists, and is finite and positive. Λ1 is often called the Bernstein constant.
The proof that the limit exists is long and difficult, and is unclear in parts.
Twenty five years later [7] he presented a much simpler proof, that works for
the more general function |x|α for all α > 0 that is not an even integer. It
involves dilations of the interval, making essential use of the homogeneity of
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|x|α, namely that for λ > 0,

|λx|α = λα |x|α .

This enabled Bernstein to relate the error in approximation on [−λ, λ] to
that on [−1, 1]. It also yielded a formulation of the limit as the error in
approximation on the whole real axis by entire functions of exponential type,
namely

Λα := lim
n→∞

nαEn [|x|α] (2.1)

= inf
{
‖ |x|α − f (x) ‖L∞(R): f is entire of exponential type ≤ 1

}
.

You might ask: what is the connection of all this to scaling limits? Well,
Bernstein related the errors of polynomial approximation by polynomials of
degree ≤ n on [−1, 1] and [−n, n]. Thus if we let P ∗

n denote the unique
polynomial of degree ≤ n that best approximates |x|α in the uniform norm
on [−n, n], Bernstein’s proof essentially involved scaling P ∗

n (x) to P ∗
n (x/n).

Since 0 is the place where |x|α is least smooth, it’s not surprising that we
scale about 0. One of the classical unsolved problems of approximation theory
is

Problem 2.1. Give an explicit representation for Λ1.

Of course, this is a little imprecise, but something such as Λ1 is a root
of an explicit equation, or given by some explicit series, would be a real
achievement. Bernstein obtained upper and lower bounds for Λ1, and using
these, speculated that possibly

Λ1 =
1

2
√

π
= 0.28209 47917 . . . .

Some 70 years later, this was disproved by Varga and Carpenter [64], [65]
using high precision scientific computation. They showed that

Λ1 = 0.28016 94990 . . .

They also showed numerically that the normalized error 2nE2n [|x|] should
admit an asymptotic expansion in negative powers of n. Further numerical
explorations for approximation of |x|α have been provided by Carpenter and
Varga [9].

Bernstein also showed that for α > 1, [7], [9, p. 194]

∣∣sin απ
2

∣∣
π

Γ (α)

(
1 − 1

α − 1

)
< Λα <

∣∣sin απ
2

∣∣
π

Γ (α) .

Surprisingly, the much deeper analogous problem of rational approxima-
tion has already been solved, by the great Herbert Stahl [54]. He proved,
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using sophisticated methods of potential theory and other complex analytic
tools, that

lim
n→∞

eπ
√

nRn [|x|] = 8,

where Rn [|x|] denotes the error in best L∞ approximation of |x| on [−1, 1] by
rational functions with numerator and denominator degree ≤ n. Later [55],
he extended this to |x|α, establishing

lim
n→∞

eπ
√

αnRn [|x|α]] = 41+α/2
∣∣∣sin

πα

2

∣∣∣ .

Although Λα is not known explicitly, the ideas of Bernstein have been
refined, and greatly extended. They are covered in the monograph of Timan
[58, p. 48 ff.]. M. Ganzburg has shown limit relations of this type for large
classes of functions, in one and several variables, even when weighted norms
are involved [21], [22], [23], [24]. Nikolskii [46] and Raitsin [48], [49] considered
not only uniform, but also Lp norms. They and later Ganzburg [22] showed
that for 1 ≤ p ≤ ∞, there exists

Λp,α = lim
n→∞

nα+ 1

p inf
{
‖ |x|α − P (x) ‖Lp[−1,1]: deg (P ) ≤ n

}
.

More explicitly, Nikolskii [46] proved that at least for odd integers α,

Λ1,α =

∣∣sin απ
2

∣∣
π

8Γ (α + 1)

∞∑

k=0

(−1)
k
(2k + 1)

−α−2
.

He also established an integral representation valid for all α > −1, and
Bernstein later noted that this implies the above series representation for
all α > −1. Raitsin [49] proved that for α > − 1

2 ,

Λ2,α =

∣∣sin απ
2

∣∣
π

2Γ (α + 1)
√

π/ (2α + 1).

These are the only known explicit values of Λp,α. The extremal entire func-
tions associated with these constants were given explicit form in [25].

Vasiliev [63] extended Bernstein’s results in another direction, replacing
the interval [−1, 1] by fairly general compact sets E. Totik [62] has put
Vasiliev’s results in final form, using sophisticated estimates for harmonic
measures. In this more general setting, Λα still appears, multiplied by a
quantity involving the equilibrium density of potential theory for E. The
Bernstein constant was discussed in the recent book of Finch on mathemat-
ical constants [17, p. 257 ff.] in different areas of mathematics.

Another recent mode of attack on the Bernstein problem involves sophisti-
cated properties of conformal maps of comb domains: instead of approximat-
ing directly on [−1, 1], one solves the asymptotic problem on the symmetric
interval [−1,−a] ∪ [a, 1]. Reknowned complex analysts such as Eremenko,
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Nazarov, Peherstorfer, Volberg, and Yuditskii have been involved in this ef-
fort [16], [43].

The author’s own attempts at this problem directly involve scaling lim-
its: as above, let P ∗

n denote the unique polynomial of degree ≤ n that best
approximates |x|α in the uniform norm. In [35] we proved a pointwise limit,
namely that uniformly in compact subsets of C,

lim
n→∞

nαP ∗
n (z/n) = H∗

α (z) , (2.2)

where H∗
α is the unique entire function of exponential type 1 attaining the

inf in (2.1). That paper also contained Lp analogues, and implicit integral
representations of H∗

α. Closely related to Problem 2.1 is:

Problem 2.2. Give an explicit description of the function H∗
α.

3 Universality Limits in Random Matrices

Although they have much older roots, the theory of random matrices rose
to prominence in the 1950’s, when the physicist Eugene Wigner found them
an indispensable tool in analysing scattering theory for neutrons off heavy
nuclei. The mathematical context of the unitary case may be briefly described
as follows. Let M (n) denote the space of n by n Hermitian matrices M =
(mij)1≤i,j≤n. Consider a probability distribution on M (n),

P (n) (M) = cw (M) dM

= cw (M)
(∏n

j=1
dmjj

)(∏
j<k

d (Re mjk) d (Im mjk)
)

.

Here w (M) is a function defined on M (n), and c is a normalizing constant.
The most important case is

w (M) = exp (−2n tr Q (M)) ,

involving the trace tr, for appropriate functions Q defined on M (n). In par-
ticular, the choice

Q (M) = M2,

leads to the Gaussian unitary ensemble (apart from scaling) that was consid-
ered by Wigner. One may identify P (n) above with a probability density on
the eigenvalues x1 ≤ x2 ≤ · · · ≤ xn of M ,

P (n) (x1, x2, . . . , xn) = c




m∏

j=1

w (xj)



(∏

i<j
(xi − xj)

2
)

.
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See [10, p. 102 ff.]. Again, c is a normalizing constant.
Orthogonal polynomials enable one to explicitly represent P (n) and a num-

ber of other statistical quantities. Let µ be a finite positive Borel measure
with support in the real line, with infinitely many points in the support, and
all finite power moments. Define orthonormal polynomials

pn (x) = γnxn + · · · , γn > 0,

n = 0, 1, 2, . . . , satisfying the orthonormality conditions

∫
pjpkdµ = δjk. (3.1)

The nth reproducing kernel for µ is

Kn (x, y) =

n−1∑

k=0

pk (x) pk (y) , (3.2)

and the normalized kernel is

K̃n (x, y) = µ′ (x)
1/2

µ′ (y)
1/2

Kn (x, y) , (3.3)

where µ′ denotes the Radon-Nikodym derivative of µ.
There is the basic formula for the probability distribution P (n) [10, p. 112]:

P (n) (x1, x2, . . . , xn) =
1

n!
det
(
K̃n (xi, xj)

)

1≤i,j≤n
.

One may use this to compute a host of statistical quantities – for example
the probability that a fixed number of eigenvalues of a random matrix lie in a
given interval. One particularly important quantity is the m-point correlation
function for M (n) [10, p. 112]:

Rm (x1, x2, . . . , xm) =
n!

(n − m)!

∫
· · ·

∫
P (n) (x1, x2, . . . , xn) dxm+1 dxm+2 . . . dxn

= det
(
K̃n (xi, xj)

)

1≤i,j≤m
.

This last remarkable identity is due to Freeman Dyson.
The universality limit in the bulk asserts that for fixed m ≥ 2, ξ in the

interior of the support of µ, and real a1, a2, . . . , am, we have
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lim
n→∞

1

K̃n (ξ, ξ)
m Rm

(
ξ +

a1

K̃n (ξ, ξ)
, ξ +

a2

K̃n (ξ, ξ)
, . . . , ξ +

am

K̃n (ξ, ξ)

)

= det (S (ai − aj))1≤i,j≤m .

Because m is fixed in this limit, this reduces to the case m = 2, namely

lim
n→∞

K̃n

(
ξ + a

K̃n(ξ,ξ)
, ξ + b

K̃n(ξ,ξ)

)

K̃n (ξ, ξ)
= S (a − b) , (3.4)

for real a, b. Thus, an assertion about the distribution of eigenvalues of ran-
dom matrices has been reduced to a scaling limit involving orthogonal poly-
nomials. The term universal is quite justified: the limit on the right-hand
side of (3.4) is independent of ξ, but more importantly is independent of the
underlying measure. Since in many cases

lim
n→∞

1

n
K̃n (ξ, ξ) = ω (ξ) ,

where ω is an appropriate “equilibrium density”, we can also often recast
(3.4) as

lim
n→∞

K̃n

(
ξ + a

nω(ξ) , ξ + b
nω(ξ)

)

nω (ξ)
= S (a − b) . (3.5)

For example, if µ′ > 0 is positive a.e. in (−1, 1),

ω (x) =
1

π
√

1 − x2
,

the ubiquitous arcsine distribution.
Typically, the limit (3.4) is established uniformly for a, b in compact sub-

sets of the real line, but if we remove the normalization from the outer Kn,
we can also establish its validity for complex a, b, that is,

lim
n→∞

Kn

(
ξ + a

K̃n(ξ,ξ)
, ξ + b

K̃n(ξ,ξ)

)

Kn (ξ, ξ)
= S (a − b) . (3.6)

There are a variety of methods to establish (3.4–6). Perhaps the deep-
est methods are the Riemann-Hilbert methods, which yield far more than
universality. See [5], [10], [11], [12], [27], [28], [29], [42] for Riemann-Hilbert
references.

Inspired by the 60th birthday conference for Percy Deift, the author came
up with a new comparison method to establish universality. Let µ be a mea-
sure supported on (−1, 1), and assume for example that µ′ > 0 a.e. in (−1, 1).
Let µ be absolutely continuous in a neighborhood of some given ξ ∈ (−1, 1)
and assume that µ′ is positive and continuous at ξ. Then in [38] we estab-
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lished (3.5). This result was soon extended to a far more general setting by
Findley, Simon and Totik [18], [51], [52], [60], [61]. In particular, when µ is
a measure with compact support that is regular, and log µ′ is integrable in a
subinterval of the support (c, d), then Totik established that the universality
(3.5) holds a.e. in (c, d). Totik used the method of polynomial pullbacks to
go first from one to finitely many intervals, and then used the latter to ap-
proximate general compact sets. In contrast, Simon used the theory of Jost
functions.

The drawback of this comparison method is that it requires regularity of
the measure µ. Although the latter is a weak global condition, it is neverthe-
less most probably an unnecessary restriction. To circumvent this, the author
developed a different method, based on tools of classical complex analysis,
such as normal families, and the theory of entire functions of exponential
type. In [39], this was used to show that universality holds in linear Lebesgue
measure, meas, without any local or global conditions, in the set

{µ′ > 0} := {ξ : µ′ (ξ) > 0} .

Theorem 3.1. Let µ be a measure with compact support and with infinitely
many points in the support. Let ε > 0 and r > 0. Then

meas

{
ξ ∈ {µ′ > 0} : (3.7)

sup
|u|,|v|≤r

∣∣∣∣∣∣

Kn

(
ξ + u

K̃n(ξ,ξ)
, ξ + v

K̃n(ξ,ξ)

)

Kn (ξ, ξ)
− S (u − v)

∣∣∣∣∣∣
≥ ε

}

→ 0 as n → ∞.

The method of proof of this result is instructive, because it contains ideas
often used in establishing scaling limits:
Step 1. Let

fn (u, v) :=
Kn

(
ξ + u

K̃n(ξ,ξ)
, ξ + v

K̃n(ξ,ξ)

)

Kn (ξ, ξ)
,

a polynomial in u, v. For R > 0 and “most” ξ, one can use tools such as the
Bernstein-Walsh growth lemma to show that for n ≥ n0 (R) and |u| , |v| ≤ R,

|fn (u, v)| ≤ C1e
C2(|u|+|v|). (3.8)

Here C1 and C2 are independent of n, u, v.
Step 2. The uniform boundedness in (3.8) allows us to choose a subsequence
{fn}n∈S that converges uniformly for u, v in compact subsets of the plane to
an entire function f satisfying the bound

|f (u, v)| ≤ C1e
C2(|u|+|v|), u, v ∈ C.
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Thus f is of exponential type in each variable.
Step 3. Inasmuch as each Kn is a reproducing kernel for polynomials of
degree ≤ n−1, one expects its subsequential limit f to be a reproducing kernel
for some space of functions. Indeed, it is, and this is the hard part: to show
that f is a reproducing kernel for Paley-Wiener space PW . As reproducing
kernels are unique, it follows that

f (u, v) = S (u − v) .

Since the limit is independent of the subsequence, we have the result for the
full sequence.

It is unlikely that convergence in measure in (3.7) can be replaced by
convergence a.e., but nevertheless we pose:

Problem 3.1. Does universality hold a.e. in {µ′ > 0}?
We emphasize that this is a tiny slice of a major topic. At the endpoints

of compactly supported µ (the “edge of the spectrum”) one scales not with
x/n but with x/n2 and the limiting kernel is a Bessel kernel. For moving
boundaries, one scales with x/n2/3 and the limiting kernel is an Airy kernel.
Other kernels arise when there are jump or other discontinuities, and there are
several other more complex scaling limits associated with other universality
limits. See, for example, [1], [2], [3], [4], [15], [19], [20], [27], [31], [37], [57].

4 Lp Christoffel Functions

Let µ denote a finite positive Borel measure on [−1, 1]. Its L2 Christoffel
function is

λn (µ, x) = inf
deg(P )≤n−1

∫ 1

−1 |P (t)|2 dµ (t)

|P (x)|2
. (4.1)

If {pj} are the orthonormal polynomials for µ, then it follows from Cauchy-
Schwarz’ inequality and orthogonality that

λn (µ, x) = 1/
n−1∑

j=0

p2
j (x) , (4.2)

while a minimizing polynomial for a given x is

P (t) = Kn (x, t) .

From these formulas, it’s fairly clear why λn (µ, x) is useful: bounds on λn are
essentially bounds on averages of the orthonormal polynomials. Moreover, the
extremal or variational property (4.1) allows comparison of λn for different
measures.
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As is often the case with orthogonal polynomials, it is easier first to start
on the unit circle and then later map to [−1, 1]. Accordingly, let ω denote
a finite positive Borel measure on the unit circle, or equivalently [−π, π]. Its
L2 Christoffel function is

λn (ω, z) = inf
deg(P )≤n−1

∫ π

−π

∣∣P
(
eiθ
)∣∣2 dω (θ)

|P (z)|2
,

and yes again, there is a connection to orthogonal polynomials on the unit
circle.

Asymptotics of Christoffel functions have been studied for a very long
time. Paul Nevai’s 1986 ode to them [45] is still very relevant, while Barry
Simon’s books [50], [53] contain the most recent research. In a breakthrough
1991 paper, Maté, Nevai and Totik [41] proved that when ω is regular, and
satisfies in some subinterval I of [−π, π]

∫

I

log ω′ (eiθ
)
dθ > −∞,

then for a.e. θ ∈ I,
lim

n→∞
nλn

(
ω, eiθ

)
= ω′ (θ) .

Here ω is regular if

lim
n→∞

(
inf

deg(P )≤n

∫ π

−π |P |2 dω

‖P‖2
L∞(|z|=1)

)1/n

= 1.

A sufficient condition for regularity, the so-called Erdős-Turán condition, is
that ω′ > 0 a.e. in [−π, π]. However, there are pure jump measures, and pure
singularly continuous measures that are regular [56].

That 1991 paper of Maté, Nevai and Totik also addresses measures on
[−1, 1]. If µ is regular on [−1, 1] and satisfies on some subinterval I,

∫

I

log µ′ > −∞,

then
lim

n→∞
nλn (µ, x) = π

√
1 − x2µ′ (x) , (4.3)

for a.e. x ∈ I. Totik subsequently extended this to measures µ with arbitrary
compact support [59].

The extension of Christoffel functions from L2 to Lp also goes back a
long way – in some contexts, back to Szegő. For ω as above, define its Lp

Christoffel function
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λn,p (ω, z) := inf
deg(P )≤n−1

∫ π

−π

∣∣P
(
eiθ
)∣∣p dω (θ)

|P (z)|p . (4.4)

By a compactness argument, there is a polynomial P ∗
n,p,z of degree ≤ n − 1

with P ∗
n,p,z (z) = 1 and

λn,p (ω, z) =

∫ π

−π

∣∣P ∗
n,p,z

(
eiθ
)∣∣p dω (θ) . (4.5)

When p ≥ 1, this polynomial is unique.
The classical Szegő theory provides asymptotics for λn,p (ω, z) when |z| <

1. For example, if ω is absolutely continuous, then [50, p. 153] for |z| < 1,

lim
n→∞

λn,p (ω, z) = inf

{∫
|f |p dω : f ∈ H∞ and f (z) = 1

}
.

Here H∞ is the usual Hardy space for the unit disc. Moreover, for general
measures, there is an alternative expression involving the Poisson kernel for
the unit disc [50, p. 154].

On the unit circle, and for measures on [−1, 1], bounds for Lp Christoffel
functions have been known for a long time, notably those in Paul Nevai’s
landmark memoir [44]. However, limits for Lp Christoffel functions on the
circle or interval, were first established by Eli Levin and the author [33].
The asymptotic involves an extremal problem for the Lp Paley-Wiener space
PWp. This is the set of all entire functions f of exponential type at most π,
whose restriction to the real lies in Lp (R). We define

Ep = inf

{∫ ∞

−∞
|f (t)|p dt : f ∈ PWp and f (0) = 1

}
. (4.6)

Moreover, we let f∗
p ∈ PWp be a function attaining the infimum in (4.6), so

that f∗
p (0) = 1 and

Ep =

∫ ∞

−∞

∣∣f∗
p (t)

∣∣p dt.

When p ≥ 1, f∗
p is unique. For p < 1, uniqueness is apparently unresolved.

For p > 1, we may give an alternate formulation:

Ep = inf

∫ ∞

−∞

∣∣∣∣∣∣
S (t) −

∞∑

j=−∞,j 6=0

cjS (t − j)

∣∣∣∣∣∣

p

dt, (4.7)

where the inf is taken over all {cj} ∈ ℓp, that is over all {cj} satisfying

∞∑

j=−∞,j 6=0

|cj |p < ∞. (4.8)
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When p = 2, the orthonormality of the integer translates {S (t − j)} shows
that f∗

2 = S, and

E2 =

∫ ∞

−∞
S (t)2 dt = 1.

The precise value of Ep is apparently not known for p 6= 2. The estimate

Ep > p−1

goes back to 1949, to Korevaar’s thesis [8, p. 102], [26].
We proved [33]:

Theorem 4.1. Let p > 0, let ω be a finite positive measure supported on the
unit circle, and assume that ω is regular. Let |z0| = 1, and assume that z0

is a Lebesgue point of ω, while the derivative ω′ of the absolutely continuous
part of ω is lower semi-continuous at z0.

(a) Then
lim

n→∞
nλn,p (ω, z0) = 2πEpω

′ (z0) . (4.9)

(b) If also ω′ (z0) > 0 and p > 1, we have

lim
n→∞

P ∗
n,p,z0

(
z0e

2πiz/n
)

= eiπzf∗
p (z) , (4.10)

uniformly for z in compact subsets of the plane.

The proof of this theorem very heavily depends on scaling limits. Here are
some ideas when p > 1, when ω is Lebesgue measure on the unit circle and
when z0 = 1: fix any f ∈ PWp with f (0) = 1. It admits the expansion

f (z) =

∞∑

j=−∞
f (j) S (z − j) , (4.11)

that converges locally uniformly in the plane. This allows us to construct
polynomials along the lines in the introduction: fix m ≥ 1 and let

Sn (z) =
∑

|j|≤m

f (j) (−1)
j
ℓjn (z) .

Here {ℓjn} are the fundamental polynomials of Lagrange interpolation at the
roots of unity, as in Section 1. Since Sn (1) = f (0) = 1, we have

λn,p (ω, 1) ≤
∫ π

−π

|Sn (z)|p dθ.

Here, for each r > 0, the limit (1.3) shows
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lim
n→∞

n

∫ 2πr/n

−2πr/n

|Sn (z)|p dθ = 2π lim
n→∞

∫ r

−r

∣∣∣Sn

(
e2πit/n

)∣∣∣
p

dt

= 2π

∫ r

−r

∣∣∣∣∣∣

∑

|j|≤m

f (j) S (t − j)

∣∣∣∣∣∣

p

dt.

We estimate the tails of both sides, let r → ∞, and deduce that

lim sup
n→∞

nλn,p (ω, 1) ≤ lim sup
n→∞

n

∫ π

−π

|Sn (z)|p dθ

≤ 2π

∫ ∞

−∞

∣∣∣∣∣∣

∑

|j|≤m

f (j) S (t − j)

∣∣∣∣∣∣

p

dt.

Next, we let m → ∞, and obtain

lim sup
n→∞

nλn,p (ω, 1) ≤ 2π

∫ ∞

−∞
|f (t)|p dt.

As we may choose any f ∈ Lp
π, with f (0) = 1, we obtain

lim sup
n→∞

nλn,p (ω, 1) ≤ 2πEp.

The converse inequality is more difficult, but also involves scaling limits.
There are also analogous results on [−1, 1]. Let µ be a finite positive mea-

sure with support [−1, 1]. It was probably Paul Nevai, who first systematically
studied for measures on [−1, 1], the general Lp Christoffel function

λn,p (µ, x) = inf
deg(P )≤n−1

∫ 1

−1 |P (t)|p dµ (t)

|P (x)|p , (4.12)

in his 1979 memoir [44]. It was useful in establishing Bernstein and Nikolskii
inequalities, in estimating quadrature sums, and in studying convergence of
Lagrange interpolation and orthogonal expansions. Let P ∗

n,p,ξ denote a poly-
nomial of degree ≤ n − 1 with P ∗

n,p,ξ (ξ) = 1, that attains the inf in (4.12).
Let us say that µ is regular on [−1, 1], or just regular, if

lim
n→∞

(
inf

deg(P )≤n

∫ 1

−1
P 2dµ

‖P‖2
L∞[−1,1]

)1/n

= 1.

As for the unit circle, a simple sufficient condition for regularity is that µ′ > 0
a.e. in [−1, 1], although it is far from necessary. We proved [33]:

Theorem 4.2. Let p > 0, and let µ be a finite positive measure supported
on [−1, 1], and assume that µis regular. Let ξ ∈ (−1, 1) be a Lebesgue point
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of µ, and let the derivative of its absolutely continuous part µ′ be lower semi-
continuous at ξ.

(a) Then

lim
n→∞

nλn,p (µ, ξ) = π
√

1 − ξ2Epµ
′ (ξ) .

(b) If also µ′ (ξ) > 0 and p > 1, we have

lim
n→∞

P ∗
n,p,ξ

(
ξ +

π
√

1 − ξ2z

n

)
= f∗

p (z) , (4.13)

uniformly for z in compact subsets of the plane, where f∗
p is the function

attaining the inf in (4.6).

Observe that for both the unit circle and [−1, 1], the only difference be-
tween the L2 and Lp asymptotics is the constant Ep. This suggests:

Problem 4.1. Evaluate Ep, or at least estimate it, for p 6= 2.

Problem 4.2. Characterize the entire function f∗
p attaining the inf in (4.6).

5 Nikolskii Inequalities

Nikolskii inequalities compare the norms of polynomials in different Lp

spaces. Accordingly, define

‖P‖p =

(
1

2π

∫ π

−π

∣∣P
(
eiθ
)∣∣p dθ

)1/p

, if p < ∞

and
‖P‖∞ = sup

|z|=1

|P (z)| .

The simplest Nikolskii inequalities assert that given q > p > 0, there exists
C depending on p, q, such that for n ≥ 1 and polynomials P of degree ≤ n,

‖P‖p

‖P‖q

≥ Cn
1

q− 1

p . (5.1)

They are useful in studying convergence of orthonormal expansions and La-
grange interpolation, and in analyzing quadrature and discretization of inte-
grals. A proof for trigonometric polynomials, which includes this case, appears
in [13, Theorem 2.6, p. 102]. The converse sharp inequality, namely

‖P‖p

‖P‖q

≤ 1
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follows from Hölder’s inequality. It is a longstanding problem to determine
the sharp constant in (5.1). Accordingly define

Λn,p,q = inf
deg(P )≤n−1

‖P‖p

‖P‖q

. (5.2)

Our results from the previous section resolve the case q = ∞: as n → ∞,

lim
n→∞

Λn,p,∞n1/p = inf

{
‖f‖Lp(R)

‖f‖L∞(R)

: f ∈ PWp

}
.

This suggests a generalization that might work for Nikolskii inequalities. De-
fine

Ep,q = inf

{
‖f‖Lp(R)

‖f‖Lq(R)

: f ∈ PWp

}
. (5.3)

Using precisely the sort of scaling limits discussed in the introduction, and
in the previous section, Eli Levin and I proved [32] that if q > p > 0, then

lim sup
n→∞

Λn,p,qn
1

p− 1

q ≤ Ep,q. (5.4)

Despite repeated attempts, we were unable to prove the limit. Accordingly
we pose:

Problem 5.1. Prove
lim

n→∞
Λn,p,qn

1

p− 1

q = Ep,q. (5.5)

Problem 5.2. Characterize, or describe, the entire functions attaining the
inf in Ep,q.

6 Marcinkiewicz-Zygmund Inequalities

The Plancherel-Polya inequalities [30, p. 152] assert that for 1 < p < ∞, and
entire functions f of exponential type at most π,

Ap

∞∑

j=−∞
|f (j)|p ≤

∫ ∞

−∞
|f |p ≤ Bp

∞∑

j=−∞
|f (j)|p , (6.1)

provided the integral in the middle is finite. For 0 < p ≤ 1, the left-hand
inequality is still true, but the right-hand inequality requires additional re-
strictions [8],[47]. Here Ap and Bp are independent of f . The Marcinkiewicz-
Zygmund inequalities assert [66, Vol. II, p. 30] that for p > 1, n ≥ 1, and
polynomials P of degree ≤ n − 1,
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A′
p

n

n∑

j=1

∣∣∣P
(
e2πij/n

)∣∣∣
p

≤
∫ 1

0

∣∣P
(
e2πit

)∣∣p dt (6.2)

≤
B′

p

n

n∑

j=1

∣∣∣P
(
e2πij/n

)∣∣∣
p

.

Here too, A′
p and B′

p are independent of n and P , and the left-hand inequality
is also true for 0 < p ≤ 1 [34]. We assume that Ap, Bp, A

′
p, B

′
p are the sharp

constants, so that Ap and A′
p are as large as possible, while Bp and B′

p are
as small as possible. These inequalities are useful in studying convergence
of Fourier series, Lagrange interpolation, in number theory, and weighted
approximation. See [14], [34], [35]. Of course if p = 2, then A2 = B2 = A′

2 =
B′

2 = 1.
In [40], I proved that the sharp constants in (6.1) and (6.2) are the same:

Theorem 6.1. For 0 < p < ∞,

Ap = A′
p

and for 1 < p < ∞,
Bp = B′

p.

Moreover if p 6= 2, then Ap < 1 < Bp.

In [8, p. 101, Thm. 6.7.15], it is proven that Ap ≥ π
4eππ/2

(this was recorded
incorrectly in [40]).

Problem 6.1. Evaluate or estimate Ap and Bp.
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15. L. Erdős, Universality of Wigner Random Matrices: a Survey of Recent Results,

Russian Math. Surveys, 66 (2011), 507–626.
16. A. Eremenko and P. Yuditskii, Polynomials of the best uniform approximation to sgn

x on two intervals, J. d’Analyse Mathématique, 114 (2011) 285–315.
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