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Abstract. We apply universality limits to asymptotics of spacing of zeros
fxkng of orthogonal polynomials, for weights with compact support and for
exponential weights. A typical result is

lim
n!1

�
xkn � xk+1;n

�
~Kn (xkn; xkn) = 1

under minimal hypotheses on the weight, with ~Kn denoting a normalized re-
producing kernel. Moreover, for exponential weights, we derive asymptotics
for the di¤erentiated kernels

K
(r;s)
n (x; x) =

n�1X
k=0

p
(r)
k (x) p

(s)
k (x) :

1. Introduction and Results1

Let � be a �nite positive Borel measure on the real line, with all �nite power
moments. Then we may de�ne orthonormal polynomials

pn (x) = 
nx
n + :::; 
n > 0;

n = 0; 1; 2; ::: satisfying the orthonormality conditionsZ
pnpmd� = �mn:

The zeros of pn are denoted

xnn < xn�1;n < xn�2;n < ::: < x1n:

The universality limit of random matrix theory [4], [16] involves the reproducing
kernel

(1.1) Kn (x; y) =
n�1X
k=0

pk (x) pk (y) ;

and its normalized cousin

(1.2) eKn (x; y) = w (x)
1=2
w (y)

1=2
Kn (x; y) ;

where, throughout,

(1.3) w =
d�

dx
:
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2 ELI LEVIN1 AND DORON S. LUBINSKY2

In the bulk of the spectrum, the universality law has the form

(1.4) lim
n!1

eKn

�
x+ aeKn(x;x)

; x+ beKn(x;x)

�
eKn (x; x)

=
sin� (a� b)
� (a� b) :

Typically this holds uniformly for x in some subinterval of the interior of the support
of � and a; b in compact subsets of the real line, under appropriate hypotheses on
�. Of course, when a = b, we interpret sin�(a�b)

�(a�b) as 1. Some key references are
[1], [2], [3], [4], [5], [6], [16], [20], and the forthcoming proceedings of the conference
devoted to the 60th birthday of Percy Deift.
In this paper, we turn the subject around somewhat. Instead of establishing the

universality limit under suitable hypotheses on �, we show how universality limits
obtained in [13], [14], [15] yield asymptotics of various quantities associated with
orthogonal polynomials. In particular, they imply asymptotics of spacing between
successive zeros of orthogonal polynomials - �clock theorems�in the terminology of
Barry Simon. Moreover, they do so under very weak hypotheses on the measure.
It is easy to see why, from (1.4): the sin factor on the right-hand side changes sign
every time a � b increases by a unit. Furthermore, they yield asymptotics for the
di¤erentiated reproducing kernels

(1.5) K(r;s)
n (x; x) =

n�1X
k=0

p
(r)
k (x) p

(s)
k (x) :

We shall need the class of regular measures on [�1; 1], namely those measures �
supported on [�1; 1], satisfying

lim
n!1


1=nn = 2:

This class was extensively studied in [25]. It is somewhat larger than the Nevai-
Blumenthal class, which is de�ned in terms of the three term recurrence relation

xpn (x) = An+1pn+1 (x) +Bnpn (x) +Anpn�1 (x) :

Here An =

n�1

n

and Bn is real. The Nevai-Blumenthal classM consists of those
measures � for which

lim
n!1

An =
1

2
and lim

n!1
Bn = 0:

If �0 > 0 a.e. in [�1; 1], then � 2 M, but there are pure jump and pure singularly
continuous measures inM [21]. Our �rst result is:

Theorem 1.1
Let � be a �nite positive Borel measure on [�1; 1] that is regular. Let K be a
compact subset of (�1; 1) such that � is absolutely continuous in an open interval
containing K: Assume that w = �0 is positive and continuous at each point of K.
(a) Let k = k (n) ; n � 1; be such that as n!1;

(1.6) dist (xkn;K) = O
�
1

n

�
:

Then

(1.7) lim
n!1

(xkn � xk+1;n)
n

�
q
1� x2k;n

= 1:
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The limit holds uniformly for families of zeros that satisfy (1.6) uniformly, in par-
ticular for zeros lying in K:
(b) For each x 2 K, there exists a sequence of zeros xkn, where k = k (n), satisfying

(1.8) xkn = x+O

�
1

n

�
:

Note that it is permissible that K consists of a single point a, say. Then our
hypothesis is that � is regular in (�1; 1), absolutely continuous in (a� "; a+ ") for
some " > 0, while �0 is continuous and positive at a. The conclusion in this case is
that if k = k (n) satis�es as n!1;

xkn = a+O

�
1

n

�
;

then (1.7) holds. Moreover, (b) shows that there are such zeros. Of course we could

replace
q
1� x2k;n by

p
1� x2 for any x 2 [xk+1;n; xkn].

This result should be compared to the �clock theorems� in [11], [22], [23] and
earlier work of Freud [8, p. 266]. Freud assumed that w is bounded below a.e.
in (�1; 1) by the square of a not identically vanishing polynomial, and that w is
positive and continuous in a closed interval K. Last and Simon assume conditions on
the recurrence coe¢ cients that imply that � lies in a subset of the Nevai-Blumenthal
class. More precisely, they assume that An ! 1

2 ; Bn ! 0 andX
n

(jAn+1 �Anj+ jBn+1 �Bnj) <1:

They then establish a uniform version of Theorem 1.1 in each compact subinterval
of (�1; 1). Their hypothesis implies, by a result of Dombrowski and Nevai [7] that
� is absolutely continuous in (�1; 1) and w is positive and continuous in (�1; 1).
Our global assumption of regularity is hence more general in the special case that
the support of � is [�1; 1]. However, when we do not assume that the support of �
is [�1; 1], then it is not more general.
We also note that while the class of regular measures is larger than the Nevai-

Blumenthal classM, there is no known example of a regular measure outsideM,
with absolutely continuous component in some subinterval. Nevertheless, we believe
that such an example exists.
Our next result concerns asymptotics of the zeros close to 1. We need the Jacobi

weight
wJ (x) = (1� x)� (1 + x)� ;

�; � > �1. For the Jacobi measure, the universality limit at 1 takes the following
form: uniformly for a; b in compact subsets of (0;1) ;

(1.9) lim
n!1

1

2n2
~KJ
n

�
1� a

2n2
; 1� b

2n2

�
= J� (a; b) :

Here the superscript J indicates quantities associated with wJ , and

J� (u; v) =
J� (

p
u)
p
vJ 0� (

p
v)� J� (

p
v)
p
uJ 0� (

p
u)

2 (u� v)
is the Bessel kernel of order �, and J� is the usual Bessel function of the �rst kind
and order �. We denote the positive zeros of J� by

0 < j�;1 < j�;2 < j�;3 < ::: :



4 ELI LEVIN1 AND DORON S. LUBINSKY2

Theorem 1.2
Let � be a �nite positive Borel measure on (�1; 1) that is regular. Assume that for
some � > 0, � is absolutely continuous in K = [1� �; 1], and in K, its absolutely
continuous component has the form w = hw(�;�), where �; � > �1: Assume that
h (1) > 0 and h is continuous at 1. Then for each �xed k � 1;

(1.10) lim
n!1

n
q
1� x2kn = j�;k

and

(1.11) lim
n!1

n2 (xkn � xk+1;n) =
1

2

�
j2�;k+1 � j2�;k

�
:

Next, we discuss exponential weights w =W 2 = e�2Q , where Q : R! [0;1) is
continuous, and all momentsZ

R
xjW 2 (x) dx; j = 0; 1; 2; ::: ,

are �nite. Our class of exponential weights is:

De�nition 1.3
Let W = e�Q, where Q : R! [0;1) satis�es the following conditions:
(a) Q0 is continuous in R and Q (0) = 0:
(b) Q0 is non-decreasing in R, and Q00 exists in Rn f0g :
(c)

lim
jtj!1

Q (t) =1:

(d) The function

T (t) =
tQ0 (t)

Q (t)
; t 6= 0;

is quasi-increasing in (0;1), in the sense that for some C > 0;

0 < x < y ) T (x) � CT (y) :

We assume an analogous restriction for y < x < 0. In addition, we assume that
for some � > 1;

T (t) � � in Rn f0g :
(e) There exists C1 > 0 such that

Q00 (x)

jQ0 (x)j � C1
Q0 (x)

Q (x)
x 2 Rn f0g :

Then we write W 2 F
�
C2
�
:

This class of weights is a special case of the class of weights considered in [12, p.
7]. There more general intervals than the real line were permitted, and we did not
require Q00 to exist at every point except 0. Examples of weights in this class are
W = exp (�Q), where

Q (x) =

�
Ax�; x 2 [0;1)
B jxj� ; x 2 (�1; 0) ;
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where �; � > 1 and A;B > 0. More generally, if expk = exp (exp (::: exp ())) denotes
the kth iterated exponential, we may take

Q (x) =

(
expk (Ax

�)� expk (0) ; x 2 [0;1)
exp`

�
B jxj�

�
� exp` (0) ; x 2 (�1; 0)

where k; ` � 1; �; � > 1.
A key descriptive role is played by the Mhaskar-Rakhmanov-Sa¤ numbers

a�n < 0 < an;

de�ned for n � 1 by the equations

n =
1

�

Z an

a�n

xQ0 (x)p
(x� a�n) (an � x)

dx;(1.12)

0 =
1

�

Z an

a�n

Q0 (x)p
(x� a�n) (an � x)

dx:(1.13)

In the case where Q is even, a�n = �an. The existence and uniqueness of these
numbers is established in the monographs [12], [17], [24], but goes back to ear-
lier work of Mhaskar, Sa¤, and Rakhmanov. One illustration of their role is the
Mhaskar-Sa¤ identity:

kPWkL1(R) = kPWkL1[a�n;an] ;

valid for n � 1 and all polynomials P of degree � n.
We also de�ne,

(1.14) �n =
1

2
(an + a�n) and �n =

1

2
(an + ja�nj) ;

which are respectively the center, and half-length of the Mhaskar-Rakhmanov-Sa¤
interval �n = [a�n; an]. The linear transformation

Ln (x) =
x� �n
�n

maps �n onto [�1; 1]. Its inverse is

L[�1]n (u) = �n + u�n:

For 0 < " < 1, we let

(1.15) Jn (") = L
[�1]
n [�1 + "; 1� "] = [a�n + "�n; an � "�n] :

Next, we de�ne the equilibrium density
(1.16)

�n (x) =

p
(x� a�n) (an � x)

�2

Z an

a�n

Q0 (s)�Q0 (x)
s� x

dsp
(s� a�n) (an � s)

, x 2 �n:

It satis�es the equation for the equilibrium potential [12, p. 16]:

(1.17)
Z an

a�n

log
1

jx� sj�n (s) ds+Q (x) = C, x 2 �n;

and has total mass n :

(1.18)
Z an

a�n

�n (s) ds = n:
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When dealing with exponential weights, we assume that our measure � is ab-
solutely continuous and that w =W 2 = e�2Q (or later w =

�
Wh

�2
=W 2h2). The

orthonormal polynomials, reproducing kernels, and zeros are denoted respectively
by fpng ; fKng, fxkng, so that, in particular,Z 1

�1
pnpmW

2 = �mn:

Our �rst result for exponential weights is:
Theorem 1.4
Let W = exp (�Q) 2 F

�
C2
�
. Let 0 < " < 1. Then uniformly for xkn 2 Jn (") ;

we have as n!1;
(1.19) lim

n!1
(xkn � xk+1;n)�n (xkn) = 1:

In particular, if W is even, this holds uniformly for jxknj � (1� ") an. Moreover,
the zeros to the left and right of any point x satisfy (1.19).
Note that uniformly in n and x 2 Jn (") ;

�n (x) �
n

�n
.

By this we mean that the ratio of the two sides is bounded above and below by
positive constants independent of n and x. Note too that the proof works without
change for a larger class of weights, namely the class F

�
lip 12

�
in [12, p. 12].

However, the de�nition of that class is more implicit, so is omitted. One may restate
(1.19) in an alternative form: uniformly for xkn 2 Jn ("), we have as n!1;

(1.20) lim
n!1

(xkn � xk+1;n) ~Kn (xkn; xkn) = 1:

We shall also deal with weights

w =
�
Wh

�2
=W 2h2:

Their reproducing kernels will be denoted respectively by Kh
n (x; t), and in nor-

malized form by ~Kh
n (x; t). The superscript h will also be used to indicate other

quantities associated with this weight. Recall that a generalized Jacobi weight w
has the form

(1.21) w (x) =
NY
j=1

jx� �j j�j ;

where all f�jg are distinct, and all �j > �1.

Theorem 1.5
Let W = exp (�Q) 2 F

�
C2
�
. Let �n denote the equilibrium measure for Q,

de�ned by (1.16). Let h : R ! [0;1) be a function that is square integrable over
every �nite interval. Assume that there is a generalized Jacobi weight w, a compact
interval J; and C > 0 such that

(1.22) h2 � Cw in J;
while

(1.23) lim
r!1

log klog hkL1([0;r]nJ)
logQ (r)

= 0;
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with an analogous limit as r ! �1. Assume that K is a closed subset of R in
which log h is uniformly continuous. Let 0 < " < 1. Then uniformly for a; b in
compact subsets of the real line, and xhkn 2 Jn (") \ K; we have

(1.24) lim
n!1

�
xhkn � xhk+1;n

�
�n
�
xhkn
�
= 1:

Moreover, the zeros to the left and right of any point x satisfy (1.24).
Note that we can take h (x) = jxj� , where � > � 1

2 ; so that

Wh (x) = jxj�W (x) ;

or more generally, may take

Wh (x) =

 
mY
k=1

jx� �kj�k
!
W (x) g (x) ;

where all f�kg are distinct, all �k > � 1
2 , and g is a positive continuous function,

with log g uniformly continuous in the real line, and

lim
jxj!1

log log g (x)

log jxj = 0:

Our �nal result concerns the di¤erentiated reproducing kernels K(r;s)
n de�ned by

(1.5). When r = s, K(r;s)
n is the solution of an extremal problem, namely

1=K(r;r)
n (x) = inf

�Z
R
(PW )

2
=
�
P (r) (x)

�2
: deg (P ) � n� 1

�
:

In the special case r = 0, we obtain the classical Christo¤el function, but the case
of general r was used by Freud to establish Markov-Bernstein inequalities. Freud
obtained estimates for K(r;r)

n for Freud weights, but not asymptotics [9]. We let

(1.25) � r;s =

(
0; r + s odd

(�1)(r�s)=2
r+s+1 ; r + s even

:

Theorem 1.6
Let W = exp (�Q) 2 F

�
C2
�
and �n be de�ned by (1.16). Let 0 < " < 1, r; s � 0.

Then uniformly for x 2 Jn (") ; we have

(1.26)
W 2 (x)K

(r;s)
n (x; x)

(�n (x))
r+s+1 =

rX
j=0

�
r

j

� sX
k=0

�
s

k

�
� j;k�

j+k

�
Q0 (x)

�n (x)

�r+s�j�k
+ o (1) :

If we restrict x to a compact subset of the real line, we may simplify this as

W 2 (x)K
(r;s)
n (x; x)

(�n (x))
r+s+1 = � r;s�

r+s + o (1) ;

since in such a set Q0 (x) =�n (x) = o (1) as n ! 1. More generally, this holds
uniformly for x 2 Jn ("n), provided "n ! 1 as n ! 1. For weights on a �nite
interval, an analogue of the above result was presented in [14].
This paper is organised as follows: in Section 2, we prove Theorem 1.1. In

Section 3, we prove Theorem 1.2. In Section 4, we prove Theorems 1.4 and 1.5.
Finally, in Section 5, we prove Theorem 1.6. In the sequel C;C1; C2; ::: denote
constants independent of n; x; t. The same symbol does not necessarily denote the
same constant in di¤erent occurrences. We shall write C = C (�) or C 6= C (�)
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to respectively denote dependence on, or independence of, the parameter �. Given
sequences fcng, fdng, we write

cn � dn
if there exist positive constants C1; C2 such that for n � 1;

C1 � cn=dn � C2:

Similar notation is used for functions and sequences of functions. [x] denotes the
greatest integer � x.

Acknowledgement
The authors thank the referees for helpful comments, in particular pointing out a
gap in a proof of one result.

2. Proof of Theorem 1.1

In [14, Theorem 1.1], we showed that

lim
n!1

~Kn

�
x+ a

~Kn(x;x)
; x+ b

~Kn(x;x)

�
~Kn (x; x)

=
sin� (a� b)
� (a� b) ;

uniformly for x 2 K and a; b in compact subsets of the real line. In Theorem 2.1
there, it was also shown that uniformly for x 2 K and a in a bounded set,

~Kn

�
x+

a

n
; x+

a

n

�
� n:

Now let xkn satisfy (1.6), where k = k (n), so that for some un 2 K; and bounded
sequence f~ang ;

(2.1) xkn = un +
~an

~Kn (un; un)
:

Because of the asymptotics for Christo¤el functions in [14, Theorem 2.1], and con-
tinuity of w at each point of K, we have

(2.2) ~Kn (xkn; xkn) = ~Kn (un; un) (1 + o (1)) ;

so we may also write

xkn = un +
an

~Kn (xkn; xkn)
;

where fang is bounded. We need the fundamental polynomial `kn of Lagrange
interpolation that satis�es

`kn (xjn) = �jk:

One well known representation of `kn, which follows from the Christo¤el-Darboux
formula, is

(2.3) `kn (x) = Kn (xkn; x) =Kn (xkn; xkn) :
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Setting x = xkn+ b
~Kn(xkn;xkn)

, we obtain from (2.1) to (2.3), and the uniformity in
a; b above, that

`kn

�
xkn +

b
~Kn (xkn; xkn)

�
= (1 + o (1)) ~Kn

�
un +

~an
~Kn (un; un)

; un +
~an + b+ o (1)
~Kn (un; un)

�
= ~Kn (un; un)

=
sin�b

�b
+ o (1) ;(2.4)

uniformly for b in compact subsets of the real line. We also used the continuity of
w at each point of K. Since sin�b

�b changes sign at b = �1, it follows that xk+1;n,
the zero of `kn closest on the left to xkn, must satisfy

xk+1;n = xkn +
�n

~Kn (xkn; xkn)
;

where �n 2 (�1; 0), and
lim inf
n!1

�n � �1:

In particular f�ng is bounded. We have to show that
(2.5) lim

n!1
�n = �1:

Choose any subsequence of f�ng with some limit �, say. Necessarily � 2 [�1; 0].
Since `kn (xk+1;n) = 0, we obtain from (2.4), as n ! 1 through the subsequence,
that

sin��

��
= 0;

so � = �1. As this is true for any subsequence, we obtain (2.5). That in turn gives
lim
n!1

(xkn � xk+1;n) ~Kn (xkn; xkn) = 1:

Finally, from the asymptotics for Christo¤el functions in [14, Theorem 2.1], and
classical asymptotics for Christo¤el functions for the Legendre weight,

~Kn (xkn; xkn) =
n

�
p
1� x2kn

(1 + o (1)) :

(b) Fix x 2 K. By the universality limit,

lim
n!1

~Kn

�
x; x+

b
~Kn (x; x)

�
= ~Kn (x; x) =

sin�b

�b
;

uniformly for b in compact subsets of the real line. This has the consequence that
Kn (x; t) has sign changes at yn and zn, where yn � x < zn, and

(2.6) yn; zn = x+O

�
1

n

�
:

We assume that yn and zn are the closest sign changes to the left and right of x.

Next, we claim that as a function of t, Kn (x; t) has at most one sign change
in each interval [xj+1;n; xjn), 1 � j � n � 1. When x is not a zero of pn or pn�1,
this was proved in [8, p. 19], where still more is shown: the zeros of

Kn (x; t) (x� t) =

n�1

n

(pn (x) pn�1 (t)� pn�1 (x) pn (t))
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strictly interlace those of pn. When x is a zero of pn�1, then Kn (x; t) (x� t) is a
multiple of pn�1 (t), whose zeros interlace those of pn (t). Finally, if x is a zero of
pn, then Kn (x; t) (x� t) is a multiple of pn (t), so the claim is trivially true.

Our claim and the relation (2.6) imply that in the interval [yn; zn), there must
be at least one zero of pn. (For otherwise, some interval [xj+1;n; xj;n) contains 2
sign changes, namely yn; zn of Kn (x; t).) In view of (2.6), that zero of pn must
satisfy (1.8). �

We note that the proof can be substantially simpli�ed in the case when x lies
in the interior of K.

3. Proof of Theorem 1.2

Throughout, we assume the hypotheses of Theorem 1.2. In this section, we let

wJ (x) = (1� x)� (1 + x)� :

We use the superscript J to denote quantities associated with wJ , such as pJn; x
J
kn;K

J
n ; `

J
kn.

The most di¢ cult part of the proof is the asymptotic for the largest zero x1n.

Lemma 3.1
(a) Let A > 0. Then uniformly for a 2 [0; A] ;

(3.1) lim
n!1

�n

�
1� a

2n2

�
=�Jn

�
1� a

2n2

�
= h (1) :

Moreover, uniformly for n � n0 (A) and a 2 [0; A] ;

(3.2) �n

�
1� a

2n2

�
� �Jn

�
1� a

2n2

�
� n�(2�+2):

(b) For each �xed k � 1;

(3.3) lim
n!1

n

q
1�

�
xJkn
�2
= j�;k

and

(3.4) lim
n!1

n2
�
xJkn � xJk+1;n

�
=
1

2

�
j2�;k+1 � j2�;k

�
:

(c) Given " 2 (0; 1), we have

(3.5) lim
n!1

Z 1�"

�1

�
`J1n
�2
wJ=

Z 1

�1

�
`J1n
�2
wJ = 0:

Proof
(a) This is Theorem 2.1 in [15].
(b) Let us write xJkn = cos �

J
kn. It is known [26, pp. 192-3] that for each �xed k;

lim
n!1

n�Jkn = j�;k:

Then

n2
�
1�

�
xJkn
�2�

=
�
n sin �Jkn

�2
=

�
n�Jkn

�2
(1 + o (1)) = j2�;k (1 + o (1)) :
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(c) The method of proof below is one that will later work also for `1n. The reader
familiar with estimates for Jacobi polynomials could simplify the procedure below.
We use the representation

`J1n (x) =
KJ
n

�
x; xJ1n

�
KJ
n

�
xJ1n; x

J
1n

� = 1

KJ
n

�
xJ1n; x

J
1n

� 
Jn�1

Jn

pJn�1
�
xJ1n
�
pJn (x)

x� xJ1n
;

which follows from the Christo¤el-Darboux formula. We also use the identityZ 1

�1

�
`J1n
�2
wJ = 1=KJ

n

�
xJ1n; x

J
1n

�
:

Note that

Jn�1

Jn

=

Z 1

�1
xpJn�1 (x) p

J
n (x)w

J (x) dx � 1;

by Cauchy-Schwarz and orthonormality. For large enough n; xJ1n � 1� "
2 , soZ 1�"

�1

�
`J1n
�2
wJ=

Z 1

�1

�
`J1n
�2
wJ

�
�
2

"

�2 �pJn�1 �xJ1n��2
KJ
n

�
xJ1n; x

J
1n

� Z 1�"

�1

�
pJn
�2
wJ

�
4
�
pJn�1

�
xJ1n
��2

"2KJ
n

�
xJ1n; x

J
1n

� :(3.6)

Next, as wJ lies in the Nevai-Blumenthal class M, we have [19, Theorem 2.1, p.
218]

(3.7) sup
x2[�1;1]

�
pJn�1 (x)

�2
KJ
n (x; x)

! 0; n!1:

Then the result follows from (3.6). �
Next, we establish a one-sided bound for 1� x1n :

Lemma 3.2

(3.8) lim sup
n!1

1� x1n
1� xJ1n

� 1:

Proof
We use a well known extremal characterization of the largest zero:

x1n = sup
deg(P )�n�1

Z 1

�1
xP 2 (x) d� (x) =

Z 1

�1
P 2 (x) d� (x) :

This follows easily from the Gauss quadrature formula. Note that the maximizing
polynomial is just P = `1n. Then

(3.9) 1� x1n = inf
deg(P )�n�1

Z 1

�1
(1� x)P 2 (x) d� (x) =

Z 1

�1
P 2 (x) d� (x) :

Let � 2
�
0; 12
�
and choose " 2 (0; �) such that

(3.10)
1

1 + �
� w=

�
h (1)wJ

�
� 1 + � in [1� "; 1] :
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Let m = n� [�n] and choose
P = `J1mR;

where R has degree � [�n] ; 0 � R � 1 in [�1; 1],

(3.11) jR� 1j � n�2 in
h
1� "

2
; 1
i

and for some C0 > 0,

(3.12) R � e�C0n in [�1; 1� "] :
For the construction of these, we may choose R = 1�Pn, where Pn is the polynomial
of Theorem 7.5 in [12, p. 172] with appropriate choice of parameters there. ThenZ 1

�1
(1� x)P 2 (x) d� (x)

� e�2C0n sup
x2[�1;1�"]

(1� x)
�
`J1m (x)

�2 Z 1�"

�1
d�+ (1 + �)h (1)

Z 1

1�"
(1� x)

�
`J1m (x)

�2
wJ (x) dx

� h (1)

Z 1

�1
(1� x)

�
`J1m (x)

�2
wJ (x) dx

�
e�C0n + 1 + �

	
;

(3.13)

by the regularity of the Jacobi weight, which ensures [25, p. 68] that

sup
deg(S)�n

�
kSkL1[�1;1] =

Z 1

�1
jSjwJ

�1=n
� 1 + o (1) :

Next, by (3.10) and (3.11),Z 1

�1
P 2d� � (1� n�2)2

1 + �
h (1)

Z 1

1� "
2

�
`J1m (x)

�2
wJ (x) dx

� 1 + o (1)

1 + �
h (1)

Z 1

�1

�
`J1m (x)

�2
wJ (x) dx;(3.14)

by Lemma 3.1(c) above. Substituting this, and (3.13) into (3.9) gives

1� x1n

�
�
(1 + �)

2
+ o (1)

�Z 1

�1
(1� x)

�
`J1m (x)

�2
wJ (x) dx=

Z 1

�1

�
`J1m (x)

�2
wJ (x) dx

=
�
(1 + �)

2
+ o (1)

� �
1� xJ1m

�
:

Then

lim sup
n!1

1� x1n
1� xJ1n

� (1 + �)
2
lim sup
n!1

1� xJ1m
1� xJ1n

� (1 + �)
2

�
1

1� �

�2
;

by (b) of the lemma above, recall m = n � [�n]. As � > 0 is arbitrary, we obtain
the result. �
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Next, we need:

Lemma 3.3
(a) Given " 2 (0; 1), we have

(3.15) lim
n!1

Z 1�"

�1
(`1n)

2
d�=

Z 1

�1
(`1n)

2
d� = 1:

(b)

(3.16) lim
n!1

1� x1n
1� xJ1n

= 1:

Proof
(a) From the previous lemma and Lemma 3.1(b), it follows that for some C > 0;

x1n � 1� Cn�2:
Then Lemma 3.1(a) gives

p2n�1 (x1n)

Kn (x1n; x1n)
= 1� Kn�1 (x1n; x1n)

Kn (x1n; x1n)

= 1� �n (x1n)

�n�1 (x1n)

= 1� �Jn (x1n)

�Jn�1 (x1n)
(1 + o (1))

= 1�
KJ
n�1 (x1n; x1n)

KJ
n (x1n; x1n)

+ o (1)

=

�
pJn�1 (x1n)

�2
KJ
n (x1n; x1n)

+ o (1) = o (1) ;

recall (3.7). Now we can repeat the argument of Lemma 3.1(c). Exactly as at (3.6),
for large enough n; Z 1�"

�1
(`1n)

2
d�=

Z 1

�1
(`1n)

2
d�

�
4p2n�1 (x1n)

"2Kn (x1n; x1n)
;(3.17)

and then the result follows.
(b) We have to show that

(3.18) lim sup
n!1

1� xJ1n
1� x1n

� 1:

Once this is established, Lemma 3.2 gives (3.16). To do this, we proceed much as
in Lemma 3.2. Now

(3.19) 1� xJ1n = inf
deg(P )�n�1

Z 1

�1
(1� x)P 2 (x)wJ (x) dx=

Z 1

�1
P 2 (x)wJ (x) dx:

Let � 2 (0; 1) and choose " 2 (0; �) such that (3.10) holds. Let m = n � [�n] and
choose

P = `1mR;
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where R has degree � [�n] ; 0 � R � 1 in [�1; 1], and satis�es (3.11) and (3.12).
Then Z 1

�1
(1� x)P 2 (x)wJ (x) dx

� e�2C0n sup
x2[�1;1�"]

(1� x) (`1m (x))2
Z 1�"

�1
wJ + (1 + �)h (1)

�1
Z 1

1�"
(1� x) (`1m (x))2 w (x) dx

� h (1)
�1
Z 1

�1
(1� x) (`1m (x))2 d� (x)

�
e�C0n + 1 + �

	
;

(3.20)

by the regularity of the measure �, which ensures [25, p. 68] that

sup
deg(S)�n

�
kSkL1[�1;1] =

Z 1

�1
jSj d�

�1=n
� 1 + o (1) :

Also, by (3.10) and absolute continuity of � in [1� "; 1] ;Z 1

�1
P 2 (x)wJ (x) dx

�
�
1� n�2

�2
1 + �

h (1)
�1
Z 1

1�"
`21md�

=
1 + o (1)

1 + �
h (1)

�1
Z 1

1

`21md�;

by (a) of this lemma. Then substituting this and (3.20) in (3.19) gives

1� xJ1n

�
n
(1 + �)

2
+ o (1)

oZ 1

�1
(1� x) (`1m (x))2 d� (x) =

Z 1

�1
(`1m (x))

2
d� (x)

=
n
(1 + �)

2
+ o (1)

o
(1� x1m) :

Then
1� xJ1m
1� x1m

�
n
(1 + �)

2
+ o (1)

o 1� xJ1m
1� xJ1n

�
n
(1 + �)

2
+ o (1)

o� 1

1� �

�2
;

by Lemma 3.1(b). Here as n runs through the positive integers, so does m =
m (n) = n � [�n]. (Indeed the di¤erence between m (n) and m (n+ 1) is at most
1). So

lim sup
k!1

1� xJ1k
1� x1k

�
�
1 + �

1� �

�2
:

Since � > 0 is arbitrary, we obtain (3.18). �

Proof of Theorem 1.2
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We use the universality limit from [15]: uniformly for a; b in compact subsets of
(0;1), we have

(3.21) lim
n!1

1

2n2
~Kn

�
1� a

2n2
; 1� b

2n2

�
= J� (a; b) :

Of course, we also have uniformly for such a; b

(3.22) lim
n!1

1

2n2
~KJ
n

�
1� a

2n2
; 1� b

2n2

�
= J� (a; b) :

Now choose b = bn such that

1� bn
2n2

= xJ1n:

Observe that by Lemma 3.1(b), as n!1;
bn = 2n

2
�
1� xJ1n

�
! j2�;1:

Moreover, ~KJ
n

�
1� a

2n2 ; 1�
bn
2n2

�
= ~KJ

n

�
1� a

2n2 ; x
J
1n

�
is a constant multiple of

`J1n
�
1� a

2n2

�
, so vanishes only when

1� a

2n2
= xJkn; k = 2; 3; :::; n;

where it has sign changes. Next, as a function of a,

J�
�
a; j2�;1

�
=
J� (

p
a) j�;1J

0
� (j�;1)

2
�
a� j2�;1

�
vanishes only when a = j2�;k, k = 2; 3; :::, where it has sign changes. In view of
(3.21) and the previous lemma, also

lim
n!1

1

2n2
~Kn

�
1� a

2n2
; x1n

�
= J�

�
a; j2�;1

�
uniformly for a in compact subsets of (0;1). Let us write for some an > 0;

x2n = 1�
an
2n2

:

Then ~Kn

�
1� a

2n2 ; x1n
�
6= 0 for a < an, and the above considerations, and the

intermediate value theorem, show that

(3.23) 0 � lim sup
n!1

an � j2�;2:

If some subsequence of fang converges to a number a, then as Kn (x2n; x1n) = 0,
we obtain

0 = J�
�
a; j2�;1

�
:

Thus necessarily a = j2�;2. As this is true of every such subsequence, we have

lim
n!1

an = j
2
�;2

and hence
lim
n!1

n2
�
1� x22n

�
= j2�;2:

Repeating this argument by induction on k, and considering ~Kn

�
1� a

2n2 ; xk�1;n
�
,

shows that for each �xed k,

lim
n!1

n2
�
1� x2kn

�
= j2�;k:

�
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4. Proof of Theorems 1.4 and 1.5

This is similar to Theorem 1.1, but we provide the details. Obviously Theorem
1.4 is a special case of Theorem 1.5, so we prove the latter. In [13], we showed that

(4.1) lim
n!1

~Kh
n

�
x+ a

~Kh
n(x;x)

; x+ b
~Kh
n(x;x)

�
~Kh
n (x; x)

=
sin� (a� b)
� (a� b) ;

uniformly for x 2 Jn (") and a; b in compact subsets of the real line. Now let
xhkn 2 Jn ("). We need the fundamental polynomial `hkn of Lagrange interpolation
that satis�es

`hkn
�
xhkn
�
= 1

and vanishes at all other zeros of phn. Recall the representation (2.3) for the funda-
mental polynomials. Choosing a = 0 and x = xhkn in (4.1), we have

W

�
xhkn +

b
~Kh
n(xhkn;xhkn)

�
W
�
xhkn
� `hkn

 
xhkn +

b
~Kh
n

�
xhkn; x

h
kn

�! = sin�b

�b
+ o (1) ;

uniformly for b in compact subsets of the real line, and uniformly for xhkn 2 Jn (").
Since sin�b

�b changes sign at b = �1, it follows that xhk+1;n, the zero of `hkn closest
on the left to xhkn, must satisfy

xhk+1;n = x
h
kn +

�n
~Kh
n

�
xhkn; x

h
kn

�
where �n 2 (�1; 0), and

lim inf
n!1

�n � �1:

In particular f�ng is bounded. We have to show that

(4.2) lim
n!1

�n = �1:

Choose any subsequence of f�ng with some limit �, say. Necessarily � 2 [�1; 0].
Since `hkn

�
xhk+1;n

�
= 0, we obtain, as n!1 through the subsequence, that

sin��

��
= 0;

so � = �1. As this is true for any subsequence, we obtain (4.2). That in turn gives,
as n!1; �

xhkn � xhk+1;n
�
~Kh
n

�
xhkn; x

h
kn

�
= ��n ! 1:

Finally, from the asymptotics for Christo¤el functions in [13, Lemma 2.2(a) and
Theorem 4.1],

~Kh
n

�
xhkn; x

h
kn

�
= �n

�
xhkn
�
(1 + o (1)) :

The fact that the zeros to the left and right of every �xed point satisfy (1.19), may
be established as in the proof of Theorem 1.1(b). �
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5. Proof of Theorem 1.6

Throughout, we assume W 2 F
�
C2
�
. The class F

�
C2
�
is contained in the

classes F
�
Lip 12

�
; F

�
lip 12

�
; F in [12], see p. 13 there. So we can apply estimates

for all these classes from there. We de�ne for r > 0 the square root factor

(5.1) �r (x) =
p
j(x� a�r) (ar � x)j, x 2 R:

Sometimes, instead of �n, we also use the density transformed to [�1; 1],

(5.2) ��n (t) =
�n
n
�n

�
L[�1]n (t)

�
; t 2 [�1; 1] ;

which has total mass 1. Recall that L[�1]n (t) = �n+�nt is the linear transformation
of [�1; 1] onto �n, de�ned after (1.14).

Lemma 5.1
(a) Let 0 < " < 1. Then uniformly for n � 1 and x 2 Jn (") ;

(5.3) ~Kn (x; x) = �n (x) (1 + o (1)) �
n

�n
:

(b) For n � 1 and x 2 �n;

(5.4) ~Kn (x; x) = �
�1
n

�
W 2; x

�
W 2 (x) � C n

�n
p
1� L2n (x)

:

(c) For n � 1 and t 2 (�1; 1) ;

(5.5) ��n (t) �
Cp
1� t2

:

(d) For n � 1;

(5.6) Q0 (a�n) � n

s
T (a�n)

�n ja�nj
;

and for x 2 �n;

(5.7) jQ0 (x)j � C n

�n (x)
:

(e) There exists " > 0 such that for n � 1;

(5.8)
�nT (a�n)

ja�nj
= O

�
n2�"

�
;

and

(5.9) Q (a�n) � n

s
ja�nj

�nT (a�n)
� Cn":

(f) For n � 1 and polynomials P of degree � n;
(5.10) kPWkL1(R) = kPWkL1[a�n;an] :

Proof
(a) The asymptotic is Theorem 1.25 in [12, p. 26]. For the second relation in (5.3),
we use Theorem 5.2(b) in [12, Theorem 5.2, p. 110]: for any �xed s 2 (0; 1) ;

(5.11) �n (x) �
n

�n (x)
in �sn
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uniformly in n; x. Since �sn � Jn (") for some s = s (") < 1, and since

�n (x) � "�n in Jn (") ;

see [13, Lemma 2.1(e), (f)], we obtain the second relation in (5.3).
(b) In [12, Corollary 1.14(c), p. 20], it is shown that for all x 2 �n;

�n
�
W 2; x

�
=W 2 (x)

� C'n (x) = C
jx� a�2nj ja2n � xj

n
q�
jx� a�nj+

��a�n��n��� (jx� anj+ an�n) ;
where

��n =

0@nT (a�n)
s
ja�nj
�n

1A�2=3

:

For x 2 [a�n; an],

ja2n � xj = a2n � an + an � x
� C

an
T (an)

+ an � x;

see [12, (3.51), Lemma 3.11, p. 81]. Using [12, (3.39), Lemma 3.7, p. 76], we
continue this as

� Can�n + jan � xj :
A similar inequality holds for jx� a�2nj. Thus for x 2 [a�n; an] ;

K�1
n (x; x)W 2 (x) = �n

�
W 2; x

�
=W 2 (x)

� C

q�
jx� a�nj+

��a�n��n��� (jx� anj+ an�n)
n

� C

p
jx� a�nj jx� anj

n
= C

�n
n

p
1� L2n (x):

(c) This follows directly from Theorem 6.1(b) in [12, p. 146].
(d) The �rst relation (5.6) is (3.17) of Lemma 3.4 in [12, p. 69]. The second relation
(5.7) follows directly from Lemma 3.8(a) in [12, p. 77].
(e) The �rst relation (5.8) is (3.38) in Lemma 3.7 of [12, p. 76]. The second relation
(5.9) is (3.18) in Lemma 3.4 of [12, p. 69], together with (5.8) above.
(f) This is classical, see for example [12, p. 95]. �
We now prove a uniform bound on the reproducing kernel Kn in the plane:

Lemma 5.2
Let 0 < " < 1; A > 0. There exists C such that uniformly for n � 1, r; s 2 Jn (")
and juj ; jvj � A;

(5.12) W (r)W (s)
�n
n

����Kn

�
r + iu

�n
n
; s+ iv

�n
n

����� � C:
Proof
By Lemma 5.1(b), for all x 2 �n = [a�n; an];

Kn (x; x)W
2 (x) � C n

�n
p
1� L2n (x)

:
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By the Cauchy-Schwarz inequality, we obtain for x; t 2 �n;

(5.13) W 4 (x)W 4 (t)
��K4

n (x; t)
�
1� L2n (x)

� �
1� L2n (t)

��� � C � n
�n

�4
:

Next, recall that if

Vn (x) =

Z
�n

log
1

jx� tj�n (t) dt;

then

(5.14) Vn (x) +Q (x) = cn, x 2 �n:

Thus we may recast (5.13) as

(5.15) e4(Vn(x)+Vn(t)) jS (x; t)j � C; x; t 2 �n;

where

S (x; t) =

�
�n
n

�4
e�8cnK4

n (x; t)
�
1� L2n (x)

� �
1� L2n (t)

�
is a polynomial in x; t of degree � 4n�2 in each variable. We now use the maximum
principle for subharmonic functions. Fix t and let

f (z) = 4 (Vn (z) + Vn (t)) + log jS (z; t)j :

This function is subharmonic in Cn�n, and approaches �1 as z ! 1. By the
maximum principle, and (5.15), we have for all complex z, and �xed t 2 �n,

(5.16) e4(Vn(z)+Vn(t)) jS (z; t)j = ef(z) � C:

Repeating this argument with �xed z and now focusing on t, we see that (5.16)
holds for all complex z and t. Taking 4th roots gives for all z; t 2 C; with Re z;
Re t 2 �n;

�n
n
W (Re z)W (Re t) jKn (z; t)j

��1� L2n (z)��1=4 ��1� L2n (t)��1=4
� CeVn(Re z)�Vn(z)+Vn(Re t)�Vn(t):(5.17)

Now let us set z = r + iu �nn and t = s+ iv �nn , where r; s 2 Jn (") and juj ; jvj � A.
We have

j1� Ln (z)j � j1� Ln (r)j =
����a�n � r�n

���� � ";
with a similar inequality for j1� Ln (t)j. Moreover,

Vn (Re z)� Vn (z) = Vn (r)� Vn
�
r + iu

�n
n

�
=

1

2

Z
�n

log

"
1 +

�
�n
n

u

r � x

�2#
�n (x) dx

=
n

2

Z 1

�1
log

"
1 +

�
u

n (Ln (r)� �)

�2#
��n (�) d�;



20 ELI LEVIN1 AND DORON S. LUBINSKY2

by the substitution � = Ln (x). Using the bound Lemma 5.1(c) on ��n and that
jLn (r)j � 1� ", juj � A, we can continue this as

� Cn sup
jaj�1�"

Z 1

�1
log

"
1 +

�
A

n (a� �)

�2#
d�p
1� �2

� Cn sup
jaj�1�"

8><>:
R 1�"=2
�1+"=2 log

�
1 +

�
A

n(a��)

�2�
d�

+ log
h
1 +

�
2A
n"

�2i R
1� "

2�j�j<1
d�p
1��2

9>=>;
� Cn sup

jaj�1�"

�
1

n

Z 1

�1
log

�
1 +

1

�2

�
d� +

C

n2

�
� C:

A similar bound holds for Vn(Re t)�Vn (t). Then the result follows from (5.17). �
We need one last estimate:

Lemma 5.3
Let 0 < " < 1; A > 0. Uniformly for n � 1, x 2 Jn (") and jaj � A;

(5.18) W

�
x+

a
~Kn (x; x)

�
=W (x) = exp

�
�a Q0 (x)

~Kn (x; x)

�
(1 + o (1)) :

Proof
First, if x 2 [�1; 1], we have that Q0 is bounded in [�1; 1] and Q is continuous
there, while ~Kn (x; x) � n

�n
!1, so both sides of (5.18) are 1+o (1). Now suppose

jxj � 1. Then
���x+ a

~Kn(x;x)

��� � 1
2 for n � n0 (A). We use a Taylor series expansion

to second order:

Q

�
x+

a
~Kn (x; x)

�
= Q (x) + a

Q0 (x)
~Kn (x; x)

+
a2

2

Q00 (�)

~Kn (x; x)
2 ;

where � is between x and x+ a
~Kn(x;x)

. Moreover, for n large enough, j�j � 1
2 . Here

by De�nition 1.3(e),

Q00 (�) � CQ
0 (�)

2

Q (�)
:

Now if �rst � 2 �lognn
�
� 1
2 ;

1
2

�
, then by (5.6) and (5.8),

Q0 (�) � C (log n)T (a� logn)1=2 � C (log n)2 ;

while Q (�) is bounded below, so that

Q00 (�) � C (log n)4 :

If instead � 2 Jn (") n�logn, then by (5.7),

Q0 (�) � C np
1� L2n (�)

� C n
�n
;

while by (5.9),

Q (�) � Q (a� logn) � C (log n)C0 ;
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so that

Q00 (�) � C
�
n

�n

�2
(log n)

�2C0 :

Then uniformly for the range of x; a considered, the above considerations show that

0 � a2

2

Q00 (�)

~Kn (x; x)
2 � CQ

00 (�)

�
�n
n

�2
= o (1) :

We also use here that �n = O
�
n1=�

�
, where � > 1 is as in De�nition 1.3(e) [13,

Lemma 2.1(a)]. Thus we have shown that

Q

�
x+

a
~Kn (x; x)

�
�Q (x)

= a
Q0 (x)
~Kn (x; x)

+ o (1) ;

and this is equivalent to (5.18). �

Proof of Theorem 1.6
Since ~Kn (x; x) � n

�n
uniformly for x 2 Jn ("), we have uniformly for jaj ; jbj � A,����Kn

�
x+

a
~Kn (x; x)

; x+
b

~Kn (x; x)

����� =Kn (x; x)

� �n
n
W 2 (x)

����Kn

�
x+

a
~Kn (x; x)

; x+
b

~Kn (x; x)

����� :
By Lemma 5.2, this is uniformly bounded in n; a; b; x for complex a; b with jaj ; jbj �
A and x 2 Jn ("). Then also for this range of parameters, we have uniform bound-
edness of Q0(x)

~Kn(x;x)
(recall (5.7)) and hence of

exp

�
� (a+ b) Q0 (x)

~Kn (x; x)

�
Kn

�
x+

a
~Kn (x; x)

; x+
b

~Kn (x; x)

�
=Kn (x; x) :

Note that this is an entire function of a; b. By Lemma 5.3, and then the universality
limit (4.1) in the special case h = 1, we also have for real a; b in [�A;A] and
x 2 Jn ("), that

exp

�
� (a+ b) Q0 (x)

~Kn (x; x)

�
Kn

�
x+

a
~Kn (x; x)

; x+
b

~Kn (x; x)

�
=Kn (x; x)

= (1 + o (1)) ~Kn

�
x+

a
~Kn (x; x)

; x+
b

~Kn (x; x)

�
= ~Kn (x; x)

=
sin� (a� b)
� (a� b) + o (1) :

Because of the uniform boundedness in complex a; b, convergence continuation the-
orems imply that this convergence also takes place uniformly for complex a; b such
that jaj ; jbj � A. Equivalently as Q0(x)

~Kn(x;x)
is bounded for such x, we obtain

Kn

�
x+

a
~Kn (x; x)

; x+
b

~Kn (x; x)

�
=Kn (x; x)

= exp

�
(a+ b)

Q0 (x)
~Kn (x; x)

�
sin� (a� b)
� (a� b) + o (1) ;
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uniformly for x 2 Jn (") and complex a; b such that jaj ; jbj � A. We substitute in
this the expansions

sin (a� b)
(a� b) =

1X
`;m=0

a`bm

`!m!
� `;m;

and

exp

�
a
Q0 (x)
~Kn (x; x)

�
=

1X
j=0

1

j!

�
a
Q0 (x)
~Kn (x; x)

�j
:

Gathering like powers, we obtain

Kn

�
x+

a
~Kn (x; x)

; x+
b

~Kn (x; x)

�
=Kn (x; x)

=
X
r;s�0

arbs
X

j+`=r;
k+m=s

� `;m
j!k!`!m!

�`+m
�

Q0 (x)
~Kn (x; x)

�j+k
+ o (1)

=

1X
r;s=0

arbs

r!s!

rX
`=0

�
r

`

� sX
m=0

�
s

m

�
� `;m�

`+m

�
Q0 (x)
~Kn (x; x)

�r+s�`�m
+ o (1) :(5.19)

Next, we �nd a Taylor series expansion for the extreme left-hand side in (5.19).
First note that

Kn (x+ �; x+ �) =
n�1X
k=0

pk (x+ �) pk (x+ �)

=
n�1X
k=0

 1X
r=0

p
(r)
k (x)

r!
�r

! 1X
s=0

p
(s)
k (x)

s!
�s

!

=
1X

r;s=0

K(r;s)
n (x; x)

�r�s

r!s!
;

recall the notation (1.5). The series all terminate, so the interchanges are justi�ed.
Hence,

Kn

�
x+

a
~Kn (x; x)

; x+
b

~Kn (x; x)

�
=Kn (x; x)

=
1X

r;s=0

K
(r;s)
n (x; x)

Kn (x; x) r!s!

�
a

~Kn (x; x)

�r �
b

~Kn (x; x)

�s
:

Next, we compare this and (5.19), and recall that when a sequence of analytic func-
tions converges uniformly, the Taylor series coe¢ cients of functions in the sequence
converge to those of the limit function. This gives for each �xed r; s; and x 2 Jn (") ;

K
(r;s)
n (x; x)

Kn (x; x) ~Kn (x; x)
r+s =

rX
`=0

�
r

`

� sX
m=0

�
s

m

�
� `;m�

`+m

�
Q0 (x)
~Kn (x; x)

�r+s�`�m
+o (1) :

Finally, the asymptotic ~Kn (x; x) = �n (x) (1 + o (1)) gives (1.26) for �xed x. To
prove the uniformity in x 2 Jn ("), we may proceed as follows: for n � 1, choose
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xn 2 Jn ("). Our proof above, without any change, shows that the sequence of
functions�
Kn

�
xn +

a
~Kn (xn; xn)

; xn +
b

~Kn (xn; xn)

�
=Kn (xn; xn)� exp

�
(a+ b)

Q0 (xn)
~Kn (xn; xn)

�
sin� (a� b)
� (a� b)

�1
n=1

is bounded uniformly for a; b in compact subsets of the plane, and converges uni-
formly for such a; b to 0. Hence individual Taylor series coe¢ cients of the sequence
also converge to 0. As this is true for any sequence fxng in Jn ("), the uniformity
in x follows. �
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