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When one seeks a surface of given area enclosing a maximal volume, one
finds that the equation this surface must satisfy is the second order partial
differential equation
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(constant mean curvature)
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the question is therefore reduced to integrating this equation, which has not
yet been done in general. In the particular case where a = ∞, equation (1)
becomes that of the minimal surface which was integrated by Monge; but the
complicated form of the integral he gave, from which one derives no benefit,
suggests that if ever one could completely integrate equation (1), the integral
would be of no use.

If one adds to equation (1) the condition that the surface be one of revolu-
tion, the difficulty entirely disappears, and not only can one find the general
equation of the surface, one can also give a very simple geometric definition
of its meridian curve. This is what I propose to show in this paper.

I first observe that equation (1) expresses that the sum of the principal
curvatures is constant and equals 1

a
. Now one knows that at each point

1



of a surface the sum of the curvatures of two normal sections which are
perpendicular to each other, is equal to the sum of principal curvatures. One
can therefore define the mean curvature of a surface at a point as half the sum
of the principal curvatures at this point; in this way the surface represented
by equation (1) is that where the mean curvature is constant and equal to
1
2a

, and it’s this surface that we propose to find in the particular case where
it is one of the revolution.

The radii of principal curvature at a point of a surface of revolution are,
as one knows, the radius of curvature of the meridian curve at this point,
and the portion of the normal to the surface included between the point
and the axis; it follows therefore that if one references the meridian curve
of the desired surface to a pair of rectangular coordinate axes, of which one,
the x-axis, is the axis of the surface, that curve will be determined by the
condition
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where ρ represents its radius of curvature and N the portion of its normal
(see text). Let x and y be the coordinates of an arbitrary point on the curve,
x′ and y′ the coordinates of the center of the osculating circle at that point,
or equivalently the coordinates of the corresponding point on the evolute,
and s′ the arclength of the evolute starting from a fixed origin up to the
point (x′, y′). Now, according to the properties of evolutes,

ρ = b − s′

b is a constant which depends on the origin of the arc s′. Therefore the
portion of the tangent to evolute at the point (x′, y′) included between the
point and the x-axis is equal to y′ ds′

dy′ ; adding ρ to y, we get the value of N
which is

N = y′ ds′

dy′ + b − s′;

by means of these values, equation (2) becomes
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an equation which will help us determine the evolute of the desired curve.
One obtains first, by integration,

y′2 = α(b − s′)(2a − b + s′),
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where α is an arbitrary constant. Upon resolving for s′ and differentiating,
one finds
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α
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and as one has
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one deduces
dx′

ds′
=
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y′2(1 + α) − a2α2

y′ .

Upon inspection of the values of dy′
ds′ and dx′

ds′ , one sees that the constant α
can take all the possible positive values, and that, in this case, the values
of y′ must be included between the limits aα√

1+α
and α

√
a; but that if α is

negative, it must be included between 0 and −1, and, in this case, y′ can
take all the values greater than − aα√

1+α
, which indicates that the evolute has

infinite branches.
Let ϕ be the angle that the tangent to the desired meridian curve at the

point (x, y) makes with the x-axis; one will have dx′
ds′ = sin ϕ, dy′

ds′ = − cos ϕ,
dx′ = −dy′ tanϕ. It follows (that)

(3) y′ =
aα√

1 + α − sin2 ϕ
,

and

x′ = −
∫

dy′ tan ϕ = −y′ tan ϕ +

∫
y′dϕ

cos2 ϕ
;

(as well) or really, replacing y′ by its value,

(4) x′ = β − aα tanϕ√
1 + α − sin2 ϕ

+

∫ ϕ

0

aα dϕ

cos2 ϕ
√

1 + α − sin2 ϕ
,

where β is a new arbitrary constant.
These two equations (3) and (4) represent the evolute. One can eliminate

the angle ϕ, and one obtains thereby the equation of the curve; one can also
express the integral which enters into the value of x′ by means of elliptic
functions; but it is preferable, for that which follows, to leave (to) these
equations (in) the form which we have come (one comes) to give (of them).
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We have determined the values of the coordinates x′, y′ of an arbitrary
point of the evolute as a function of the auxiliary variable ϕ, it is easy from
this to deduce the values of the coordinates x, y, at the corresponding point
of the desired curve, as a function of the same variable; as a result, one has

y = y′ + ρ
dy′

ds′
,

x = x′ + ρ
dx′

ds′
.

Therefore one has also, by that which proceeded,

ρ = b − s′ = a −
√

a2 − y′2

α
;

and if one replaces dy′
ds′ by − cos ϕ, dx′

ds′ , by sin ϕ, x′ and y′ by their values
(pulled) from equations (3) and (4), one finds the following equations for
representing the desired meridian curve:

(5)

{
y = −a cos ϕ + a

√
1 + α − sin2 ϕ,

x = β + a sin ϕ − a tanϕ
√

1 + α − sin2 ϕ +
∫ ϕ

0
aαdϕ

cos2 ϕ
√

1+α−sin2 ϕ
.

The question is therefore now completely resolved from the analytic point of
view; but we can proceed further along to interpret geometrically the result
we have reached.

The integral which enters into the value of x is the same form as the
one which is present in the investigation of the arclength of an ellipse or a
hyperbola; one is therefore naturally led to the idea that the curve represented
by the equations (5) can well be a kind of cycloid generated by a point in
the plane of an ellipse or hyperboloid which is rolling upon a straight (line).
As it was desired to verify this premise, I have recognized that indeed the
meridian curve one finds is that which is generated by the focus of an ellipse
or a hyperbola which rolls upon the x-axis. To demonstrate this, it suffices
to seek directly the equation of this curve, and from doing this it is seen that
it is identical with the equations (5).

Imagine therefore a hyperbola, for example, which rolls upon the x-axis,
and consider this curve in an arbitrary position. Let s be the arclength of
the curve (hyperbola) included between the vertex and the point of contact
with the x-axis, r the radius vector which joins the point of contact to the
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focus above the origin of the arc s, and ϕ the angle that the radius vector
makes with the normal to the curve at the point of contact: one will have
for the coordinates of the focus.

x = β + s − r sin ϕ

y = r cos ϕ.

Now if x1 and y1 are the coordinates of the point of contact taken relative
to the axes of the hyperbola, and if one represents by a transverse semi-axis,
and by e the eccentricity of that curve, one will have

y1 =
a(e2 − 1)

e
tan ϕ, x1 =

a

e cos ϕ

√
e2 − sin2 ϕ, r = ex1 − a;

and in consequence

r cos ϕ = −a cos ϕ + a

√
e2 − sin2 ϕ,

r sin ϕ = −a sin ϕ + a tan ϕ

√
e2 − sin2 ϕ.

On the other hand, one has

ds =
√

dx2
1 + dy2

1 =
a(e2 − 1)dϕ

cos2 ϕ
√

e2 − sin2 ϕ
,

from whence

s =

∫ ϕ

0

a(e2 − 1)dϕ

cos2 ϕ
√

e2 − sin2 ϕ
.

One has therefore at last the following equations for representing the curve
generated by the focus of the hyperbola as it rolls upon the x-axis:

y = −a cos ϕ + a

√
e2 − sin2 ϕ,

x = β + a sin ϕ − a tanϕ

√
e2 − sin2 ϕ +

∫ ϕ

0

a(e2 − 1)dϕ

cos2 ϕ
√

e2 − sin2 ϕ
.

These equations evidently coincide with the equations (5) if one puts

e =
√

1 + α,
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which can always be done when α is positive. Thus, in this case, the equa-
tions (5) represent the curve described by the focus of a hyperbola rolling
upon the x-axis; a is the transverse semi-axis of this hyperbola, and

√
1 + α

is the eccentricity.
A similar calculation shows that, in the case that α is negative, the equa-

tions (5) represent the curve described by the focus of an ellipse rolling upon
the x-axis; a is then the semi-major axis of the ellipse, and

√
1 + α is its

eccentricity.
One can therefore conclude (from) of everything that preceded, the fol-

lowing theorem:
For finding the meridian curve of a surface of revolution of which the

mean curvature is constant and equal to 1
2a

, it must be done by rolling upon
the axis of the surface an ellipse or a hyperbola such that the major axis or
the transverse axis is equal to 2a, and the focus describes the desired curve.

If the mean curvature of a surface of revolution of which one seeks the
meridian curve is zero, one has 2a = ∞; (and) then the meridian curve will
be generated by the focus of a parabola rolling upon the axis of the surface.
But one knows that this curve is a catenoid: one recovers therefore in this
way an already known theorem, that if one rolls a parabola upon a straight
line, the focus of this parabola describes a catenoid.
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