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Abstract. We study the Cauchy problem for the system of one dimensional compressible
adiabatic flow through porous media and the related diffusive problem. We introduce a new approach
which combines the usual energy methods with special L1-estimates and use the weighted Sobolev
norms to prove the global existence and large time behavior for the solutions of the problems. The
asymptotic states for the solutions are given by either stationary solutions or similarity solutions
depending on the behavior of the initial data when |x| → ∞. Our estimates provide asymptotic time
decay rates.
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1. Introduction. The motion of the adiabatic gas flow through porous media
can be modeled by the following damped hyperbolic system:


vt − ux = 0,

ut + p(v, s)x = −αu, α > 0,

(e(v, s) + 1
2u

2)t + (pu)x = −αu2.

(1.1)

Where v denotes the specific volume, u is the velocity, s stands for entropy, p denotes
the gas pressure with pv(v, s) < 0 for v > 0, and e is the specific internal energy for
which one has es �= 0 and ev + p = 0 (due to the second law of thermodynamics). For
smooth solutions, the system (1.1) is equivalent to the following one:


vt − ux = 0,

ut + p(v, s)x = −αu, α > 0,

st = 0.

(1.2)

It is strictly hyperbolic with characteristic speeds −λ1 = λ3 =
√−pv and λ2 = 0.

In this paper, we are interested in the influence of the damping mechanism to
the smoothness and the large time behavior of the solutions. We study the Cauchy
problem for the system (1.2) with the following initial data:

(v, u, s)(x, 0) = (v0(x), u0(x), s0(x)), x ∈ R,(1.3)

satisfying the limit conditions

(v0, u0, s0)(x) → (v±, u±, s±) as x → ±∞,
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with v± > 0. For the sake of simplicity, from now on, we take α = 1 and p(v, s) =
(γ − 1)v−γes, with γ > 1, which is the case for the polytropic gas dynamics.

The global existence with small initial data of smooth solutions for the Cauchy
problem (1.2)–(1.3) has been studied first in [10] and [11] and later by [22]. Then a
natural problem is the large time behavior of the solutions. From asymptotic analysis,
it is known that the first term of (1.2)2 decays to zero, as t → ∞, faster than others.
Therefore it is natural to expect that the problem (1.2)–(1.3) is time-asymptotically
equivalent to the following reduced problem:



ṽt = −p(ṽ, s)xx,

ũ = −p(ṽ, s)x,

st = 0,

ṽ(x, 0) = ṽ0(x), s(x, 0) = s0(x),

ṽ0(±∞) = v±, s0(±∞) = s±.

(1.4)

The system in (1.4) is obtained from (1.2) by approximating the momentum equation
in (1.2) with Darcy’s law. Since the first equation of (1.4) is parabolic, the damping
mechanism in (1.2) creates some diffusive effects when t tends to infinity.

For the isentropic flow, namely, s = const, (1.2) takes the following form:{
vt − ux = 0,
ut + p(v)x = −u.

(1.5)

The diffusive effect created by the damping mechanism has been investigated for the
Cauchy problem of (1.5) with the initial data

(v(x, 0), u(x, 0)) = (v∗(x), u∗(x))(1.6)

such that

lim
x→±∞(v∗(x), u∗(x)) = (v±, u±).

It has been proved in [5] that the smooth solution of (1.5)–(1.6) can be described
time-asymptotically by the solution of the following parabolic problem:


ṽt = −p(ṽ)xx,

ũ = −p(ṽ)x,

ṽ(x, 0) = ṽ∗(x+ d0).

(1.7)

Where ṽ∗ is the similarity solution of (1.7)1 with ṽ∗(±∞) = v±. For other results, we
refer to [3], [4], [6], and [19] for smooth solutions and to [1], [4], [8], [12], [13], [14],
[15], [17], [18], and [21] for weak solutions. For the initial boundary value problems
on a quarter plane, we refer to [16] and [20].

There are few results in the literature for the case s �= const. Partial answers are
given in [11] and [7] for the Cauchy problem and in the recent paper of Hsiao and
Pan [9] concerning the initial boundary value problem. The case v− = v+ = v̄ and
s− = s+ = s̄ was investigated in [11] and the case v− �= v+ and s− = s+ = s̄ was
treated in [7] by using a technical condition (that they refer to in [7] as condition V)
which requires us to solve the following parabolic problem{

ṽt = −p(ṽ, s)xx,

ṽ0(x) = e
1
γ (s(x)−s̄)ṽ∗(x+ x0)

(1.8)
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and to control the behavior of its solutions by means of the similarity solutions of{
ṽ∗t = −p(ṽ∗, s̄)xx,
ṽ∗(±∞) = v±.

(1.9)

The purpose of this paper is to deal with the following two cases:
Case 1: s− = s+ = s̄;
Case 2: (v±, s±) satisfy p(v−, s−) = p(v+, s+) = p̄.
In Case 1, namely, s− = s+ = s̄, we cannot use the methods of [7] and we need new

techniques. In particular we shall combine the usual energy methods with special L1-
estimates and with the use of weighted Sobolev norms to solve the problems in detail.
This is the only case where p(v−, s−) �= p(v+, s+) that we can treat in this paper. In
this case, the asymptotic states will be the similarity solution of (1.9) given by the
scaling invariance with respect to the transformation x → σx, t → σ2t. Our results
strongly improved those in [7]. Indeed, we remove the technical condition V and we
describe the asymptotic states both for the diffusion problem and the hyperbolic one
by using the similarity solutions. Thanks to our new approach, it is possible to get
a decay rate which did not exist in the previous results (see [7]). Our results on the
parabolic problem generalize the result of [2] to the adiabatic case, and also obtain
better decay rates.

In Case 2, we can determine a special solution v3(x) to (1.4)1 by solving the
equation p(v3, s) = p̄. Then in this case we establish results similar to those obtained
in [11] with, in addition, some decay rates.

Before stating the main results, we describe the plan of this paper. In section
2, the parabolic problem (1.4) is studied in detail for both cases by using our new
approach. Then sections 3 and 4 are devoted to the hyperbolic problem (1.2)–(1.3)
for Case 1 and Case 2, respectively.

We now state our main results.

1.1. Main results: Parabolic equation. Since in (1.2) or (1.4) st = 0, then
s(x, t) = s(x) = s0(x). Let us denote

a(x) = (γ − 1)−
1
γ e−

1
γ s(x),

a1 = (γ − 1)−
1
γ e−

1
γ s̄,

w ≡ a(x)ṽ = p(ṽ, s)−
1
γ ,

(1.10)

then (1.4) is equivalent to the following:


wt + a(x)(w−γ)xx = 0,

ũ = −(w−γ)x,

s(x, t) = s0(x),

w(x, 0) = w0(x) = a(x)ṽ0(x),

w(±∞) = w± > 0.

(1.11)

Moreover, we will denote by w̃(η) (with η = x√
t+1

) the similarity solution of the

following problem: {
w̃t + a1(w̃

−γ)xx = 0,

w̃(±∞) = w±.
(1.12)
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By combining the weighted energy method and L1-estimate, we can prove the follow-
ing theorem for Case 1.

Theorem 1.1. Assume that w0(x) and s0(x) are C2 functions and

w0(x)− w̃(x, 0) ∈ H2(R) ∩ L1(R), x(s0(x)− s̄) ∈ L1(R).

There exists δ0 > 0 such that, if 0 < δ < δ0 and

|w+ − w−|+ ‖w0(x)− w̃(x, 0)‖H2 ≤ δ,

then (1.11) has a unique global smooth solution (w, ũ, s)(x, t) satisfying

w(x, t)− w̃ ∈ C0([0, t];H2) for all t > 0.

Moreover, there exist positive constants C > 0, β1 > 1
3 , and β2 > 1

2 such that

‖w(x, t)− w̃‖L∞ ≤ C(1 + t)−
1
2 (1 + log(1 + t))β1 ,

‖ũ+ (w̃−γ)x‖L∞ ≤ C(1 + t)−1(1 + log(1 + t))β2 .

Thus, by setting ṽ = a−1w, v̂ = a−1w̃, and û = −(w̃−γ)x, one obtains the (unique)
global smooth solution (ṽ, ũ, s) to (1.4) which satisfies

‖ṽ − v̂‖L∞ ≤ C(1 + t)−
1
2 (1 + log(1 + t))β1 ,

‖ũ− û‖L∞ ≤ C(1 + t)−1(1 + log(1 + t))β2 .

Remark 1. (a) Our results in Theorem 1.1 generalize the ones in [2] to the
adiabatic case and extend to a larger class of initial data. The decay rate here is
better than in [2] and is almost optimal.

(b) The condition x(s(x)− s̄) ∈ L1(R) can be replaced by the weaker one:

|x|β(s(x)− s̄) ∈ L1(R)

for β > 0. This is clear from our proof below.
For Case 2, where w− = w+ = w̄ in (1.11), it is clear that (w̄, 0, s0(x)) is a

special solution for the system in (1.11). Let us denote v1(x) = a−1w̄ and we have
the following.

Theorem 1.2. Assume that w0(x) and s0(x) are C2 functions and w0− w̄ ∈ H2.
There exists δ0 > 0 such that if 0 < δ < δ0 and ‖w0 − w̄‖H2 ≤ δ, then (1.11) has a
unique global smooth solution (w, ũ, s)(x, t) satisfying

lim
t→∞ ‖w(x, t)− w̄‖L∞ = 0.

Furthermore, if w0(x)− w̄ ∈ L1, then

‖w(x, t)− w̄‖L∞ ≤ C(1 + t)−
1
2 (1 + log(1 + t))β1 ,

‖ũ‖L∞ ≤ C(1 + t)−1(1 + log(1 + t))β2 .

Thus, by setting v2 = a−1w and u2 = ũ, one has a unique global smooth solution
(v2, u2, s) to (1.4) such that

‖v2 − v1‖L∞ ≤ C(1 + t)−
1
2 (1 + log(1 + t))β1 ,

‖u2‖L∞ ≤ C(1 + t)−1(1 + log(1 + t))β2 .
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1.2. Main results: Hyperbolic problems. Based on the results in the previ-
ous theorems, we can solve (1.2)–(1.3) in detail for both cases, respectively.

Following [5], we define

m(x, t) ≡ −(u+ − u−)m0(x)e
−t,

um(x, t) ≡ u−e−t +

∫ x

−∞
mt(ξ, t) dξ,

(1.13)

where m0(x) is a smooth function with compact support such that∫ +∞

−∞
m0(x) dx = 1.

We first treat Case 1, where s− = s+ = s̄. Denote by (ṽ, ũ, s) the solution to
(1.4) obtained in Theorem 1.1. In addition, we assume∫ +∞

−∞
(v0(x)− ṽ0(x)) dx = −(u+ − u−).(1.14)

A special choice of ṽ0 is given in Remark 2 below. Let us denote y(x, t) =
∫ x

−∞(v −
ṽ −m)(ξ, t) dξ, then y satisfies



ytt + [p(yx + ṽ +m, s)− p(ṽ, s)]x + yt = p(ṽ, s)xt,

y(x, 0) = y0(x) =

∫ x

−∞
(v0(ξ)− ṽ0(ξ)−m(ξ, 0)) dξ,

yt(x, 0) = y1(x) = u0(x)− ũ(x, 0)− um(x, 0).

(1.15)

Theorem 1.3. Under the conditions of Theorem 1.1, there exists ε0 > 0 such
that for all 0 < ε < ε0 and ‖y0‖H3 + ‖y1‖H2 ≤ ε, the system (1.15) admits a unique
global smooth solution y such that

y ∈ C0([0, t];H3), yt ∈ C0([0, t];H2)

for all t > 0. Moreover, there exists C = C(ε) > 0 such that

‖yx‖L∞ ≤ C(1 + t)−
3
4 , ‖yt‖L∞ ≤ C(1 + t)−

5
4 .

Hence, by setting v(x, t) = ṽ+m+ yx and u(x, t) = ũ+um+ yt, one has the (unique)
global smooth solution (v, u, s) to (1.2)–(1.3), such that

‖v − ṽ‖L∞ ≤ C(1 + t)−
3
4 , ‖u− ũ‖L∞ ≤ C(1 + t)−

5
4 .

Furthermore, in view of Theorem 1.1, one has

‖v − v̂‖L∞ ≤ C(1 + t)−
1
2 (1 + log(1 + t))β1 ,

‖u− û‖L∞ ≤ C(1 + t)−1(1 + log(1 + t))β2 ,

where β1 and β2 are the same as before.
Remark 2. (a) The global existence for the smooth solution to (1.2)–(1.3) has

been proved in [22], via characteristic method, provided that the initial data are small.
We present here an alternative version in H2 spaces by the energy estimate method.
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(b) (1.14) is the restriction on the initial data which comes from (1.2)–(1.3) and
(1.4). This is also the case for (1.16) and (1.18) below. There is a large class of
functions ṽ0(x) which can be chosen (for any given v0(x) in (1.3)). A special choice
is ṽ0(x) = a−1w̃(x+ x0, 0), where x0 is uniquely determined by∫ +∞

−∞
(v0(x)− a−1w̃(x+ x0, 0)) dx = −(u+ − u−),

which is the special case discussed in [7]. Since Theorem 1.1 is obviously valid for
w0(x) = w̃(x+ x0, 0), we include the results of [7].

(c) A similar condition was used in [9] for the initial boundary problem related to
(1.2), where it was proved that both the solutions to the damped hyperbolic problem
and those of the related diffusive problem have the same time asymptotic states if the
initial total excessive mass is zero.

Let us now consider Case 2. Assume that∫ +∞

−∞
(v0(x)− v2(x, 0)) dx = −(u+ − u−),(1.16)

and denote by ỹ(x, t) =
∫ x

−∞(v − v2 −m)(ξ, t) dξ, then we have



ỹtt + [(p(ỹx + v2 +m, s)− p(v2, s)]x = p(v2, s)xt,

ỹ(x, 0) = ỹ0(x) =
∫ x

−∞(v0(ξ)− v2(ξ, 0)−m(ξ, 0)) dξ,

ỹt(x, 0) = ỹ1(x) = u0(x)− u2(x, 0)− um(x, 0).

(1.17)

Similarly to Theorem 1.3, we have the following.
Theorem 1.4. Under the hypotheses of the Theorem 1.2, there exists ε0 > 0 such

that if 0 < ε < ε0 and ‖ỹ0‖H3 + ‖ỹ1‖H2 ≤ ε, then (1.17) has a unique global smooth
solution ỹ such that

ỹ ∈ C0([0, t];H3), ỹt ∈ C0([0, t];H2)

for all t > 0. Moreover, there exists C = C(ε) > 0 such that

‖ỹx‖L∞ ≤ C(1 + t)−
3
4 , ‖ỹt‖L∞ ≤ C(1 + t)−

5
4 .

Hence, by setting v(x, t) = v2+m+ ỹx and u(x, t) = u2+um+ ỹt, one has the (unique)
global smooth solution (v, u, s) to (1.2)–(1.3); moreover,

‖v − v2‖L∞ ≤ C(1 + t)−
3
4 , ‖u− u2‖L∞ ≤ C(1 + t)−

5
4 .

Furthermore, in view of Theorem 1.2, one has

‖v − v1‖L∞ ≤ C(1 + t)−
1
2 (1 + log(1 + t))β1 ,

‖u‖L∞ ≤ C(1 + t)−1(1 + log(1 + t))β2 .

Since (v1(x), 0, s(x)) is a special solution to both (1.2) and (1.4), if we assume∫ +∞

−∞
(v0 − v1)(x) dx = −(u+ − u−)(1.18)
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and denote by z(x, t) =
∫ x

0
(v − v1 −m)(ξ, t) dξ, we have




ztt + [p(zx + v1 +m, s)− p(v1, s)]x + zt = 0,

z(x, 0) = z0(x) =

∫ x

−∞
(v0(ξ)− v1(ξ)−m(ξ, 0)) dξ,

zt(x, 0) = z1(x) = u0(x)− um.

(1.19)

Then in this special case, we have the following result, which includes the paper [11].
Theorem 1.5. There exists ε0 > 0 such that if 0 < ε < ε0 and ‖z0‖H3+‖z1‖H2 ≤

ε, then (1.19) has a unique global smooth solution z such that

z ∈ C0([0, t];H3), zt ∈ C0([0, t];H2)

for all t > 0. Moreover,

‖zx‖L∞ ≤ C(1 + t)−
3
4 , ‖zt‖L∞ ≤ C(1 + t)−

5
4 .

Hence, by setting v(x, t) = v1 +m + zx and u(x, t) = um + zt, one has the (unique)
global smooth solution (v, u, s) to (1.2)–(1.3) such that

‖v − v1‖L∞ ≤ C(1 + t)−
3
4 , ‖u‖L∞ ≤ C(1 + t)−

5
4 .

We will end this introduction by making a reduction. In fact, in sections 3 and 4,
we will only prove Theorems 1.3–1.5 for the case u− = u+ = 0, where m(x, t) = 0
and um = 0. The general case can be treated in the similar way since m(x, t) and um

decay to zero exponentially fast.

2. Nonlinear diffusion equation. This section is devoted to studing the dif-
fusive problem (1.4). Clearly one has s(x, t) = s0(x) ≡ s(x) for all t > 0, which then
is sufficient to solve the following equation:

{
ṽt = −p(ṽ, s)xx,

ṽ(x, 0) = ṽ0(x), ṽ0(±∞) = v± > 0.
(2.1)

The equation (2.1) is equivalent to the following porous media type equation:



wt + a(x)(w−γ)xx = 0,

w(x, 0) = w0(x) = a(x)ṽ0(x),

w(±∞) = w± > 0,

(2.2)

where a(x) = (γ − 1)−
1
γ e−

1
γ s(x), w ≡ a(x)ṽ = p(ṽ, s)−

1
γ . We will study the equation

(2.2) instead of (2.1) for the following two cases, which are equivalent to those stated
in the introduction.

Case 1: s− = s+ = s̄.
Case 2: (v±, s±) are chosen such that w− = w+ = w̄, where we set w± =

w(v±, s±).
We will concentrate our main efforts on Case 1 which is the most difficult part.
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2.1. Case 1: s− = s+ = s̄. In this subsection, (2.2) will be solved near the
similarity solution for the related isentropic problem.

Now let us recall some results on the similarity solution for (2.2)1 with s(x) =
const = s̄. In this case, (2.2)1 takes the form

wt + a1(w
−γ)xx = 0,(2.3)

with a1 = (γ − 1)−
1
γ e−

1
γ s̄. It is well known that (2.3) has a unique (up to a shift)

similarity solution w̃(η) (where η = x√
1+t

) satisfying the limiting conditions w̃(±∞) =

w±. Some properties of w̃(η) are listed in the following lemma (see, for instance, [5]).
Lemma 2.1. Let w̃(η) be the similarity solution to (2.3) with w̃(±∞) = w± and

η = x√
1+t

. It follows that

|w̃′(η)|+ |w̃′′(η)| ≤ C1|w+ − w−| exp{−C2η
2},

|w̃(η)− w−|η<0 + |w̃(η)− w+|η>0 ≤ C1|w+ − w−| exp{−C2η
2},

w̃x = (1 + t)−
1
2 w̃′(η), w̃t = −1

2
(1 + t)−1ηw̃′(η), (w̃−γ)xx = −a−1

1 w̃t,

‖Di
tD

j
xw̃(·, t)‖2 ≤ C|w+ − w−|2(1 + t)−(2i+j)+ 1

2 ,

‖Di
tD

j
xw̃(·, t)‖L∞ ≤ C1|w+ − w−|(1 + t)−(i+ 1

2 j)

for i+ j ≥ 1 and i ≥ 0, j ≥ 0.
We now prove Theorem 1.1 by comparing w(x, t) with w̃(η).
Let us denote φ = w−w̃; then from (2.2) and (2.3) we have the following equation:{

φt + a(x)(ψ(w̃)φ)xx + (a− a1)(w̃
−γ)xx + a(x)(g(φ, w̃)φ2)xx = 0,

φ(x, 0) = φ0(x) = w0(x)− w̃(x, 0).
(2.4)

Here

ψ(w̃) = −γw̃−(γ+1)

g(φ, w̃)φ2 = (φ+ w̃)−γ − w̃−γ − ψ(w̃)φ.

Now let F = −ψ(w̃)φ; the corresponding problem on F is given by

Ft + a(x)ψ(w̃)Fxx − ψ(w̃)(a− a1)(w̃

−γ)xx

−ψ1(w̃)Fw̃t − aψ(w̃)(fF 2)xx = 0,

F (x, 0) = F0(x) = −ψ(w̃(x, 0))φ0(x),

(2.5)

where

−ψ1(w̃)F = ψ′(w̃)φ, fF 2 = gφ2.

We will establish the global existence and large time behavior, for the solution F
to (2.5), in the Banach space X(0, T ) defined for all T > 0 by

X(0, t) = {F ∈ C0([0, t];H2), 0 ≤ t ≤ T}
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and equipped with the norm

N2(t) = sup
0≤τ≤t

‖F (τ)‖2
H2 .

The main result of this subsection is the following theorem.
Theorem 2.2. Assume that F0(x) and s(x) = s0(x) are C2 functions such that

F0 ∈ H2(R) ∩ L1(R) and

x(s(x)− s̄) ∈ L1(R).(2.6)

Then there exist constants ε0 > 0 and δ > 0 such that if |w+−w−| ≤ δ and ‖F0‖H2 ≤
ε0, then (2.5) has a unique global smooth solution F satisfying

2∑
j=0

wj+1(t)‖∂j
xF (·, t)‖2 +

∫ t

0

3∑
j=1

wj(τ)‖∂j
xF (·, τ)‖2 dτ ≤ C,

where the weight functions wj(t) are given by

w1(t) = (1 + t)
1
2 (1 + log(1 + t))−k, wj(t) = (1 + t)j−1w1(t)

for j, k > 1.
Remark 3. (a) The condition (2.6) plays an important role in our proof of The-

orem 2.2 (see Lemmas 2.3–2.7, 2.9–2.10 below). This condition enables us to bound
the L1-norm of F for all time. In [7], s(x) − s̄ is assumed to be compact support
besides the technical condition V; our condition (2.6) is much weaker. In fact, (2.6)
asks only some decay properties on s(x)− s̄ as x → ±∞.

(b) The condition (2.6) can be replaced by the weaker one such as

(2.6′) |x|β(s(x)− s̄) ∈ L1(R)

for some β > 0. This is clear following our proof.
(c) In general, we could not bound the L1-norm of F for all time without the

conditions on the decay properties of s(x)− s̄ as x → ±∞ such as (2.6′). One cannot
even bound the total mass of F uniformly in time under the condition s(x)− s̄ ∈ L1.
From this point of view, (2.6′) is optimal.

The local existence and uniqueness of the solution to (2.5) in X(0, T ) is standard,
so to get the global existence, we will prove uniform estimates on the solution of (2.5).
Hence, from now on, we assume the local existence in X(0, T ) for some T > 0.

The following L1-estimate follows from the standard contraction property of the
porous media type equation and will play a fundamental role in the rest of this section.

Lemma 2.3. Under the conditions of Theorem 2.2, as long as the solution exists
in X(0, T ), there exist positive constants C1 and C2, such that

‖φ(·, t)‖L1 ≤ C1‖F (·, t)‖L1 ≤ C2(‖φ0‖L1 + δ).(2.7)

Proof. We present here a formal argument which can easily be made rigorous
by using any sequence approximating the sign function and passing into the limit by
means of the Lebesgue dominated convergence theorem. Observe that h = sign(φ) =
sign(F ). Let us multiply the equation in (2.4) by a−1h, then by integrating over
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[0, t]× (−∞,+∞), it follows that∫ +∞

−∞
a−1|φ|(x, t)dx+

∫ t

0

∫ +∞

−∞
sign′(F )F 2

xdxdτ

≤ C

∫ +∞

−∞
a−1|φ0|(x)dx+ C

∣∣∣∣
∫ t

0

∫ +∞

−∞
(a− a1)w̃tsign(F )dxdτ

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫ +∞

−∞
(fF 2)xFxsign

′(F )dxdτ
∣∣∣∣

≤ C(‖φ0‖L1 + δ).

(2.8)

Here, we have used the following facts:∣∣∣∣
∫ t

0

∫ +∞

−∞
(a− a1)w̃tsign(F )dxdτ

∣∣∣∣
≤ C

∫ t

0

∫ +∞

−∞
|s− s̄||w̃t|dxdτ

≤ C

∫ t

0

∫ +∞

−∞
(1 + t)−

3
2 |x(s− s̄)||w̃′(η)|dxdτ

≤ Cδ,

(2.9)

∫ t

0

∫ +∞

−∞
(fF 2)xFxsign

′(F )dxdτ

=

∫ t

0

∫ +∞

−∞
Fx(2fFx + fFFFx + fw̃Fw̃x)Fδ{F=0}dxdτ

= 0.

(2.10)

Hence (2.8) gives the proof of (2.7).
With the help of Lemma 2.3, we can make the energy estimates on F .
Lemma 2.4. Under the hypotheses of Theorem 2.2, there exists ε∗ > 0 such that

if 0 < ε < ε∗ and N(T ) ≤ ε, then we have

‖F (·, t)‖2 +

∫ t

0

‖Fx(·, τ)‖2dτ ≤ C(‖F0‖2 + δ)(2.11)

for 0 ≤ t ≤ T .
Proof. Let us multiply (2.4) by a−1F and integrate the result over [0, t] ×

(−∞,+∞); we then get∫ +∞

−∞

1

2
a−1Fφ(x, t)dx+

∫ t

0

∫ +∞

−∞
F 2
xdxdτ

≤
∫ +∞

−∞

1

2
a−1F0φ0dx+

∣∣∣∣
∫ t

0

∫ +∞

−∞
a−1(a− a1)(w̃

−γ)xxFdxdτ

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫ +∞

−∞

1

2
a−1ψ2(w̃)F

2w̃tdxdτ

∣∣∣∣+
∣∣∣∣
∫ t

0

∫ +∞

−∞
(fF 2)xFxdxdτ

∣∣∣∣
≡

∫ +∞

−∞

1

2
a−1F0φ0dx+ I1 + I2 + I3,

(2.12)
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with ψ2(w̃)F
2 = φ2ψ′(w̃).

We use I1, I2, and I3 step-by-step as follows:

I1 =

∣∣∣∣
∫ t

0

∫ +∞

−∞
a−1(a− a1)(w̃)

−γ
xx Fdxdτ

∣∣∣∣
≤ Cδε

∫ t

0

(1 + τ)−
3
2 ‖x(s− s̄)‖L1 dτ

≤ Cδε,

(2.13)

I2 =

∣∣∣∣
∫ t

0

∫ +∞

−∞

1

2
a−1ψ2(w̃)F

2w̃tdxdτ

∣∣∣∣
≤ C

∫ t

0

‖F‖L∞‖w̃t‖L∞‖F‖L1dxdτ

≤ Cδ

∫ t

0

‖F‖ 1
2 ‖Fx‖ 1

2 (1 + τ)−1dτ

≤ Cδ

(∫ t

0

‖F‖2‖Fx‖2dτ +

∫ t

0

(1 + τ)−
4
3 dτ

)

≤ Cδ

(
1 + ε2

∫ t

0

‖Fx‖2 dτ

)
,

(2.14)

I3 =

∣∣∣∣
∫ t

0

∫ +∞

−∞
(fF 2)xFxdxdτ

∣∣∣∣
≤

(
1

2
+ Cε

)∫ t

0

‖Fx‖2 dτ + Cδ2

∫ t

0

‖F‖4
L∞ dτ

≤
(
1

2
+ Cε

)∫ t

0

‖Fx‖2 dτ + Cδ2

∫ t

0

‖F‖2‖Fx‖2 dτ

≤
(
1

2
+ Cε

)∫ t

0

‖Fx‖2 dτ.

(2.15)

Due to the smallness of δ and ε, we conclude from (2.12)–(2.15) that

‖F (·, t)‖2 +

∫ t

0

‖Fx(·, τ)‖2dτ ≤ C(‖F0‖2 + δ),(2.16)

which completes the proof of Lemma 2.4.
For higher order estimates, we use the problem (2.5) to obtain the following

results.
Lemma 2.5. Under the same conditions of Lemma 2.4, we have

‖Fx(·, t)‖2 +

∫ t

0

‖Fxx(·, τ)‖2 dτ ≤ C(‖F0‖2
H1 + δ).(2.17)
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Proof. Let us multiply the equation in (2.5) by Fxx, then∫ +∞

−∞
F 2
x (x, t)dx+

∫ t

0

∫ +∞

−∞
F 2
xx(x, τ) dxdτ

≤ C

(
‖F0x‖2 +

∣∣∣∣
∫ t

0

∫ +∞

−∞
w̃tFxx dxdτ

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫ +∞

−∞
(fF 2)xxFxx dxdτ

∣∣∣∣
)
,

(2.18)

which implies, with the help of the Cauchy–Schwarz inequality and Lemma 2.1, that∫ +∞

−∞
F 2
x (x, t)dx+

∫ t

0

∫ +∞

−∞
F 2
xx(x, τ) dxdτ

≤ C(‖F0x‖2 + δ2) + C

∫ t

0

∫ +∞

−∞
(fF 2)2xx dxdτ.

(2.19)

We bound the last term in (2.19) as follows:∫ t

0

∫ +∞

−∞
(fF 2)2xx dxdτ

≤ C

∫ t

0

∫ +∞

−∞
[(|F |+ |Fx|+ |wx|)2F 2

x + F 2F 2
xx + F 4(w̃2

xx + w̃4
x)] dxdτ

≤ Cε2δ2 + Cε

∫ t

0

∫ +∞

−∞
F 2
xx(τ, x) dxdτ.

(2.20)

Then, by (2.19)–(2.20) and the estimates in Lemma 2.4, we get (2.17).
We now turn to the third order estimates. For this purpose, we differentiate the

equation in (2.5) with respect to x

Ftx + aψ(w̃)Fxxx + (aψ(w̃))xFxx − (ψ(w̃)(a− a1)(w̃
−γ)xx)x

+(ψ1(w̃)Fw̃t)x − (aψ(w̃)(fF 2)xx)x = 0.
(2.21)

Multiplying (2.21) by Fxxx and then integrating it over [0, t]× (−∞,+∞), one has∫ +∞

−∞
F 2
xx(·, t)dx+

∫ t

0

∫ +∞

−∞
F 2
xxx(τ, x) dxdτ

≤ C

(
‖F0xx‖2 +

∫ t

0

∫ +∞

−∞
((aψ)xFxx)

2 dxdτ +

∫ t

0

∫ +∞

−∞
(ψ1w̃F w̃t)

2
x dxdτ

+

∫ t

0

∫ +∞

−∞
[((ψ(w̃)(a− a1)(w̃

−γ)xx)
2
x + (aψ(w̃)(fF 2)xx)

2
x] dxdτ

)

≤ C(‖F0‖2
H2 + δ2) + Cε

∫ t

0

∫ +∞

−∞
F 2
xxx(τ, x) dxdτ,

(2.22)

which can be summarized as follows.
Lemma 2.6. Under the same conditions as Lemma 2.4, one has

‖Fxx(·, t)‖2 +

∫ t

0

‖Fxxx(·, τ)‖2 dτ ≤ C(‖F0‖2
H2 + δ).(2.23)
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From Lemma 2.4–2.6, we can conclude the following.
Lemma 2.7. Under the same conditions as Theorem 2.2, there exists ε∗ > 0 such

that if 0 < ε < ε∗ and N(T ) ≤ ε, then it follows that

‖F (t)‖2
H2 +

∫ t

0

(‖Ft‖2
H1 + ‖Fx‖2

H2)(τ) dτ ≤ C0(‖F0‖2
H2 + δ)

for all 0 ≤ t ≤ T , where C0 is a positive constant independent of t.
With the help of the previous lemmas we obtain the global existence of the solution

F (x, t) to (2.5).
Theorem 2.8. Under the same conditions as Theorem 2.2, (2.5) has a unique

global smooth solution F (x, t) which tends to zero uniformly in H1 as t goes to infin-
ity.

Proof. We choose δ, ε0, and ε small such that C0(ε
2
0 + δ) ≤ ε3, ε ≤ 1

4 so that
all the previous arguments are valid. Then, due to the local results, there exists a
positive t1 such that the solution F (x, t) exists in (−∞,+∞)× [0, t1] and satisfies

N(t)2 ≤ 4N2(0) for all t ∈ [0, t1].

We can apply the L1-estimate for F of Lemma 2.3 and then Lemma 2.7 in 0 ≤ t ≤ t1.
Therefore, it follows that

N2(t) ≤ C0(‖F0‖2
H2 + δ) ≤ ε3 for all t ∈ [0, t1].

By iterating the above procedure, a standard continuity argument allows us to
establish the global existence in time for the solution to (2.5).

Now, from Lemma 2.7 and the above argument, we have

‖F (t)‖2
H2 +

∫ t

0

(‖Fx‖2
H2 + ‖Ft‖2

H1)(τ) dτ ≤ C0(‖F0‖2
H2 + δ) for all t > 0.(2.24)

From (2.24) we know that

‖Fx(t)‖2 +

∫ +∞

0

∣∣∣∣ ddt‖Fx(t)‖2

∣∣∣∣ dt ≤ C,

which implies

lim
t→+∞ ‖Fx(t)‖2 = 0.

Then, the Sobolev inequality implies

lim
t→+∞ ‖F (t)‖2 ≤ lim

t→+∞ ‖F (t)‖L∞‖F (t)‖L1

= O(1) lim
t→+∞ ‖Fx(t)‖ 1

2

= 0,

which completes the proof of this theorem.
By using the weighted energy method, we can prove the following decay estimates.
Lemma 2.9. Let F be the solution to (2.5) obtained in Theorem 2.8, then

w1(t)‖F (t)‖2 + w2(t)‖Fx(t)‖2

+

∫ t

0

(w1(τ)‖Fx(τ)‖2 + w2(τ)‖Fxx(τ)‖2) dτ ≤ C.

(2.25)
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Proof. Let us multiply (2.5) by w2(t)Fxx, then we get(
1

2
w2(t)F

2
x

)
t

− aψ(w̃)w2(t)F
2
xx − 1

2
w′

2(t)F
2
x − ψ1(w̃)FFxxw̃tw2(t)

= −w2(t)ψ(w̃)(a− a1)(w̃
−γ)xxFxx − aψ(w̃)(fF 2)xxFxxw2(t) + (· · · )x,

(2.26)

where (· · · )x denotes the term which does not need to be computed explicitly since it
will disappear by integrating in x. Then one has

w2(t)‖Fx(·, t)‖2 +

∫ t

0

w2(τ)‖Fxx(·, τ)‖2 dτ

≤ C1

(
‖F0x‖2 +

∣∣∣∣
∫ t

0

∫ +∞

−∞
w′

2(τ)F
2
xdxdτ

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫ +∞

−∞
w̃2

tw2(τ)(a− a1)
2 dxdτ

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫ +∞

−∞
F 2w̃2

tw2(τ) dxdτ

∣∣∣∣+
∫ t

0

∫ +∞

−∞
w2(τ)(fF

2)2xx dxdτ

)

≡ C1(‖F0x‖2 + J1 + J2 + J3 + J4).

(2.27)

On the other hand, if we multiply (2.4) by a−1w1(t)F , we get(
1

2
Fφa−1w1(t)

)
t

+ w1(t)F
2
x − 1

2
w′

1(t)a
−1ψ1(w̃)F

2

=
1

2
a−1w1(t)F

2w̃t − a−1w1(t)(a− a1)F (w̃
−γ)xx

+w1(t)Fx(fF
2)x + (· · · )x,

(2.28)

which, integrated on [0, t]× (−∞,+∞), yields

w1(t)‖F (·, t)‖2 +

∫ t

0

w1(t)‖Fx(τ)‖2dτ

≤ C2

(
‖F0‖2 +

∣∣∣∣
∫ t

0

∫ +∞

−∞
w′

1(τ)F
2 dxdτ

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫ +∞

−∞
w1(τ)F

2w̃t dxdτ

∣∣∣∣+
∣∣∣∣
∫ t

0

∫ +∞

−∞
w1(τ)w̃tF (a− a1) dxdτ

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫ +∞

−∞
w1(τ)Fx(fF

2)x dxdτ

∣∣∣∣
)

≡ C2(‖F0‖2 + J5 + J6 + J7 + J8).

(2.29)

By calculating K × (2.29) + (2.27) with a K > 0 to be determined later, we have

Kw1(t)‖F (t)‖2 + w2(t)‖Fx(t)‖2

+

∫ t

0

(Kw1(τ)‖Fx(τ)‖2 + w2(τ)‖Fxx(τ)‖2) dτ

≤ (C1‖F0x‖2 +KC2‖F0‖2)

+C1(J1 + J2 + J3 + J4) +KC2(J5 + J6 + J7 + J8).

(2.30)
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The following inequalities will be used to estimate the terms on Ji(i = 1, . . . , 8):

|w′
1(t)| =

∣∣∣∣12(1 + t)−1w1(t)− k(1 + log(1 + t))−1(1 + t)−1w1(t)

∣∣∣∣
≤ C(1 + t)−1w1(t),

(2.31)

|w′
2(t)| ≤ C(1 + t)−1w2(t) = Cw1(t).(2.32)

Then, by choosing K large enough, one has

C1J1 ≤ 1

2
K

∫ t

0

w1(τ)‖Fx(τ)‖2 dτ,(2.33)

J2 ≤ Cδ2

∫ t

0

(1 + τ)−3w2(τ) dτ ≤ Cδ2.(2.34)

To estimate J3, observe that the following inequality on F holds:

‖F‖L∞ ≤ C‖Fx‖ 2
3(2.35)

since

‖F‖L∞ ≤ C‖F‖ 1
2 ‖Fx‖ 1

2

≤ C‖F‖ 1
4

L∞‖Fx‖ 1
2 ‖F‖ 1

4

L1 .

Then we see that

C1J3 = C1

∣∣∣∣
∫ t

0

∫ +∞

−∞
F 2w̃2

tw2(τ) dxdτ

∣∣∣∣
≤ C

∫ t

0

w2(τ)‖w̃t‖L∞‖F‖L∞‖F‖L1 dτ

≤ Cδ2

∫ t

0

(1 + τ)−2w2(τ)‖Fx‖ 2
3 dτ

≤ Cδ2 +
1

4
K

∫ t

0

w1(τ)‖Fx(·, τ)‖2 dτ.

(2.36)

Similarly, we can estimate J5, J6, and J7 as follows:

C2KJ5 = C2K

∣∣∣∣
∫ t

0

∫ +∞

−∞
w′

1(τ)F
2 dxdτ

∣∣∣∣
≤ CK

∫ t

0

(1 + τ)−1w1(τ)‖Fx‖ 2
3 dτ

≤ CK +
1

8
K

∫ t

0

w1(τ)‖Fx(·, τ)‖2 dτ,

(2.37)
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C2KJ6 = C2K

∣∣∣∣
∫ t

0

∫ +∞

−∞
w1(τ)F

2w̃t dxdτ

∣∣∣∣
≤ CKδ +

1

16
K

∫ t

0

w1(τ)‖Fx(·, τ)‖2 dτ,

(2.38)

C2KJ7 = C2K

∣∣∣∣
∫ t

0

∫ +∞

−∞
w1(τ)w̃tF (a− a1) dxdτ

∣∣∣∣
≤ CKδ +

1

32
K

∫ t

0

w1(τ)‖Fx(·, τ)‖2 dτ.

(2.39)

To estimate J8, we have

C2KJ8

= C2K

∣∣∣∣
∫ t

0

∫ +∞

−∞
w1(τ)Fx(fF

2)x dxdτ

∣∣∣∣
≤ C

∣∣∣∣
∫ t

0

∫ +∞

−∞
w1(τ)Fx(2fFFx + fFF

2Fx + fw̃w̃xF
2) dxdτ

∣∣∣∣
≤ CεK

∫ t

0

w1(τ)‖Fx(·, τ)‖2dτ + CK

∫ t

0

∫ +∞

−∞
w1(τ)w̃

2
xF

2 dxdτ

≤ CK(δ + ε)

∫ t

0

w1(τ)‖Fx(·, τ)‖2dτ + CKδ.

(2.40)

We now deal with the term J4. Noting that

(fF 2)xx = (2FFxf + fFF
2Fx + fw̃w̃xF

2)x

= (2fF + fFF
2)Fxx + (2f + 4fFF + fFFF

2)F 2
x

+(4fw̃F + 2fFw̃F
2)Fxw̃x + (fw̃w̃xx + fw̃w̃w̃

2
x)F

2,

we have

J4 =

∣∣∣∣
∫ t

0

∫ +∞

−∞
w2(τ)(fF

2)2xx dxdτ

∣∣∣∣
≤ Cε

∫ t

0

w2(τ)‖Fxx(·, τ)‖2 dτ + C

∫ t

0

∫ +∞

−∞
F 4
xw2(τ) dxdτ

+C

∣∣∣∣
∫ t

0

∫ +∞

−∞
w2(τ)F

2
x w̃

2
xF dxdτ

∣∣∣∣
+C

∫ t

0

∫ +∞

−∞
w2(τ)F

4(w̃2
xx + w̃4

x) dxdτ

≡ Cε

∫ t

0

w2(τ)‖Fxx(·, τ)‖2 dτ + C(J9 + J10 + J11).

(2.41)
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We can estimate J10 and J11 in the following way:

J10 =

∣∣∣∣
∫ t

0

∫ +∞

−∞
w2(τ)F

2
x w̃

2
xF dxdτ

∣∣∣∣
≤ Cεδ2

∫ t

0

w1(τ)‖Fx(·, τ)‖2 dτ,

(2.42)

J11 =

∫ t

0

∫ +∞

−∞
w2(τ)F

4(w̃2
xx + w̃4

x) dxdτ

≤ Cδ2ε2

∫ t

0

w1(τ)‖Fx(·, τ)‖2 dτ,

(2.43)

while J9 can be bounded as follows:

J9 =

∫ t

0

∫ +∞

−∞
F 4
xw2(τ) dxdτ

≤ Cε2

∫ t

0

w2(τ)‖Fxx‖2 dτ + C

∫ t

0

w2(τ)‖Fx(τ)‖2‖Fx(τ)‖2 dτ.

(2.44)

Due to the smallness of δ and ε, by choosing K large enough, we deduce

w1(t)‖F (t)‖2 + w2(t)‖Fx(t)‖2

+

∫ t

0

(w1(τ)‖Fx(τ)‖2 + w2(τ)‖Fxx(τ)‖2) dτ

≤ C

(
1 +

∫ t

0

w2(τ)‖Fx(τ)‖2‖Fx(τ)‖2 dτ

)
.

(2.45)

Therefore, from (2.45), it follows that

w2(t)‖Fx(t)‖2 ≤ C

(
1 +

∫ t

0

w2(τ)‖Fx(τ)‖2‖Fx(τ)‖2 dτ

)
,

which implies, with the help of Gronwall inequality, that

w2(t)‖Fx(t)‖2 ≤ C

and ∫ t

0

w2(τ)‖Fx(τ)‖2‖Fx(τ)‖2 dτ ≤ C.(2.46)

Hence, (2.45) and (2.46) give the proof of this lemma.
The following lemma contains the decay rates for the derivatives of F , which will

be useful in the next section.
Lemma 2.10. The solution F to (2.5), obtained in Theorem 2.8, satisfies

w3(t)‖Ft(t)‖2 +w4(t)‖Ftx‖2 +

∫ t

0

(w3(τ)‖Ftx(τ)‖2 + w4(τ)‖Ftxx(τ)‖2) dτ

≤ Cδ,

‖Ft‖L∞ ≤ Cw3(t)
− 1

4w4(t)
− 1

4 .

(2.47)
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Proof. It is sufficient to prove (2.47), since the estimate for ‖Ft‖L∞ can be derived
from (2.47) by using Sobolev inequality.

Let us differentiate (2.5)1 in t, then

Ftt + aψ(w̃)Ftxx + aψ′(w̃)w̃tFxx − [ψ(w̃)(a− a1)(w̃
−γ)xx]t

−(ψ1(w̃)Fw̃t)t − [aψ(w̃)(fF 2)xx]t = 0.
(2.48)

If we multiply (2.48) by a−1w3(t)Ft, we get(
1

2
a−1w3(t)F

2
t

)
t

− ψ(w̃)w3(t)F
2
tx +

1

2
F 2
t ψ(w̃)xxw3(t)− 1

2
F 2
t a

−1w′
3(t)

+ψ′(w̃)w̃tFxxw3(t)Ft − a−1[ψ(w̃)(a− a1)(w̃
−γ)xx]tw3(t)Ft

−a−1(ψ1(w̃)Fw̃t)tw3(t)Ft − [ψ(w̃)(fF 2)xx]tw3(t)Ft + {· · · }x = 0.

(2.49)

From the proof of Lemma 2.9 and (2.5)1 it is clear that∫ t

0

w2(τ)‖Ft(·, τ)‖2 dτ

≤ C

(∫ t

0

w2(t)‖Fxx(τ)‖2dτ +

∫ t

0

∫ +∞

−∞
(a− a1)

2w̃2
tw2(τ) dxdτ

+

∫ t

0

∫ +∞

−∞
F 2w̃2

tw2(τ) dxdτ +

∫ t

0

∫ +∞

−∞
(fF 2)2xxw2(τ) dxdτ

)

≤ C.

(2.50)

Moreover, we have

a−1(ψ1(w̃)Fw̃t)tw3(t)Ft = O(1)[w̃tw3(t)F
2
t + (w̃2

t + w̃tt)w3(t)FFt],

a−1[ψ(w̃)(a− a1)(w̃
−γ)xx]tw3(t)Ft = O(1)(a− a1)(w̃

2
t + w̃tt)w3(t)Ft,

[ψ(w̃)(fF 2)xx]tw3(t)Ft = O(1)w̃t(fF
2)xxw3(t)Ft − ψ(w̃)(fF 2)xxtw3(t)Ft.

Now, integrating (2.49) and integrating by parts, we have

w3(t)‖Ft(t)‖2 +

∫ t

0

w3(τ)‖Ftx(τ)‖2 dτ

≤ C + C

∫ t

0

∫ +∞

−∞
F 2
t w2(τ) dxdτ +

∫ t

0

∫ +∞

−∞
w̃tw3(τ)F

2
xx dxdτ

+

∫ t

0

∫ +∞

−∞
[(a− a1)

2 + F 2](w̃2
t + w̃tt)

2w3(τ)(1 + τ) dxdτ

+

∫ t

0

∫ +∞

−∞
w2(τ)(fF

2)2xx dxdτ +

∣∣∣∣
∫ t

0

∫ +∞

−∞
ψ(w̃)(fF 2)xxtw3(τ)Ft dxdτ

∣∣∣∣
≤ C

(
1 +

∣∣∣∣
∫ t

0

∫ +∞

−∞
w3(τ)(fF

2)xt(Ftx + Ftw̃x) dxdτ

∣∣∣∣
)
.

(2.51)
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To bound the previous terms, we observe that∣∣∣∣
∫ t

0

∫ +∞

−∞
w3(τ)(fF

2)xtFtw̃x dxdτ

∣∣∣∣
≤ C + C

∫ t

0

∫ +∞

−∞
w3(τ)(fF

2)2xt dxdτ

and ∣∣∣∣
∫ t

0

∫ +∞

−∞
w3(τ)(fF

2)xtFtx dxdτ

∣∣∣∣
≤ ε3

∫ t

0

∫ +∞

−∞
w3(τ)F

2
tx dxdτ + C(ε3)

∫ t

0

∫ +∞

−∞
w3(τ)(fF

2)2xt dxdτ.

Then choosing ε3 sufficient small, we have

w3(t)‖Ft(t)‖2 +

∫ t

0

w3(τ)‖Ftx(τ)‖2 dτ

≤ C

(
1 +

∫ t

0

∫ +∞

−∞
w3(τ)(fF

2)2xt dxdτ

)
.

(2.52)

Moreover, since

(fF 2)2xt = [2fFFx, fFF
2Fx + fw̃w̃xF

2]2t

= O(1)(|F |F 2
xt + F 2

t F
2
x + w̃2

tF
2
xF

2

+F 2F 2
t w̃

2
x + (w̃2

tx + w̃2
t w̃

2
x)F

4),

it follows that ∫ t

0

∫ +∞

−∞
w3(τ)(fF

2)2xt dxdτ)

≤ C

(
ε

∫ t

0

w3(τ)‖Ftx‖2dτ +A1 +A2 +A3 +A4

)
,

(2.53)

where, as in the previous estimates we get

A1 =

∫ t

0

∫ +∞

−∞
w3(τ)F

2
t F

2
x dxdτ ≤ C,(2.54)

A2 =

∫ t

0

∫ +∞

−∞
w3(τ)w̃

2
tF

2
xF

2 dxdτ ≤ Cδ2ε2,(2.55)

A3 =

∫ t

0

∫ +∞

−∞
w3(τ)F

2F 2
t w̃

2
x dxdτ ≤ Cδ2ε2,(2.56)

and

A4 =

∫ t

0

∫ +∞

−∞
w3(τ)(w̃

2
tx + w̃2

t w̃
2
x)F

4 dxdτ ≤ Cδ2.(2.57)
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Thus, we conclude from (2.52)—(2.57) that

w3(t)‖Ft(t)‖2 +

∫ t

0

w3(τ)‖Ftx(τ)‖2 dτ ≤ C,(2.58)

which completes the proof of the first part of (2.47).
Let us turn to the second part of (2.47). For this purpose, we multiply (2.48) by

w4(t)Ftxx. After similar calculations as before, by virtue of (2.58), we get

w4(t)‖Ftx(t)‖2 +

∫ t

0

w4(τ)‖Ftxx(τ)‖2 dτ

≤ C(1 +B1 +B2 +B3 +B4),

(2.59)

where

B1 =

∫ t

0

∫ +∞

−∞
w̃2

tw4(τ)F
2
xx dxdτ ≤ Cδ2,

B2 =

∫ t

0

∫ +∞

−∞
(w̃2

t + w̃tt)
2w4(τ)(a− a1)

2 dxdτ ≤ Cδ2,

B3 =

∫ t

0

∫ +∞

−∞
w4(τ)[ψ1(w̃)Fw̃t]

2
t dxdτ ≤ Cδ2,

and

B4 =

∫ t

0

∫ +∞

−∞
w4(τ)[ψ(w̃(fF

2)xx]
2
t dxdτ

≤ Cδ2 + C

∫ t

0

∫ +∞

−∞
w4(τ)(fF

2)2txx dxdτ.

Hence, one has

w4(t)‖Ftx(t)‖2 +

∫ t

0

w4(τ)‖Ftxx(τ)‖2 dτ

≤ C

(
1 +

∫ t

0

∫ +∞

−∞
w4(τ)(fF

2)2txx dxdτ

)
.

(2.60)

In order to bound the last term in (2.60), we use the following identity:

(fF 2)2txx

= O(1)[F 2F 2
txx + F 2

xF
2
tx + F 2w̃2

xF
2
tx

+(w̃2
xx + w̃4

x)F
2F 2

t + w̃2
txF

2F 2
x ]

+O(1)[(F 2
t F

2
xx + F 2

xxF
2w̃2

t ) + (F 4
xF

2
t + w̃2

tF
4
x )

+(F 2
t F

2
x w̃

2
x + F 2w̃2

t w̃
2
xF

2
x )

+(F 4F 2
t (w̃

2
xx + w̃4

x) + (w̃2
txx + w̃2

xw̃
2
tx)F

4)]

= [Γ1 + Γ2 + Γ3 + Γ4 + Γ5] + [∆1 +∆2 +∆3 +∆4].
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Then we bound each of these terms. Therefore, we have∫ t

0

∫ +∞

−∞
w4(τ)Γ1 dxdτ

≤ C

∫ t

0

∫ +∞

−∞
w4(τ)F

2F 2
txx dxdτ

≤ Cε2

∫ t

0

w4(τ)‖Ftxx‖2 dτ,

(2.61)

∫ t

0

∫ +∞

−∞
w4(τ)Γ2 dxdτ

≤ C

∫ t

0

w4(τ)‖Ftx‖2‖Fx‖2 dτ + Cε2

∫ t

0

w4(τ)‖Ftxx‖2dτ,

(2.62)

∫ t

0

∫ +∞

−∞
w4(τ)Γ3 dxdτ ≤ Cε2,(2.63)

∫ t

0

∫ +∞

−∞
w4(τ)Γ4 dxdτ ≤ Cδ2ε2,(2.64)

∫ t

0

∫ +∞

−∞
w4(τ)Γ5 dxdτ ≤ Cδ2ε2,(2.65)

∫ t

0

∫ +∞

−∞
w4(τ)∆1 dxdτ ≤ C(1 + δ2ε2),(2.66)

∫ t

0

∫ +∞

−∞
w4(τ)∆2 dxdτ ≤ C,(2.67)

∫ t

0

∫ +∞

−∞
w4(τ)∆3 dxdτ

≤ Cδ2

∫ t

0

(‖Fx‖2 + ‖Fxx‖2)(w3(τ)‖Ft‖2) dτ + Cδ2ε2

∫ t

0

w1(τ)‖Fx‖2 dτ

≤ C,

(2.68)

∫ t

0

∫ +∞

−∞
w4(τ)∆4 dxdτ

≤ Cδ2

∫ t

0

‖Ft‖2w2(τ) dτ + Cδ2

∫ t

0

w1(τ)‖F‖2‖Fx‖2 dτ

≤ Cδ2.

(2.69)
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Thus, we see from (2.60)–(2.69) that

w4(t)‖Ftx(t)‖2 +

∫ t

0

w4(τ)‖Ftxx(τ)‖2 dτ

≤ C + C

∫ t

0

w4(τ)‖Ftx‖2‖Fx‖2 dτ.

(2.70)

Then the Gronwall inequality implies that

w4(t)‖Ftx(t)‖2 +

∫ t

0

w4(τ)‖Ftxx(τ)‖2 dτ ≤ C.(2.71)

Equation (2.47) follows from (2.58) and (2.71).
Corollary 2.11. The solution F to (2.5), obtained in Theorem 2.8, satisfies

w3(t)‖Fxx‖2 ≤ C, ‖Fxx‖L∞ ≤ C(w3(t)w4(t))
− 1

4 ,

‖Fx‖2
L∞ ≤ Cw3(t)

− 1
2w2(t)

− 1
2 .

Proof. From (2.5), we see that

Fxx = O(1)(Ft + (a− a1)w̃t + Fw̃t + F 2
x

+FFxw̃x + (w̃xx + w̃2
x)F

2).
(2.72)

Taking the L2-norm in (2.72), we have

w3(t)‖Fxx‖2 ≤ Cw3(t)(‖Ft‖2 + ‖(a− a1)w̃t‖2 + ‖Fw̃t‖2 + ‖F 2
x‖2

+‖FFxw̃x‖2 + ‖(w̃xx + w̃2
x)F

2‖2)

≤ C(1 + w3(t)‖F 2
x‖2)

≤ C(1 + w3(t)‖Fx‖2(‖Fx‖2 + ‖Fxx‖2))

≤ C + Cw3(t)‖Fx‖2‖Fxx‖2

which implies

w3(t)‖Fxx‖2 ≤ C.

Then

‖Fx‖2
L∞ ≤ Cw3(t)

− 1
2w2(t)

− 1
2 .

Last, if we take the L∞-norm in (2.72), we obtain

‖Fxx‖L∞ ≤ C(‖Ft‖L∞ + ‖(a− a1)w̃t‖L∞ + ‖Fx‖2
L∞

+‖FFxw̃x‖L∞ + ‖F 2(w̃xx + w̃2
x)‖L∞)

≤ C(w3(t)w4(t))
− 1

4 .
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Then Theorem 2.2 follows from Theorem 2.8, Lemmas 2.9–2.10, and Corollary
2.11.

Now, from F it is easy to obtain the solution φ of (2.4) and from φ the unique
smooth solution w of (2.2). By defining ṽ = a−1(x)w and ũ = −(w−γ)x, we obtain the
solution of (1.4). Theorem 1.1 then follows from Theorem 2.2 and the decay estimates
follow from the interpolation inequality and (2.35).

2.2. Case 2: w− = w+ = const = w̄. Observe that w = w̄ is a stationary
solution to (2.2). We will prove Theorem 1.2 by solving the Cauchy problem (2.2)
near w̄.

Let us denote by φ̃ = w − w̄, then φ̃

φ̃t − ba(x)φ̃xx + a(x)(f1(φ̃)φ̃

2)xx = 0,

φ̃(x, 0) = φ̃0(x) = w0(x)− w̄,

(2.73)

where

b = γw̄−(γ+1), f1φ̃
2 = (w̄ + φ̃)−γ − w̄−γ − bφ̃.

Then we have the following.
Theorem 2.12. Suppose φ̃0(x) and s(x) = s0(x) are C2 functions and φ̃0 ∈

H2(R). There exists ε0 > 0 such that if 0 < ε < ε0 and ‖φ̃0‖H2 ≤ ε, then (2.73) has
a unique global smooth solution φ̃(x, t) satisfying

‖φ̃(·, t)‖2
H2 +

∫ t

0

‖φ̃x(·, τ)‖2
H2 dτ ≤ Cε2(2.74)

and

lim
t→∞ ‖φ̃(·, t)‖L∞ = 0.

Furthermore, if φ̃0 ∈ L1(R), then

2∑
j=0

wj+1(t)‖∂j
xφ̃(·, t)‖2 +

∫ t

0

3∑
j=1

wj(τ)‖∂j
xφ̃(·, τ)‖2 dτ ≤ C.

Proof. Since the local result for (2.73) is classical, to prove the first part of
Theorem 2.12, it is sufficient to derive the uniform estimate (2.74) under the a priori
assumption ‖φ̃‖H2 ≤ δ0 for δ0 suitably small.

Multiply (2.73)1 by a−1φ̃, integrate it over (−∞,+∞)× [0, t], and one then has

‖φ̃(·, t)‖2 +

∫ t

0

‖φ̃x(·, τ)‖2 dτ

≤ Cε2
0 + C

∣∣∣∣
∫ t

0

∫ +∞

−∞
(f1(φ̃)φ̃

2)xφ̃x dxdτ

∣∣∣∣
≤ Cε2

0 + Cδ0

∫ t

0

‖φ̃x‖2 dτ,

which implies

‖φ̃(·, t)‖2 +

∫ t

0

‖φ̃x(·, τ)‖2 dτ ≤ Cε2
0.(2.75)
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Next, multiplying (2.73)1 by φ̃xx and integrating over (−∞,+∞)× [0, t], one has

‖φ̃x(·, t)‖2 +

∫ t

0

‖φ̃xx(·, τ)‖2 dτ

≤ Cε2
0 + C

∣∣∣∣
∫ t

0

∫ +∞

−∞
(f1(φ̃)φ̃

2)xxφ̃xx dxdτ

∣∣∣∣
≤ Cε2

0 +
1

2

∫ t

0

‖φ̃xx(·, τ)‖2 dτ + C

∫ t

0

∫ +∞

−∞
(f1(φ̃)φ̃

2)2xx dxdτ

≤ Cε2
0 +

(
1

2
+ Cδ0

)∫ t

0

‖φ̃xx(·, τ)‖2 dτ.

Thus we get

‖φ̃x(·, t)‖2 +

∫ t

0

‖φ̃xx(·, τ)‖2 dτ ≤ Cε2
0.(2.76)

Finally, by differentiating (2.73)1 in x and by repeating the previous procedure, one
can derive

‖φ̃xx(·, t)‖2 +

∫ t

0

‖φ̃xxx(·, τ)‖2 dτ ≤ Cε2
0.(2.77)

The estimate (2.74) follows from (2.75)–(2.77) and then (2.73) has a unique smooth
solution φ̃ such that

lim
t→∞ ‖φ̃(·, t)‖L∞ = 0.

We proceed now to prove the second part of Theorem 2.12. In this framework,
we can develop a theory similar to what we did in the previous sections. Actually, it
is less complicated since w̄ is a constant.

Observe that if φ̃0(x) ∈ L1, we can use the same argument used in Lemma 2.3 to
prove

‖φ̃(·, t)‖L1 ≤ ‖φ̃0‖L1 .(2.78)

Then we can employ the same argument used in subsection 2.1 to complete the proof
of the decay estimates. We perform here just the first two orders estimates.

For the first order estimates, we multiply (2.73)1 by w1(t)a
−1φ̃ then integrate it

by parts over (−∞,+∞)× [0, t]. We have

w1(t)‖φ̃(·, t)‖2 +

∫ t

0

w1(τ)‖φ̃x(·, τ)‖2 dτ

≤ C + C

∫ t

0

(1 + τ)−1w1(τ)‖φ̃(·, τ)‖L∞‖φ̃(·, τ)‖L1 dτ

+Cδ0

∫ t

0

w1(τ)‖φ̃x(·, τ)‖2 dτ,

(2.79)

where ∫ t

0

(1 + τ)−1w1(τ)‖φ̃(·, τ)‖L∞‖φ̃(·, τ)‖L1 dτ

≤ C(ε1)

∫ t

0

w1(τ)(1 + t)−
3
2 dτ + ε1

∫ t

0

w1(τ)‖φ̃x(·, τ)‖2 dτ.

(2.80)
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By choosing ε1 small, we see from (2.79)–(2.80)

w1(t)‖φ̃(·, t)‖2 +

∫ t

0

w1(τ)‖φ̃x(·, τ)‖2 dτ ≤ C.(2.81)

For the second order estimates, we multiply (2.73)1 by w2(t)φ̃xx, integrate it by
parts over (−∞,+∞)× [0, t], then

w2(t)‖φ̃x(·, t)‖2 +

∫ t

0

w2(τ)‖φ̃xx(·, τ)‖2 dτ

≤ C +
1

2

∫ t

0

w2(τ)‖φ̃xx(·, τ)‖2 dτ

+C

∫ t

0

∫ +∞

−∞
w2(τ)(f1(φ̃)φ̃

2)2xx dxdτ,

(2.82)

where ∫ t

0

∫ +∞

−∞
w2(τ)(f1(φ̃)φ̃

2)2xx dxdτ

≤ Cδ0

∫ t

0

w2(τ)‖φ̃xx(·, τ)‖2 dτ

+C

∫ t

0

w2(τ)‖φ̃x(τ)‖2(‖φ̃x‖2 + ‖φ̃xx‖2) dτ

≤ Cδ0

∫ t

0

w2(τ)‖φ̃xx(·, τ)‖2 dτ + C

∫ t

0

w2(τ)‖φ̃x(τ)‖4 dτ.

(2.83)

We conclude from (2.82)–(2.83) that

w2(t)‖φ̃x(·, t)‖2 +

∫ t

0

w2(τ)‖φ̃xx(·, τ)‖2 dτ

≤ C + C

∫ t

0

w2(τ)‖φ̃x(τ)‖4 dτ,

which, together with the help of Gronwall inequality, implies that

w2(t)‖φ̃x(·, t)‖2 +

∫ t

0

w2(τ)‖φ̃xx(·, τ)‖2 dτ ≤ C.(2.84)

In the following, we denote by v2(x, t) = a−1w(x, t) the solution to (2.1) obtained
in Theorem 1.2, and u2(x, t) = −p(v2, s)x. Theorem 1.2 then follows from Theorem
2.12.

3. Convergence to similarity solutions. In this section, we will study (1.2)–
(1.3) for Case 1, namely, we assume that s− = s+ = s̄. We shall prove Theorem 1.3
by comparing the solutions of (1.2)–(1.3) with those of (1.4) obtained in Theorem 2.2.
Since the result for s(x, t) is clear, in the following part we only deal with (v, u)(x, t).

Let (ṽ, ũ, s(x)) be the solution of (1.4) with the initial data (ṽ0(x), s0(x)). As
pointed in introduction, we will only prove Theorem 1.3 for the case where u− =
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u+ = 0 and thus (1.14) turns into

∫ +∞

−∞
(v0(x)− ṽ0(x)) dx = 0.(3.1)

Let us denote

ve = v − ṽ, ue = u− ũ,(3.2)

then it follows from (1.2) and (1.4) that{
vet − uex = 0,
uet + [p(ṽ + ve, s)− p(ṽ, s)]x = −ue + p(ṽ, s)xt.

(3.3)

As usual let us consider

y =

∫ x

−∞
ve(ξ) dξ,(3.4)

which satisfies the following nonlinear wave equation:


ytt + [p(yx + ṽ, s)− p(ṽ, s)]x + yt = p(ṽ, s)xt,

y(x, 0) = y0(x) =

∫ x

−∞
(v0 − ṽ0)(ξ) dξ,

yt(x, 0) = y1(x) = u0(x)− ũ(x, 0)

since yx = ve and yt = ue. Therefore


ytt + (pv(ṽ, s)yx)x + yt = p(ṽ, s)xt − (F1(ṽ, yx, s)y
2
x)x,

y(x, 0) = y0(x) =

∫ x

−∞
(v0 − ṽ0)(ξ) dξ,

yt(x, 0) = y1(x) = u0(x)− ũ(x, 0),

(3.5)

where

p(yx + ṽ, s)− p(ṽ, s) = pv(ṽ, s)yx + F1(ṽ, yx, s)y
2
x.

The main result of this section is the following.
Theorem 3.1. There exists δ0 > 0 such that if 0 < δ < δ0 and

‖y0‖H3 + ‖y1‖H2 + |v+ − v−| ≤ δ,

then (3.5) has a unique smooth solution y ∈ H3 and yt ∈ H2 satisfying

‖y(t)‖2
H3 + ‖yt(t)‖2

H2 +

∫ t

0

‖(yx, yt)(τ)‖H2 dτ ≤ Cδ2.

Moreover,

(1 + t)‖yx(·, t)‖2 + (1 + t)2‖yt(·, t)‖2 ≤ C(3.6)
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and

‖yx(·, t)‖L∞ ≤ C(1 + t)−
3
4 , ‖yt(·, t)‖L∞ ≤ C(1 + t)−

5
4 .(3.7)

Then Theorem 1.3 follows from Theorem 2.2 and Theorem 3.1.
We now prove Theorem 3.1. First of all, we have the following.
Theorem 3.2. There exists δ0 > 0 such that if 0 < δ < δ0 and

‖y0‖H3 + ‖y1‖H2 + |v+ − v−| ≤ δ,

then (3.5) has a unique global smooth solution y ∈ H3 and yt ∈ H2 satisfying

‖y(t)‖2
H3 + ‖yt(t)‖2

H2 +

∫ t

0

‖(yx, yt)(τ)‖H2 dτ ≤ Cδ2.(3.8)

Proof. It is sufficient to prove the uniform estimates (3.8) under the following a
priori assumption:

‖y(t)‖2
H3 + ‖yt‖2

H2 ≤ ε

for ε > 0 suitably small.
Multiplying (3.5)1 by y + 2yt, we have[

y2
t − pv(ṽ, s)y

2
x +

1

2
y2 + yyt

]
t

+ y2
t − pv(ṽ, s)y

2
x

= pvv(ṽ, s)ṽt(y
2
x − yx − 2yxt) + (F1y

2
x − p(ṽ, s)t)(yx + 2ytx) + {· · · }x,

(3.9)

where {· · · }x denote the terms which disappear after integration with respect to x.
Integrating (3.9) over [0, t]× (−∞,+∞), we get

‖(y, yt, yx)(t)‖2 +

∫ t

0

‖(yt, yx)(τ)‖2 dτ

≤ Cδ2 + C

∣∣∣∣
∫ t

0

∫ +∞

−∞
pvv(ṽ, s)ṽty

2
x

−p(ṽ, s)t(yx + 2yxt) + F1y
2
x(yx + 2ytx) dxdτ

∣∣∣∣ .
(3.10)

Due to the smallness of ε, we can reduce (3.10) into

‖(y, yt, yx)(t)‖2 +

∫ t

0

‖(yt, yx)(τ)‖2 dτ

≤ Cδ2 + C

∣∣∣∣
∫ t

0

∫ +∞

−∞
p(ṽ, s)t(yx + 2yxt) dxdτ

∣∣∣∣ ,
(3.11)

while ∣∣∣∣
∫ t

0

∫ +∞

−∞
p(ṽ, s)t(yx + 2yxt) dxdτ

∣∣∣∣
≤ C(ε1)

∫ t

0

∫ +∞

−∞
(p(ṽ, s)2t + p(ṽ, s)2tx) dxdτ + ε1

∫ t

0

∫ +∞

−∞
(y2

x + y2
t ) dxdτ

(3.12)
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and ∫ t

0

∫ +∞

−∞
p(ṽ, s)2t + p(ṽ, s)2tx dxdτ ≤ Cδ2.(3.13)

Now, by taking ε1 small, it reads from (3.11)–(3.13) that

‖(y, yt, yx)(t)‖2 +

∫ t

0

‖(yx, yt)(τ)‖2 dτ ≤ Cδ2.(3.14)

We now differentiate (3.5) in x and then

yttx + (pv(ṽ, s)yx)xx + ytx = p(ṽ, s)xtx − (F1(ṽ, yx, s)y
2
x)xx.(3.15)

If we multiply (3.15) by yx+2ytx and integrate the resulting equation over [0, 1]×[0, t],
by using (3.14) we get

‖(yx, ytx, yxx)(t)‖2 +

∫ t

0

‖(ytx, yxx)(τ)‖2 dτ

≤ Cδ2 + C

∫ t

0

∫ +∞

−∞
(F1y

2
x)

2
x dxdτ

+C

∫ t

0

∫ +∞

−∞
[O(1)yxy

2
xx]t dxdτ

+Cδ

∫ t

0

∫ +∞

−∞
(y2

x + y2
tx + y2

xx) dxdτ,

which implies

‖(yx, ytx, yxx)(t)‖2 +

∫ t

0

‖(ytx, yxx)(τ)‖2 dτ ≤ Cδ2.

Repeating the above procedure, we can easily obtain the third order estimates
and complete the proof of this theorem.

With the help of Theorem 3.2, it is easy to obtain the following convergence
results by using an argument similar to the proof of Theorem 2.8.

Theorem 3.3. The solution y to (3.5) in the Theorem 3.2 satisfies

lim
t→∞(‖y(·, t)‖L∞ + ‖(yt, yx)(·, t)‖H1) = 0.

We investigate now the problem of the decay rate. We will follow the approach
introduced by [19] concerning the isentropic case. However, since the entropy s(x) is
not constant here, some modifications are necessary.

Lemma 3.4. Under the previous hypotheses, it follows that

(1 + t)‖(yx, yt)(t)‖2 +

∫ t

0

(1 + τ)‖yt(τ)‖2 dτ ≤ Cδ2.

Proof. First, we notice that (3.5)1 is equivalent to

ytt + yt + [p(ṽ + yx, s)− p(ṽ, s)]x = p(ṽ, s)xt.(3.16)
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Multiplying (3.16) by (1 + t)yt, after some calculations we get[
(1 + t)

(
1

2
y2
t + q

)]
t

+ (1 + t)y2
t − q

−
∫ yx

0

[pv(ṽ + ξ, s)− pv(ṽ, s)] dξ + ṽt(1 + t)y2
x − 1

2
y2
t

= (1 + t)ytp(ṽ, s)xt + {· · · }x.

(3.17)

Integrating (3.17) over [0, t]× (−∞,+∞), with the help of (3.8), we have

(1 + t)‖(yx, yt)(t)‖2 +

∫ t

0

(1 + τ)‖yt(τ)‖2 dτ

≤ Cδ2 +
1

2

∫ t

0

(1 + τ)‖yt(τ)‖2 dτ,

which implies

(1 + t)‖(yt, yx)(t)‖2 +

∫ t

0

(1 + τ)‖yt(τ)‖2 dτ ≤ Cδ2.(3.18)

Here we have used the following properties:

q = −
∫ yx

0

[p(ṽ + ξ, s)− p(ṽ, s)] dξ = O(1)y2
x,∫ yx

0

[pv(ṽ + ξ, s)− pv(ṽ, s)] dξ = O(1)y2
x,

ṽt ≤ O(1)(Ft + w̃t) ≤ O(1)(1 + t)−1.

Lemma 3.5. Under the previous hypotheses, we have

(1 + t)2‖(yt, ytt, ytx)(t)‖2 +

∫ t

0

(1 + τ)2‖(ytt, ytx)(τ)‖2 dτ ≤ Cδ2.

Proof. Differentiating (3.5)1 in t, we have

yttt + (pv(ṽ, s)yx)xt + ytt = p(ṽ, s)xtt − (F1y
2
x)xt.(3.19)

Let us multiply (3.19) by (1 + t)yt and (1 + t)ytt, respectively, then we deduce[
(1 + t)

(
ytytt +

1

2
y2
t

)]
t

− pv(ṽ, s)(1 + t)y2
tx − (1 + t)y2

tt −
1

2
y2
t − ytytt

= pvv ṽt(1 + t)yxytx + (1 + t)yt(p(ṽ, s)xtt − (F1y
2
x)xt) + {· · · }x,

(3.20)

[
1

2
(1 + t)(y2

tt − pvy
2
tx)

]
t

+ (1 + t)y2
tt

−1

2
y2
tt +

1

2
pvy

2
tx +

1

2
(1 + t)pvv ṽty

2
tx + (1 + t)ytt(yxpvv ṽt)x

= (1 + t)ytt(p(ṽ, s)xtt − (F1y
2
x)xt) + {· · · }x.

(3.21)
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By using Theorem 3.2 and Lemma 3.4 and by integrating 8× (3.21) + (3.20) one has

(1 + t)‖(yt, ytt, ytx)‖2 +

∫ t

0

(1 + τ)‖(ytt, ytx)(τ)‖2 dτ

≤ C

(
δ2 +

∫ t

0

∫ +∞

−∞
(1 + τ)p(ṽ, s)2xtt dxdτ

+

∣∣∣∣
∫ t

0

∫ +∞

−∞
(1 + τ)(ytx + yttx)(F1y

2
x)t dxdτ

∣∣∣∣
)

≤ Cδ2 + C

∣∣∣∣
∫ t

0

∫ +∞

−∞
(1 + τ)(ytx + yttx)(F1y

2
x)t dxdτ

∣∣∣∣ .

(3.22)

Moreover, one has ∣∣∣∣
∫ t

0

∫ +∞

−∞
(1 + τ)ytx(F1y

2
x)t dxdτ

∣∣∣∣
≤ C

∫ t

0

∫ +∞

−∞
(1 + τ)(|yx|y2

tx + |ṽty2
xytx|) dxdτ

≤ Cδ2 + Cδ

∫ t

0

∫ +∞

−∞
(1 + τ)y2

tx dxdτ

(3.23)

and ∣∣∣∣
∫ t

0

∫ +∞

−∞
(1 + τ)yttx(F1y

2
x)t dxdτ

∣∣∣∣
≤ Cδ2 + Cδ

(
(1 + t)‖ytx(t)‖2 +

∫ t

0

(1 + τ)‖ytx‖2 dτ

)
.

(3.24)

In view of the smallness of δ, from (3.22)–(3.24) we have

(1 + t)‖(yt, ytt, ytx)(t)‖2 +

∫ t

0

(1 + τ)‖(ytt, ytx)(τ)‖2 dτ ≤ Cδ2.(3.25)

Now we multiply (3.19) by (1+t)2yt and (1+t)2ytt and repeat the previous calculations
to conclude Lemma 3.5.

Lemma 3.6. The solution y to (3.5) in Theorem 3.2 satisfies

(1 + t)2‖(Vt, Vx)(t)‖2 +

∫ t

0

(1 + τ)‖(Vt, Vx)(τ)‖2 dτ ≤ Cδ2,

where V = pv(ṽ, s)yx.
Proof. The estimate for Vt can be obtained from Lemma 3.5 and the following

relation:

Vt = pv(ṽ, s)ytx + pvv(ṽ, s)ṽtyx.

It is easy to see that

Vx = −(ytt + yt + p(ṽ, s)xt + (F2V
2)x),(3.26)
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where F2V
2 = F1y

2
x. Then we calculate the decay rate for Vx by using (3.26). First

of all, it is easy to see by taking the L2-norm in (3.26) that

(1 + t)‖Vx(t)‖2 ≤ Cδ2(3.27)

and

(1 + t)2‖Vx‖2

≤ C(1 + t)2(‖ytt‖2 + ‖yt‖2 + ‖(F2V
2)x‖2)

≤ Cδ2 +
1

2
(1 + t)2‖Vx‖2 + C(1 + t)(‖V ‖2 + ‖Vx‖2)

≤ Cδ2 +
1

2
(1 + t)2‖Vx‖2

thus

(1 + t)2‖Vx‖2 ≤ Cδ2.(3.28)

Then, multiplying (3.26) by (1 + t)Vx and integrating it, one has∫ t

0

(1 + τ)‖Vx(τ)‖2 dτ

≤ C

∫ t

0

∫ +∞

−∞
(1 + τ)(y2

tt + y2
t + p(ṽ, s)2xt + (F2V

2)2x) dxdτ

≤ Cδ2 + C

∫ t

0

∫ +∞

−∞
(F2V

2)2x(1 + τ) dxdτ

≤ Cδ2 + C

∫ t

0

∫ +∞

−∞
(1 + τ)V 4 dxdτ

≤ Cδ2 + C

∫ t

0

(‖yx‖2 + ‖yxx‖2)(1 + τ)‖yx‖2 dτ

≤ Cδ2.

(3.29)

The following result easily holds by repeating the previous arguments on the
equation (3.19) differentiated with respect to x.

Lemma 3.7. The solution y to (3.5) in Theorem 3.2 satisfies

(1 + t)2‖(yttx, ytxx)(t)‖2 +

∫ t

0

(1 + τ)2‖(yttx, ytxx)(τ)‖2 dτ ≤ Cδ2.

Now we can prove the desired estimates on ytx.
Lemma 3.8. Under the previous hypotheses, one has

(1 + t)3‖(ytt, ytx)(t)‖2 +

∫ t

0

(1 + τ)3‖ytt(τ)‖2 dτ ≤ Cδ2.

Proof. Multiply (3.19) by (1 + t)3ytt, then we obtain

(1 + t)3‖(ytt, ytx)(t)‖2 +

∫ t

0

(1 + τ)3‖ytt(τ)‖2 dτ

≤ Cδ2 + C

∣∣∣∣
∫ t

0

∫ +∞

−∞
(1 + τ)3yttx(F1y

2
x)t dxdτ

∣∣∣∣ .
(3.30)
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We have that ∣∣∣∣
∫ t

0

∫ +∞

−∞
(1 + τ)3yttx(F1y

2
x)t dxdτ

∣∣∣∣
≤ C

∣∣∣∣
∫ t

0

∫ +∞

−∞
[O(1)(1 + τ)3y2

txyx]t dxdτ

∣∣∣∣
+C

∣∣∣∣
∫ t

0

∫ +∞

−∞
((1 + t)2y2

tx + (1 + τ)3y3
tx dxdτ

∣∣∣∣
+C

∣∣∣∣
∫ t

0

∫ +∞

−∞
(1 + τ)3ytt(F3ṽtV

2)x dxdτ

∣∣∣∣
≤ C(α1)δ

2 + Cδ(1 + t)3‖ytx(t)‖2 + α1

∫ t

0

(1 + τ)3‖ytt‖2 dτ,

(3.31)

where F3V
2 = F1vy

2
x.

By choosing α1 suitable small, we conclude from (3.30)–(3.31) that

(1 + t)3‖(ytt, ytx)(t)‖2 +

∫ t

0

(1 + τ)3‖ytt‖2 dτ ≤ Cδ2.

Therefore, we obtain the following desired decay rates.
Theorem 3.9. The solution y to (3.5) in Theorem 3.2 satisfies

1∑
k=0

[(1 + t)k+1‖∂k
xV (·, t)‖2 + (1 + t)k+2‖∂k

xyt(·, t)‖2] ≤ C(3.32)

and

‖yx(·, t)‖L∞ ≤ C(1 + t)−
3
4 , ‖yt(·, t)‖L∞ ≤ C(1 + t)−

5
4 .(3.33)

Proof. (3.32) comes directly from Lemmas 3.4–3.8. (3.33) follows from the inter-
polation inequality and (3.32), where

‖yx(·, t)‖L∞ ≤ C‖V (·, t)‖L∞ ≤ C(1 + t)−
3
4 .

Theorem 3.1 then follows from Theorem 3.2 and Theorem 3.9.

4. Convergence to stationary solution. This section is devoted to proving
Theorem 4 and Theorem 5, where (v−, v+) and (s−, s+) are chosen so that p(v−, s−) =
p(v+, s+) = p̄ = const.

Denote by (v2, u2)(x, t) the solution of (1.4) obtained in Theorem 2.12. We solve
(1.2)–(1.3) near (v2, u2)(x, t) under u− = u+ = 0 and then (1.16) implies

∫ +∞

−∞
(v0(x)− v2(x, 0)) dx = 0.(4.1)

Similarly to section 3, we set

ỹ =

∫ x

−∞
(v(ξ, t)− v2(ξ, t)) dξ,
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which satisfies


ỹtt + (pv(v2, s)ỹx)x + ỹt = p(v2, s)xt − (F1(v2, ỹx, s)ỹ
2
x)x,

ỹ(x, 0) = ỹ0(x) =

∫ x

−∞
(v0(ξ)− v2(ξ, 0)) dξ,

ỹt(x, 0) = ỹ1(x) = u0(x)− u2(x, 0),

(4.2)

where

p(ỹx + v2, s)− p(v2, s) = pv(v2, s)ỹx + F1(v2, ỹx, s)ỹ
2
x.

From the results in subsection 2.2 and the argument used in section 3, it is clear
that the same argument of the section 3 can be used here to prove the following
results.

Theorem 4.1. There exists δ0 > 0 such that if 0 < δ < δ0 and

‖ỹ0‖2
3 + ‖ỹ1‖2

2 ≤ δ,

then (4.2) has a unique smooth solution ỹ satisfying

1∑
k=0

[(1 + t)k+1‖∂k
xV1(·, t)‖2 + (1 + t)k+2‖∂k

x ỹt(·, t)‖2] ≤ C,(4.3)

with V1 = pv(v2, s)ỹx, and

‖ỹx(·, t)‖L∞ ≤ C(1 + t)−
3
4 , ‖ỹt(·, t)‖L∞ ≤ C(1 + t)−

5
4 .(4.4)

It is clear that Theorem 1.4 comes from Theorem 1.2 and Theorem 4.1.
We turn to proving Theorem 1.5 next. Since (v1(x), 0, s0(x)) is the stationary

solution of both (1.2) and (1.4), we can also solve (1.2)–(1.3) near v1 instead of v2,
under the condition u− = u+ = 0 and (1.19), then∫ +∞

−∞
(v0(x)− v1(x)) dx = 0.(4.5)

Denote

z =

∫ x

−∞
(v(ξ, t)− v1(ξ)) dξ;(4.6)

then it follows that


ztt + (pv(v1, s)zx)x + zt = −(F1(v1, zx, s)z
2
x)x,

z(x, 0) = z0(x) =

∫ x

−∞
(v0(ξ)− v1(ξ)) dξ,

zt(x, 0) = z1(x) = u0(x),

(4.7)

where

p(zx + v1, s)− p(v1, s) = pv(v1, s)zx + F1(v1, zx, s)z
2
x.
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We will prove the following theorem.
Theorem 4.2. There exists δ0 > 0 such that if 0 < δ < δ0 and

‖z0‖H3 + ‖z1‖H2 ≤ δ,

then (4.7) has a unique global smooth solution z satisfying

1∑
k=0

[(1 + t)k+1‖∂k
xV2(·, t)‖2 + (1 + t)k+2‖∂k

xzt(·, t)‖2] ≤ C,

where V2 = pv(v1, s)zx and

‖zx(·, t)‖L∞ ≤ C(1 + t)−
3
4 , ‖zt(·, t)‖L∞ ≤ C(1 + t)−

5
4 .

Hence (1.2)–(1.3) has a unique global smooth solution (v, u, s)(x, t) such that

‖(v − v1)(·, t)‖L∞ ≤ C(1 + t)−
3
4 , ‖u(·, t)‖L∞ ≤ C(1 + t)−

5
4 .

We note that Theorem 4.2 implies Theorem 1.5.
Using the same proof as in Theorem 3.2, noting p(v1, s) = const, we can deduce

the following lemma.
Lemma 4.3. There exists δ0 > 0 such that if 0 < δ < δ0 and

‖z0‖H3 + ‖z1‖H2 ≤ δ,

then (4.7) has a unique smooth solution z satisfying

‖z(t)‖2
H3 + ‖zt(t)‖2

H2 +

∫ t

0

‖(zx, zt)(τ)‖H2 dτ ≤ Cδ2.(4.8)

The next result concerns the decay rates.
Lemma 4.4. The solution z of (4.7), obtained in Lemma 4.3, satisfies

1∑
k=0

[(1 + t)k+1‖∂k
xV2(·, t)‖2 + (1 + t)k+2‖∂k

xzt(·, t)‖2] ≤ C,(4.9)

where V2 = pv(v1, s)zx and

‖zx(·, t)‖L∞ ≤ C(1 + t)−
3
4 , ‖zt(·, t)‖L∞ ≤ C(1 + t)−

5
4 .(4.10)

Proof. We multiply (4.7)1 by (1 + t)zt and integrate it by parts. Then by using
(4.8), we obtain, by a calculation similar to that one in the proof of Lemma 3.4, that

(1 + t)‖(zx, zt)(t)‖2 +

∫ t

0

(1 + τ)‖zt(τ)‖2 dτ ≤ Cδ2.(4.11)

Now let us differentiate (4.7)1 in t, then we have

zttt + (pv(v1, s)yx)xt + ytt = −(F1z
2
x)xt.(4.12)
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Multiplying (4.12) by (1 + t)zt and (1 + t)ztt, respectively, we deduce[
(1 + t)

(
ztztt +

1

2
z2
t

)]
t

− pv(v1, s)(1 + t)z2
tx − (1 + t)z2

tt

=
1

2
z2
t + ztztt − (F1z

2
x)t(1 + t)ztx + {· · · }x,

(4.13)

[
1

2
(1 + t)(z2

tt − pvz
2
tx)

]
t

+ (1 + t)z2
tt

=
1

2
z2
tt −

1

2
pvz

2
tx − (1 + t)zttx(F1z

2
x)t) + {· · · }x.

(4.14)

Then by using (4.8) and (4.11), and by integrating 8× (4.14) + (4.13), we have

(1 + t)‖(ztt, ztx)‖2 +

∫ t

0

(1 + τ)‖(ztt, ztx)(τ)‖2 dτ

≤ C + C

∣∣∣∣
∫ t

0

∫ +∞

−∞
(1 + τ)(ztx + zttx)(F1z

2
x)t dxdτ

∣∣∣∣ .
(4.15)

We see that ∣∣∣∣
∫ t

0

∫ +∞

−∞
(1 + τ)ztx(F1z

2
x)t dxdτ

∣∣∣∣
≤ Cδ

∫ t

0

(1 + τ)‖ztx(τ)‖2 dτ,

(4.16)

and ∣∣∣∣
∫ t

0

∫ +∞

−∞
(1 + τ)zttx(F1z

2
x)t dxdτ

∣∣∣∣
≤ C

∣∣∣∣
∫ t

0

∫ +∞

−∞
[O(1)|zx|(1 + τ)z2

tx]t dxdτ

∣∣∣∣
+Cδ

∫ t

0

∫ +∞

−∞
(1 + (1 + τ))z2

tx dxdτ.

(4.17)

Due to the smallness of δ, from (4.15)–(4.17) we have

(1 + t)‖(ztt, ztx)‖2 +

∫ t

0

(1 + τ)‖(ztt, ztx)(τ)‖2 dτ ≤ C.(4.18)

Now let us multiply (4.12) by (1 + t)2zt and (1 + t)2ztt and repeat the previous
calculations, then

(1 + t)2‖(zt, ztt, ztx)‖2 +

∫ t

0

(1 + τ)2‖(ztt, ztx)(τ)‖2 dτ ≤ C.(4.19)

The same proof as used in Lemma 3.6 yields

(1 + t)2‖(V2t, V2x)‖2 +

∫ t

0

(1 + τ)‖(V2t, V2x)(τ)‖2 dτ ≤ C.(4.20)
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By differentiating (4.12) in x, we get

(1 + t)2‖(zttx, ztxx)‖2 +

∫ t

0

(1 + τ)2‖(zttx, ztxx)(τ)‖2 dτ ≤ C,(4.21)

and finally, by multiplying (4.12) by (1 + t)3ztt, it follows that

(1 + t)3‖(ztt, ztx)‖2 +

∫ t

0

(1 + τ)3‖ztt(τ)‖2 dτ

≤ C + C

∣∣∣∣
∫ t

0

∫ +∞

−∞
[O(1)|zx|(1 + τ)3z2

tx]t dxdτ

∣∣∣∣
+Cδ

∫ t

0

∫ +∞

−∞
(1 + τ)2z2

tx dxdτ + C

∣∣∣∣
∫ t

0

∫ +∞

−∞
(1 + τ)3z3

tx dxdτ

∣∣∣∣ ,
which implies

(1 + t)3‖(ztt, ztx)‖2 +

∫ t

0

(1 + τ)3‖ztt(τ)‖2 dτ

≤ C + C

∣∣∣∣
∫ t

0

∫ +∞

−∞
(1 + τ)3z3

tx dxdτ

∣∣∣∣ .
(4.22)

We have ∣∣∣∣
∫ t

0

∫ +∞

−∞
(1 + τ)3z3

tx dxdτ

∣∣∣∣
≤ C

∫ t

0

∫ +∞

−∞
(1 + τ)2z2

tx + (1 + τ)4z4
tx dxdτ

≤ C + C

∫ t

0

(1 + τ)2(‖ztx‖2 + ‖ztxx‖2) dτ

≤ C.

(4.23)

Then from (4.22)–(4.23), it follows that

(1 + t)3‖(ztt, ztx)‖2 +

∫ t

0

(1 + τ)3‖ztt(τ)‖2 dτ ≤ C.(4.24)

Hence, (4.9) follows from the combination of (4.11), (4.19)–(4.21), and (4.24). The
estimate (4.10) follows from (4.9).

By combining Lemmas 4.3 and 4.4, we complete the proof of the Theorem 4.2.
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