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1 Introduction

We consider the damped p-system

(1.1)

⎧⎪⎨
⎪⎩
ut − vx = 0

vt + p(u)x + v = 0,

which we regard as governing isentropic gas flow through a porous medium.

In that connection, v stands for velocity, u denotes specific volume, p is

pressure and −v is the frictional force exerted on the gas by the porous

medium. The (given) smooth function p(u) is defined on (0,∞) and is strictly

decreasing, p′(u) < 0. For example, in the case of a polytropic gas, we have

p(u) = u−γ, with γ ≥ 1.

We study the Cauchy problem for (1.1) with prescribed initial data

(1.2) u(x, 0) = u0(x), v(x, 0) = v0(x), −∞ < x <∞.

Even though the frictional force has a damping effect, the system is not

strictly dissipative. This renders the question of global existence and large

time behavior of solutions mathematically challenging and physically inter-

esting. It is known that friction prevents the breaking of waves of small

amplitude. Consequently, global classical solutions exist when u0 and v0 are

C1 and their derivatives u′0 and v′0 are sufficiently small [25]. However, when

the maxima of |u′0| and/or |v′0| exceed certain threshold values, waves even-

tually break and shocks develop. The existence of global weak solutions in

Lp can be established by the method of compensated compactness [5, 12, 13,

21, 28]. The aim here is to develop the theory in the BV setting.

Because of the nature of frictional damping, it is natural to conjecture

that as t→ ∞ the inertial term vt decays to zero faster than the other terms,

in which case (u, v) shall be represented asymptotically by functions (ũ, ṽ),

where ṽ obeys the classical Darcy law

(1.3) ṽ = −p(ũ)x,
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while ũ satisfies the porous media equation

(1.4) ũt + p(ũ)xx = 0.

In particular, (1.4) admits a family of self-similar solutions

(1.5) ũ(x, t) = Ψ

(
x− x√
t+ 1

)
,

where Ψ satisfies the ordinary differential equation

(1.6) p̈(Ψ(ξ)) − 1
2
ξΨ̇(ξ) = 0,

and x is an arbitrary parameter.

Solutions of (1.6) on (−∞,∞) are uniquely identified by their (positive)

end-states Ψ(±∞) = u±. They are monotone functions that get rapidly flat

as ξ → ±∞: For u± confined in any fixed compact subinterval J of (0,∞),

(1.7)

∣∣∣∣∣d
kΨ

dξk

∣∣∣∣∣ ≤ c |u+ − u−| e−μξ2

, −∞ < ξ <∞, k = 1, 2, 3,

where the positive constants c and μ depend solely on the maximum of p′

and on the maxima of |p′|, |p′′| and |p′′′| over J . The conjecture is that

any solution of (1.1), (1.2), with initial data (u0, v0) that are sufficiently flat

at x = ±∞, will be represented asymptotically by one of the self-similar

solutions (ũ, ṽ) induced by Ψ through (1.5) and (1.3). This has indeed been

established in the setting of smooth solutions [16, 17, 22, 26, 27, 30], as well

as in the setting of admissible bounded weak solutions [18, 19, 20, 29]. The

aim here is to address this question in the context of BV solutions.

Faced with the task of constructing BV solutions to systems of balance

laws, one first attempts to employ some method that works well for sys-

tems of conservation laws, such as the Glimm scheme [15], the front tracking

algorithm [4], or the vanishing viscosity approach [3], in conjunction with op-

erator splitting to account for the effect of the source term. This procedure

is indeed effective for strictly dissipative systems of balance laws [6, 11], in
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which the source acts as a damper in any wave interaction. However, in the

case of our system (1.1), which is merely weakly dissipative [10], the source

is acting as an amplifier in certain wave interactions, unless p(u) belongs

to a very restrictive class [1], which does not include the interesting case

of polytropic gases, p(u) = u−γ, γ ≥ 1. Apart from these exceptional p(u),

construction of BV solutions to (1.1), (1.2) based solely on local wave inter-

action estimates has been achieved [23] only for p(u) = u−1, by exploiting

the fact that in this case it is possible to handle interactions of waves with

large amplitude [24]. The observation that traveling waves of (1.1) propa-

gate with “hyperbolic” characteristic speed whereas traveling waves of (1.4)

move with much higher “parabolic” speed provides another indication of the

difficulty to obtain uniform BV bounds by employing exclusively local esti-

mates. Accordingly, one has to supplement local wave interaction estimates

with global estimates supplied by entropy inequalities. This idea was imple-

mented successfully [8] for constructing global BV solutions to (1.1), (1.2)

in the special case where u0 and v0 have finite total mass. In that situation,

the long time behavior is trivial, as solutions decay to zero. Our goal here is

to employ a similar approach for treating the more interesting, albeit more

challenging, case of initial data (u0, v0) that are allowed to approach distinct

limits at ±∞:

(1.8) (u0(x), v0(x)) → (u±, v±), as x → ±∞.

The aim is to construct global BV solutions (u, v) to (1.1), (1.2), as

perturbations u = ũ+ w, v = ṽ + z of ũ in the form (1.5) and ṽ induced by

(1.3). The function Ψ will be the solution of (1.6) with end-states Ψ(±∞) =

u± = u0(±∞). The value of the parameter x will be dictated by the balance

law for the total “mass”
∫
u dx. Existence of (w, z) in BV will be established

under the assumption that |u+−u−|, |v+−v−|, as well as the L1 norm, the L2

norm and the total variation of the initial perturbation (w0, z0) are sufficiently

small. It will be demonstrated that as t → ∞, the perturbation (w, z) decays

to zero in Lr , 1 < r ≤ 2, at the rate O(t−
r−1

r ).
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2 The Main Result

In this section we lay the groundwork for stating the main theorem, per-

taining to the existence and long time behavior of solutions to the Cauchy

problem (1.1), (1.2), with initial data (u0, v0) that are functions of bounded

variation on (−∞,∞), attaining limits (1.8). For clarity, we shall treat the

special case where u− �= u+ but v− = v+ = 0. At the end of the section, the

reader will find an outline of the minor modifications that would be needed

for dealing with the general case where both u− �= u+ and v− �= v+.

We consider the solution Ψ of (1.6), with the same end-states Ψ(±∞) =

u± as u0, which induces, through (1.5), the family ũ(x, t) of self-similar solu-

tions of (1.4). The corresponding ṽ(x, t) is then obtained from (1.3). We set

ũ0(x) = ũ(x, 0), ṽ0(x) = ṽ(x, 0), and assume that u0 and v0 are sufficiently

flat at ±∞ to render both w0 = u0 − ũ0 and z0 = v0 − ṽ0 in L1(−∞,∞).

The parameter x in (1.5) will be fixed so that

(2.1)
∫ ∞

−∞
w0(x)dx =

∫ ∞

−∞
[u0(x) − ũ0(x)] dx = 0.

Consequently, the function φ0, defined by

(2.2) φ0(x) =
∫ x

−∞
w0(y)dy,

vanishes at ±∞. We assume w0 is sufficiently flat at ±∞ to render φ0 in

L2(−∞,∞).

The size of the initial data will be measured by means of the parameters

(2.3) Λ0 = |u+ − u−| ,

(2.4) Λ1 =
∫ ∞

−∞
{|w0(x)| + |z0(x)|}dx,

(2.5) Λ2 =
∫ ∞

−∞
{w2

0(x) + z2
0(x) + φ2

0(x)}dx,

(2.6) Λ = Λ0 + Λ2
0 + Λ3

0 + Λ1 + Λ2 + Λ0Λ2,
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(2.7) M = TV w0(·) + TV z0(·).

The solution (u, v) of (1.1), (1.2) will be estimated and constructed as a

perturbation of (ũ, ṽ):

(2.8)

⎧⎪⎨
⎪⎩
u(x, t) = ũ(x, t) + w(x, t)

v(x, t) = ṽ(x, t) + z(x, t).

The component u of the solution will take values in an arbitrary, but fixed,

compact subinterval J of (0,∞), which contains in its interior the points u±.

By virtue of (1.4) and (1.3), (w, z) must satisfy the inhomogeneous system

of balance laws

(2.9)

⎧⎪⎨
⎪⎩
wt − zx = 0

zt + [p(ũ+ w) − p(ũ)]x + z = p(ũ)xt,

with initial conditions

(2.10) w(x, 0) = w0(x), z(x, 0) = z0(x), −∞ < x <∞.

Notice that w vanishes at x = ±∞, for all t > 0, and has zero total mass.

Indeed,

(2.11)
d

dt

∫ ∞

−∞
w(x, t)dx = z(∞, t) − z(−∞, t) = 0,

which implies, on account of (2.1),

(2.12)
∫ ∞

−∞
w(x, t)dx = 0, t ≥ 0.

Consequently, the function φ defined by

(2.13) φ(x, t) =
∫ x

−∞
w(y, t)dy

vanishes at x = ±∞, for all t. Notice that

(2.14) φx = w, φt = z.
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The following proposition describes the large time behavior of (w, z) in

L2:

Theorem 2.1. Let (w, z) be an admissible weak solution of the Cauchy

problem (2.9), (2.10) defined on a strip (−∞,∞) × [0, T ), with 0 < T ≤ ∞,

and such that u = ũ+ w takes values in the compact interval J . Then

(2.15)
∫ ∞

−∞
{w2(x, t)+z2(x, t)+φ2(x, t)}dx+

∫ t

0

∫ ∞

−∞
{w2(x, τ )+z2(x, τ )}dxdτ

≤ K(Λ2
0 + Λ2),

(2.16) (t+ 1)
∫ ∞

−∞
{w2(x, t) + z2(x, t)}dx+

∫ t

0

∫ ∞

−∞
(τ + 1)z2(x, τ )dxdτ

≤ K(Λ2
0 + Λ3

0 + Λ2 + Λ0Λ2),

for all t ∈ [0, T ), where K depends solely on the maximum and minimum

values of p′(u), and the maximum of |p′′(u)| on J .

Estimates akin to (2.15) and/or (2.16) were derived earlier in [16, 17, 26,

27], for smooth solutions with “small” initial data, and in [29], for bounded

weak solutions obtained by the vanishing viscosity method. Both (2.15)

and (2.16) will be established here, in Section 3, for any weak solution that

conserves or dissipates (mechanical) energy.

Next we state a result on L1 stability, which will be proved in Section 4:

Theorem 2.2. There is ρ > 0 such that any admissible weak solution (w, z)

of the Cauchy problem (2.9), (2.10) defined on a strip (−∞,∞)× [0, T ), with

0 < T ≤ ∞, and taking values in the disk of radius ρ centered at the origin,

satisfies

(2.17)
∫ ∞

−∞
{|w(x, t)|+ |z(x, t)|}dx ≤ KΛ,

where K depends solely on the maximum and minimum values of p′(u), and

the maxima of |p′′(u)| and |p′′′(u)| on the interval [minu± − ρ,max u± + ρ].
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The decay rate, as t → ∞, in Lr, for 1 < r ≤ 2, is obtained by using

(2.16), (2.17) and Hölder’s inequality:

Corollary 2.1. Under the assumptions of Theorem 2.2 and for any r ∈ [1, 2],

(2.18)
∫ ∞

−∞
{|w(x, t)|r + |z(x, t)|r}dx ≤ KΛ

(t+ 1)r−1
,

for all t ∈ [0, T ).

With the help of the estimate (2.17), we will construct, in Section 5, a

global admissible BV solution (w, z) to the Cauchy problem (2.9), (2.10),

which will induce, through (2.8), a global admissible BV solution (u, v) to

the original Cauchy problem (1.1), (1.2):

Theorem 2.3. There are positive constants Λ̃, M̃ and ν such that if Λ ≤ Λ̃

andM ≤ M̃ , then there exists an admissible BV solution (w, z) of the Cauchy

problem (2.9), (2.10), defined on the upper half-plane (−∞,∞)× [0,∞). In

addition to (2.15), (2.16) and (2.17), (w, z) satisfies the estimate

(2.19) TV w(·, t) + TV z(·, t) ≤ KMe−νt +KΛ,

for any t > 0, where K depends solely on the maximum and minimum val-

ues of p′(u), and the maxima of |p′′(u)| and |p′′′(u)| on a compact interval

containing u− and u+ in its interior. Consequently, (u, v) defined through

(2.8) is an admissible BV solution of the Cauchy problem (1.1), (1.2) on

(−∞,∞)× [0,∞).

We close this section with an outline of the modifications that would be

needed in order to deal with the general situation where both u− �= u+ and

v− �= v+. The aim is to modify (2.8) in such a way that w and z still vanish

at x = ±∞, and w still satisfies the normalization condition (2.12), in which

case one may still define the potential φ through (2.13). To that end, the

parameter x in (1.5) should now be selected so that, in the place of (2.1),

(2.20)
∫ ∞

−∞
[u0(x) − ũ0(x)]dx = −(v+ − v−).
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Moreover, (2.8) should be replaced by

(2.21)

⎧⎪⎨
⎪⎩
u(x, t) = ũ(x, t)− (v+ − v−)m′(x)e−t + w(x, t)

v(x, t) = ṽ(x, t) + [v− + (v+ − v−)m(x)]e−t + z(x, t),

where m is an arbitrary (but fixed) smooth function on (−∞,∞), such that

m(x) = 0 for x < −1 and m(x) = 1 for x > 1. To see the purpose of

these changes, notice first that (2.20) together with (2.21)1 still imply (2.12),

because now v(±∞, t) = v±e−t. Furthermore, (2.21)2 yields z(±∞, t) = 0.

It turns out that under the above modifications the assertions of Theorems

2.1, 2.2 and 2.3 are still valid and the proofs remain essentially the same.

Thus, for simplicity, in the sequel we shall deal exclusively with the special

case v− = v+ = 0.

3 Stability in L2

The aim here is to derive L2 bounds on admissible weak solutions (w, z) of

(2.9), (2.10) that will establish the estimates (2.15) and (2.16). Throughout

this section, c will stand for a generic positive constant that depends solely

on the maximum of p′(u) and the maxima of |p′(u)|, |p′′(u)| and |p′′′(u)| on

the compact interval J .

The effect of ũ on solutions of (2.9) will be monitored with the help of

the following bounds, which are easily derived from (1.5), (1.6) and (2.3):

(3.1) |ũx(x, t)| ≤ cΛ0(t+ 1)−
1
2 exp(−1

2
μξ2),

(3.2) |ũt(x, t)| ≤ cΛ0(t+ 1)−1 exp(−1
2
μξ2),

(3.3) |∂j
x∂

i
tp(ũ(x, t))| ≤ cΛ0(t+ 1)−(i+ 1

2
j) exp(−1

2
μξ2), 1 ≤ i+ j ≤ 3,

where ξ = (x− x)/
√
t+ 1.
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The requisite estimates will be obtained by means of entropy inequalities.

A function η(w, z; ũ) will be an entropy for the system (2.9), with associated

entropy flux q(w, z; ũ), if

(3.4)

⎧⎪⎨
⎪⎩
qw(w, z; ũ) = p′(ũ+ w)ηz(w, z; ũ)

qz(w, z; ũ) = −ηw(w, z; ũ).

Whenever the entropy η(w, z; ũ) is a convex function of (w, z), admissible

solutions of (2.9) satisfy the inequality

(3.5) ηt + qx + zηz ≤ ηũũt + {qũ − [p′(ũ+ w) − p′(ũ)]ηz}ũx + ηzp(ũ)xt ,

in the sense of distributions.

Proof of Theorem 2.1. We employ the entropy-entropy flux pair3

(3.6)

⎧⎪⎪⎨
⎪⎪⎩
η̃(w, z; ũ) = z2 − 2

∫ w

0
[p(ũ+ ω) − p(ũ)]dω

q̃(w, z; ũ) = 2[p(ũ+ w) − p(ũ)]z.

On the range of our solution, the Hessian of η̃ is uniformly positive definite

and

(3.7) z2 + αw2 ≤ η̃(w, z; ũ) ≤ z2 + α−1w2,

for some α ∈ (0, 1). The inequality (3.5) now takes the form

(3.8) η̃t + q̃x + 2z2 ≤ −2[p(ũ+ w) − p(ũ) − p′(ũ)w]ũt + 2zp(ũ)xt .

The above inequality shall be combined with an equation of quadratic

order derived by multiplying (2.9)2 by the Lipschitz function φ. Recalling

(2.14), we obtain

(3.9)
[ 1
2
φ2 + φz]t + [φ[p(ũ+ w) − p(ũ) − p(ũ)t]]x − [p(ũ+ w) − p(ũ)]w

= z2 −wp(ũ)t .

3Written in terms of the original state variables (u, v), 1
2
η̃ is what is commonly called

[10] a relative entropy of the system (1.1), associated with the energy 1
2
v2 +

∫
pdu. Thus,

the inequality (3.8), below, expresses mechanical energy dissipation.
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Since p(u) is strictly decreasing,

(3.10) −[p(ũ+ w) − p(ũ)]w ≥ 3δw2

with δ > 0. We add (3.8) and (3.9). In the resulting inequality, we apply

(3.10) as well as the estimates

(3.11) −2[p(ũ+ w) − p(ũ) − p′(ũ)w]ũt ≤ δw2 + c|ũt|2,

(3.12) −wp(ũ)t ≤ δw2 + c|p(ũ)t|2,

(3.13) 2zp(ũ)xt ≤ 1
2
z2 + 2|p(ũ)xt|2 .

Thus, recalling (3.2) and (3.3), we conclude

(3.14) [η̃ + 1
2
φ2 + φz]t + [q̃ + φ[p(ũ+ w) − p(ũ) − p(ũ)t]]x + δw2 + 1

2
z2

≤ cΛ2
0(t+ 1)−2e−μξ2

.

Integrating (3.14) over the strip (−∞,∞) × [0, t], for t ∈ (0, T ), using (3.7)

and that dx =
√
t+ 1dξ, we end up with an estimate equivalent to (2.15).

To establish (2.16), we multiply (3.8) by (t+ 1). By the Cauchy-Schwarz

inequality and since p(ũ+ w) − p(ũ)− p′(ũ)w is of quadratic order in w, we

deduce

(3.15) [(t+ 1)η̃]t − η̃ + [(t+ 1)q̃]x + 2(t+ 1)z2

≤ c(t+ 1)|ũt|w2 + (t+ 1)z2 + (t+ 1)|p(ũ)xt|2.
Using (3.2), (3.7) and (3.3), (3.15) yields

(3.16) [(t+ 1)η̃]t + [(t+ 1)q̃]x + (t+ 1)z2

≤ cΛ0w
2 + z2 + α−1w2 + cΛ2

0(t+ 1)−2e−μξ2

.

Integrating the above inequality over the strip (−∞,∞)× [0, t], for t ∈ [0, T ),

and using (3.7) and (2.15), we arrive at an estimate equivalent to (2.16). The

proof is complete.
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4 Stability in L1

This section establishes the L1 estimate (2.17), proving Theorem 2.2. The

first step is to refine the Darcy law (1.3). Recall that (1.3) derives from (1.1)2

upon neglecting inertial effects, setting vt = 0. A higher order approximation

is obtained by using for vt the value −p(ũ)xt, suggested by (1.3). Then (1.1)2

gives, in the place of (1.3),

(4.1) v̂ = −p(ũ)x + p(ũ)xt .

It turns out that this level of precision will be necessary for proving L1

stability.

Replacing ṽ by v̂ means that one must monitor the variable ẑ = v − v̂ in

the place of z = v− ṽ. Clearly, z and ẑ are related through z = ẑ+p(ũ)xt. In

particular, recalling (3.3), we conclude that the estimates (2.15) and (2.16),

established in the previous section for (w, z), will hold for (w, ẑ) as well.

Similarly, to show (2.17) it will suffice to establish an equivalent estimate for

(w, ẑ). In order to avoid rewriting (2.15), (2.16) and (2.17) for (w, ẑ), in the

remainder of this section we will dispense with the function z and retain the

symbol z to denote the function ẑ.

In terms of the new z, the system (2.9) becomes

(4.2)

⎧⎪⎨
⎪⎩
wt − zx = p(ũ)xxt

zt + [p(ũ+ w) − p(ũ)]x + z = −p(ũ)xtt .

The advantage of using (4.2) instead of (2.9) lies in that the source terms

p(ũ)xxt and p(ũ)xtt, in the former, decay faster, as t → ∞, than the source

term p(ũ)xt, in the latter.

The two systems (2.9) and (4.2) share the same entropy-entropy flux

pairs, satisfying (3.4). For (4.2), the analog of the entropy inequality (3.5)

reads

(4.3)
ηt + qx + zηz ≤ ηũũt + {qũ − [p′(ũ+ w) − p′(ũ)]ηz}ũx

+ηwp(ũ)xxt − ηzp(ũ)xtt.
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Proof of Theorem 2.2. To verify (2.17), we shall need an entropy-entropy

flux pair (η, q) such that η(w, z; ũ) is a convex function of (w, z) and

(4.4) β(|w|+ |z|) ≤ η(w, z; ũ) ≤ β−1(|w| + |z|),

(4.5) zηz(w, z; ũ) ≥ 0 ,

(4.6) |ηw(w, z; ũ)| ≤ c, |ηz(w, z; ũ)| ≤ c,

(4.7) |wηz(w, z; ũ)| ≤ c|z|,

(4.8) |ηũ(w, z; ũ)| ≤ c(|w| + |z|), |qũ(w, z; ũ)| ≤ c|z|
all hold for any (w, z) in some neighborhood of the origin and any ũ between

u− and u+. Indeed, assuming that (η, q) with the above properties is at

hand, we write the inequality (4.3) and use (4.5), (4.6), (4.7) and (4.8),

together with the Cauchy-Schwarz inequality, to majorize the right-hand

side as follows:

(4.9) ηt + qx ≤ w2 + z2 + c|ũt|2 + (t+ 1)z2 + c(t+ 1)−1|ũx|2

+c|p(ũ)xxt| + c|p(ũ)xtt| .
Integrating (4.9) over the strip (−∞,∞) × [0, t], for t ∈ [0, T ), and using

(2.15), (2.16), (3.1), (3.2), (3.3) and (4.4), we arrive at an estimate equivalent

to (2.17).

The first step toward acquiring (η, q) with the above specifications will

be to construct a preliminary entropy-entropy flux pair (η̂, q̂) that satisfies

the conditions (4.4), (4.5), (4.6), (4.7) and (4.8), but may fail to meet the

remaining requirement that η̂(w, z; ũ) be convex in (w, z). The pair (η̂, q̂) will

be defined as the solution of the Cauchy problem for the linear hyperbolic

system4 (3.4), with initial condition

(4.10) η̂(w, 0; ũ) = |w|, q̂(w, 0; ũ) = 0, −∞ < w <∞.

4For convenience, we modify/extend p(u) outside the compact interval J in such a way
that 0 < δ < −p′(u) < δ−1 < ∞, for all u ∈ (−∞,∞).
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By standard theory, there exists a unique Lipschitz continuous solution

(η̂, q̂) of (3.4), (4.10) on the w−z plane, and it has the following structure.

Let us introduce the notation

(4.11) a(w; ũ) =
√
−p′(ũ+ w) ,

with derivative

(4.12) ȧ(w; ũ) =
−p′′(ũ+ w)

2
√
−p′(ũ+ w)

and primitive

(4.13) χ(w; ũ) =
∫ w

0

√
−p′(ũ+ ω)dω.

We also consider the inverse function ψ(· ; ũ) of χ(· ; ũ). The backward and

the forward characteristics

(4.14) z = −χ(w; ũ), z = χ(w; ũ)

issuing from the origin, divide the w−z plane into four sectors

(4.15)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΩN = {(w, z) : z > 0, −ψ(z; ũ) < w < ψ(z; ũ)}

ΩS = {(w, z) : z < 0, ψ(z; ũ) < w < −ψ(z; ũ)}

ΩE = {(w, z) : w > 0, −χ(w; ũ) < z < χ(w; ũ)}

ΩW = {(w, z) : w < 0, χ(w; ũ) < z < −χ(w; ũ)} .

The functions (η̂, q̂) are smooth on ΩN ∪ΩS ∪ΩE ∪ΩW but their derivatives

experience jump discontinuities across the characteristics (4.14). In particu-

lar, the values of (η̂, q̂) on ΩE ∪ ΩW are known explicitly:

(4.16) (η̂, q̂) =

⎧⎪⎨
⎪⎩

(w,−z), for (w, z) ∈ ΩE

(−w, z), for (w, z) ∈ ΩW .
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The values of (η̂, q̂) are also known explicitly on ΩN ∪ΩS in the special case

where (1.1) is linear, i.e., a ≡ constant:

(4.17) (η̂, q̂) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
z

a
, −aw

)
, for (w, z) ∈ ΩN

(
−z
a
, aw

)
, for (w, z) ∈ ΩS .

In the general, nonlinear case, we write

(4.18)

(η̂, q̂) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
z

a(w; ũ)
+ g(w, z; ũ), −a(w; ũ)w + h(w, z; ũ)

)
, (w, z) ∈ ΩN ,

(
− z

a(w; ũ)
− g(w, z; ũ), a(w; ũ)w − h(w, z; ũ)

)
, (w, z) ∈ ΩS .

Note that (η̂, q̂) defined by (4.16), (4.17) satisfy the requisite conditions

(4.4), (4.5), (4.6), (4.7) and (4.8). It follows that the modified (η̂, q̂) de-

fined by (4.16), (4.18) will equally satisfy these conditions near the origin, so

long as the “correction” (g, h) is of quadratic order, namely (a) g and h are

O(w2 + z2); (b) the first derivatives gw, gz , gũ, hw, hz, hũ are O(|w|+ |z|); and

(c) the second derivatives gww, gwz, gzz , hww, hwz, hzz are O(1). We proceed

to show that this is indeed the case. Since g(−w,−z; ũ) = g(w, z; ũ) and

h(−w,−z; ũ) = h(w, z; ũ), it will suffice to work in ΩN .

By virtue of (4.18) and (3.4), (g, h) satisfies the system

(4.19)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
gz = −hw

a2
+
ȧ

a2
w

hz = −gw +
ȧ

a2
z.

Furthermore, since (η̂, q̂) is continuous across the characteristics (4.14), upon
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combining (4.16) with (4.18) we deduce

(4.20)⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g(w, χ(w; ũ); ũ) = w − χ(w; ũ)

a(w; ũ)
, h(w, χ(w; ũ); ũ) = −χ(w; ũ) + a(w; ũ)w,

g(w,−χ(w; ũ); ũ) = −w +
χ(w; ũ)

a(w; ũ)
, h(w,−χ(w; ũ); ũ) = −χ(w; ũ) + a(w; ũ)w.

At this point, it is convenient to perform a coordinate transformation,

from (w, z) to Riemann invariants (ζ, ξ):

(4.21)

⎧⎪⎨
⎪⎩
ζ = ζ(w, z; ũ) = z − χ(w; ũ),

ξ = ξ(w, z; ũ) = z + χ(w; ũ),

which maps ΩN onto the first quadrant {(ζ, ξ) : ζ > 0, ξ > 0}. At the same

time, we pass from (g, h) to new variables (r, s):

(4.22) r = g − h

a
, s = g +

h

a
.

In the new coordinate system and new variables, (4.19) and (4.20) become

(4.23)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
rζ =

ȧ

4a2
(r − s) +

ȧ

2a2
w − ȧ

2a3
z,

sξ =
ȧ

4a2
(r − s) +

ȧ

2a2
w +

ȧ

2a3
z,

(4.24)

⎧⎪⎨
⎪⎩
r(0, ξ; ũ) = 0, for ξ > 0

s(ζ, 0; ũ) = 0, for ζ > 0.

The coefficients on the right-hand side of (4.23) are realized as functions

of (ζ, ξ; ũ) through the inverse transformation to (4.21), which reads w =

ψ(1
2
(ξ − ζ); ũ), z = 1

2
(ξ + ζ).

Fix ε > 0 small and suppose |r| + |s| attains its maximum, say m, on

the square [0, ε] × [0, ε] at a point (ζ̄ , ξ̄). Integrating (4.23)1 with respect to
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ζ on [0, ζ̄], keeping ξ fixed, equal to ξ̄, then integrating (4.23)2 with respect

to ξ on [0, ξ̄], keeping ζ fixed, equal to ζ̄, and using (4.24), we deduce an

inequality of the form m ≤ cεm + cε2, whence it follows that both r and s

are O(ζ2 + ξ2) near the origin. In turn, (4.23) implies that rζ and sξ are

O(|ζ| + |ξ|) near the origin.

To get bounds for rũ and sũ, we note that when w and z are regarded

as functions of (ζ, ξ; ũ), then wũ = −1, zũ = 0, and thereby aũ = 0, ȧũ = 0.

Therefore, differentiating (4.23) with respect to ũ yields

(4.25)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
rũζ =

ȧ

4a2
(rũ − sũ) − ȧ

2a2
,

sũξ =
ȧ

4a2
(rũ − sũ) − ȧ

2a2
.

Moreover, (4.24) imply rũ(0, ξ; ũ) = 0, for ξ > 0, and sũ(ζ, 0; ũ) = 0, for

ζ > 0. Thus, the argument used above for bounding r and s applies here as

well and yields that rũ and sũ are O(|ζ| + |ξ|) near the origin.

Next we differentiate (4.23)1 with respect to ξ and (4.23)2 with respect

to ζ. Since wζ = −1/2a, wξ = 1/2a, zζ = 1/2 and zξ = 1/2, we deduce

(4.26)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
rξζ − ȧ

4a2
rξ = O(1),

sζξ +
ȧ

4a2
sζ = O(1).

Integrating the above ordinary differential equations for rξ and sζ , starting

out from initial conditions rξ(0, ξ; ũ) = 0 and sζ(ζ, 0; ũ) = 0, which follow

from (4.24), we deduce that rξ and sζ are O(|ζ| + |ξ|) near the origin. In

turn, (4.26) implies that rξζ and sζξ are O(1) near the origin.

Differentiating (4.23)1 with respect to ζ and (4.23)2 with respect to ξ, we

deduce that rζζ and sξξ are O(1) near the origin. To estimate the remaining

second derivatives rξξ and sζζ , we differentiate (4.23)1 twice with respect to
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ξ and (4.23)2 twice with respect to ζ, which yields

(4.27)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
rξξζ − ȧ

4a2
rξξ = O(1),

sζζξ +
ȧ

4a2
sζζ = O(1).

Since rξξ(0, ξ; ũ) = 0 and sζζ(ζ, 0; ũ) = 0, integrating the above ordinary

differential equations, we conclude that rξξ and sζζ are O(|ζ| + |ξ|) near the

origin.

We have thus verified that the entropy-entropy flux pair (η̂, q̂), defined

by (4.16), (4.18) satisfies the requirements (4.4), (4.5), (4.6), (4.7) and (4.8).

However, η̂(w, z; ũ) just misses being convex near the origin, for two reasons:

The characteristics (4.14) are curved; the Hessian of the (small) perturbation

(g, h) is bounded but not necessarily positive in the vicinity of (0, 0). On the

other hand, notice that the entropy-entropy flux pair (η̃, q̃) defined by (3.6)

satisfies the convexity condition as well as (4.5), (4.6), (4.7) and (4.8), but

fails to meet the requirement (4.4), as η̃ is of quadratic order at the origin.

We may thus produce an entropy-entropy flux pair (η, q) with all the desired

properties by combining (η̂, q̂) with (η̃, q̃):

(4.28)

⎧⎪⎨
⎪⎩
η(w, z; ũ) = η̂(w, z; ũ) + κη̃(w, z; ũ),

q(w, z; ũ) = q̂(w, z; ũ) + κq̃(w, z; ũ),

where κ is a positive constant. Indeed, this (η, q) satisfies (4.4), (4.5), (4.6),

(4.7) and (4.8). Furthermore, if κ is sufficiently large, η(w, z; ũ) is convex in

(w, z).

As noted above, once (η, q) with the required specifications is available,

integration of (4.9) yields (2.17). The proof is complete.

5 Global BV Solutions

This section establishes the existence of globally defined, admissible BV solu-

tions to the Cauchy problem (2.9), (2.10), and thereby to the Cauchy problem
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(1.1), (1.2), by proving Theorem 2.3. The analysis will rely on the theory of

hyperbolic systems of balance laws with inhomogeneity and dissipation, and

will make essential use of a change of variable that redistributes damping

between the two equations in (2.9).

We consider a system of balance laws in the form

(5.1) Ut + F (U, x, t)x + AU = G(x, t).

The state vector U takes values in a ball B of IRn, which is centered at 0 and

has radius ρ. The flux F is a smooth function defined on B×(−∞,∞)×[0,∞)

and taking values in IRn. Its partial derivatives of first and second order

are uniformly bounded. For fixed U ∈ B , x ∈ (−∞,∞) , t ∈ [0,∞), the

Jacobian matrix (with respect to the U-variable) DF (U, x, t) has real distinct

eigenvalues that are uniformly separated. Thus, (5.1) is strictly hyperbolic.

A is a constant n×n matrix. The source G is a uniformly Lipschitz function

on (−∞,∞)×[0,∞) taking values in IRn and G(±∞, t) = 0. The intensity of

the inhomogeneity and the strength of the source will be controlled through

a positive parameter a, by imposing the conditions

(5.2) Fx(0, x, t) = 0, |DFx(U, x, t)| ≤ a, |DFt(U, x, t)| ≤ a,

(5.3)∫ ∞

−∞
|DFx(U, x, t)|dx ≤ a,

∫ ∞

−∞
|Fxt(U, x, t)|dx ≤ a,

∫ ∞

−∞
|Gx(x, t)|dx ≤ a,

for all U ∈ B , x ∈ (−∞,∞) , t ∈ [0,∞).

We prescribe initial data

(5.4) U(x, 0) = U0(x), −∞ < x <∞,

that vanish at ±∞ and have bounded variation over (−∞,∞). By com-

bining the random choice algorithm [15], which solves the Cauchy problem

for homogeneous systems of conservation laws, with operator splitting, in

order to account for the effects of inhomogeneity and source, the following
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local existence theorem5 for solutions to the Cauchy problem (5.1), (5.4) is

established in [11]:

Proposition 5.1. There are positive constants a0, V0 and T such that if (5.2),

(5.3) hold for a ≤ a0 and TV U0(·) ≤ V0, then there exists an admissible BV

solution U of the Cauchy problem (5.1), (5.4) defined on the strip (−∞,∞)×
[0, T ).

It is further shown in [11] that when the matrix A in (5.1) satisfies a

certain dissipativeness condition, then the total variation of the solution U

in Proposition 5.1 is bounded independently of T . This may allow extending

U into a global solution, defined on the entire upper half-plane. The following

special case where A is a multiple of the identity matrix I will suffice for the

present purposes:

Proposition 5.2. Suppose that in (5.1) A = 1
2
I . Then, under the assump-

tions of Proposition 5.1, the solution U of (5.1), (5.4) satisfies the estimate

(5.5) TV U(·, t) ≤ Ke−νtTV U0(·) +Ka,

for any t ∈ [0, T ), where K and ν are positive constants independent of T .

Uniqueness of admissible BV solutions for the Cauchy problem (5.1),

(5.4) has been established in [2,7] in the homogeneous case, where F and G do

not depend explicitly on (x, t). Extending this analysis to the inhomogeneous

case appears to be a doable, though tedious, task. Accordingly, we shall

operate here under the assumption that when A = 1
2
I then, irrespective

of the way it was constructed, any BV solution of (5.1), (5.4) whose local

structure is compatible with the admissible solution of the Riemann problem

is unique and thus satisfies the estimate (5.5).

We have now laid the groundwork for the

5The slightly more stringent regularity and normalization conditions imposed on the
source in [11] may be relaxed to the present assumptions, without any difficulty.
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Proof of Theorem 2.3. The system (2.9) is of the form (5.1). By virtue

of (3.1), (3.2) and (3.3), the conditions (5.2) and (5.3) are satisfied with

a = cΛ0. Thus, when Λ0 and M are sufficiently small, Proposition 5.1

implies that there exists an admissible BV solution of the Cauchy problem

(2.9), (2.10), defined on a strip (−∞,∞)× [0, T ).

Since we are seeking a global solution to (2.9), (2.10), we need a uniform

bound on the total variation of the local solution. It is not possible to

achieve that by appealing directly to Proposition 5.2, because the matrix

A associated with (2.9) does not satisfy the dissipativeness condition, as

the damping is inequitably distributed between the two equations. We shall

overcome this difficulty by redistributing the damping via a device originally

employed in [8], for the same purpose, in the context of the special case

u− − u+. We retain w but replace z by the new variable

(5.6) ω = z + 1
2
φ,

where φ is the potential defined by (2.13). (This transformation was first

introduced by Feireisl [14], in an unrelated context). Recalling (2.14), we

deduce that (2.9) is written in terms of the new variables as

(5.7)

⎧⎪⎨
⎪⎩
wt − ωx + 1

2
w = 0

ωt + [p(ũ+ w) − p(ũ)]x + 1
2
ω = 1

4
φ+ p(ũ)xt .

We notice that the damping is now equidistributed between the two equa-

tions. Indeed, (5.7) is a system of the form (5.1), with A = 1
2
I , as required in

Proposition 5.2. The potential φ appearing on the right-hand side of (5.7)2

is a nonlocal functional of the solution (w, ω), and thus a priori unknown,

but it shall be regarded here as part of the source.

As noted above, we already have an admissible BV solution (w, z) of

(2.9), (2.10) on (−∞,∞)×[0, T ), and this induces an admissible BV solution

(w, ω) of (5.7), on the same strip, with initial conditions

(5.8) w(x, 0) = w0(x) , ω(x, 0) = ω0(x) = z0(x) + 1
2
φ0(x), −∞ < x <∞.
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Since φx = w, (2.17) together with (3.3) imply

(5.9)
∫ ∞

−∞
|1
4
φx(x, t) + p(ũ(x, t))xxt|dx ≤ cΛ,

for all t ∈ [0, T ). Thus, when Λ is sufficiently small to render the right-hand

side of (5.9) less than a0, Proposition 5.2 applies and the estimate (5.5) yields

(5.10) TV w(·, t) + TV ω(·, t) ≤ Ke−νt[TV w0(·) + TV ω0(·)] + cΛ,

for all t ∈ [0, T ). In turn, (5.10) together with (2.17), (3.3), (5.8) and (2.7)

give

(5.11) TV w(·, t) + TV z(·, t) ≤ KMe−νt + cΛ,

for all t ∈ [0, T ). When Λ and M are sufficiently small so thatKM+cΛ < V0,

we may apply Proposition 5.1 once again, starting at t = T , and extend the

solution (w, z) of (2.9), (2.10) to the strip (−∞,∞)× [0, 2T ). Furthermore,

(5.11) will now hold for all t ∈ [0, 2T ). By repeating this process, we establish

the existence of an admissible BV solution to (2.9), (2.10) that is defined on

the entire upper half-plane and satisfies an estimate equivalent to (2.19), for

all t ∈ [0,∞). This completes the proof.
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