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Abstract

It is conjectured that Darcy’s law governs the motion of compressible porous media flow in
large time. This has been justified for one-dimensional isentropic flows. In this work, we show
the conjecture is true for one-dimensional adiabatic flows with generic small smooth initial
data.
© 2004 Elsevier Inc. All rights reserved.

Keywords: Darcy’s Law; Damping mechanism; L1-estimates; Weighted energy estimates; Self-similarity

1. Introduction

In this paper, we study the large-time asymptotic behavior of smooth solutions to
the following Cauchy problem:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

vt − ux = 0,

ut + p(v, s)x = −�u, � > 0,

st = 0,

(v, u, s)(x, 0) = (v0(x), u0(x), s0(x)), x ∈ R,

(v0, u0, s0)(x) → (v±, u±, s±), as x → ±∞,

(1.1)
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with v± > 0. This system models one-dimensional gas flows through porous media
when the process admits smooth solutions. If singularities occur in the process, the
third equation in the above system will be replaced by the energy equation, and one
has the classical compressible Euler equations with damping:

⎧⎪⎨
⎪⎩

vt − ux = 0,

ut + p(v, s)x = −�u, � > 0,

(e(v, s) + 1
2 u2)t + (pu)x = −�u2.

(1.2)

Here, (x, t) are space and time variables in Lagrangian coordinates, v, u and s denote
the specific volume, particle velocity and specific entropy, respectively. p is the gas
pressure with pv(v, s) < 0, for v > 0, and e(v, s) is the specific internal energy, for
which one has es �= 0 and ev +p = 0 (due to the second law of thermodynamics). For
smooth solutions, the third equation of (1.2) is equivalent to st = 0.

In practice, Darcy’s law was observed experimentally in such a process, and one has
an alternative model:

⎧⎪⎨
⎪⎩

vt − ux = 0,

p(v, s)x = −�u, � > 0,

st = 0,

which is equivalent to the following (decoupled) system:

⎧⎪⎨
⎪⎩

vt + 1
� p(v, s)xx = 0,

u = − 1
� p(v, s)x,

st = 0.

(1.3)

Hence, it is not surprise that (1.1) and (1.3) are conjectured to be equivalent as time
goes to infinity. That is, one expects that Darcy’s law is valid for compressible porous
media flows time-asymptotically. More precisely, the conjecture reads that the solutions
of (1.1) converge to the corresponding solutions of (1.3) as t → +∞.

For isentropic flows, where s = const., the conjecture was verified first by Hsiao and
Liu [5] for small smooth solutions away from vacuum. Since then, this problem has
attracted considerable attentions of mathematicians. There are several improvements of
[5]; see for instance [6,14,16,17,19,21,23] and the book [4] and the references therein.
However, the more important issue is to generalize [5] to more general physical settings.
Apparently, there are two lines for such kind of generalizations. The first one is to verify
the conjecture for isentropic flows with large data. This was achieved recently by Huang
et al. [11–13] where they proved this conjecture for general L∞ weak entropy solutions
with or without vacuum. The second one is to extend the result of [5] to the full system
of adiabatic flows where s �= const.. In this direction, the first attempt was made by
Hsiao and Serre [10] for a small smooth perturbation problem about constant state
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(v̄, 0, s̄). For a better decay rate in this case, we refer to [18]. Later, Hsiao and Luo [7]
set the adiabatic flow as the perturbation near the isentropic flows. Their proof relies
on comparison principles and a technical condition. More recently, by combining L1

technique and weighted energy estimates, Marcati and Pan [15] generalized [10,7] to
the cases of perturbation around a steady solution or isentropic flows. However, the
case for generic small smooth solutions remains open.

The main focus of current paper is to fill this blank. For this purpose, we study the
following Cauchy problem:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vt − ux = 0,

ut + p(v, s)x = −u,

st = 0,

(v, u, s)(x, 0) = (v0(x), u0(x), s0(x)), x ∈ R,

(v0, u0, s0)(x) → (v±, u±, s±), as x → ±∞,

(1.4)

with v± > 0. For sake of simplicity, we have taken � = 1. Furthermore, from now on,
we choose p(v, s) = (�−1)v−�es , with � > 1, which is the case for the polytropic gas
dynamics.

The global existence with small smooth initial data of smooth solutions for the
Cauchy problem (1.4) has been studied first in [9,10,22]. This is based on the fact that
the dissipation of damping prevents the formation of singularity from small smooth
initial data. However, such dissipation is not strong enough, the shock will develop
in finite time if initial data is large or rough, see [22]. On the other hand, no theory
is known on the global existence of weak solutions for (1.4), although [1] provides a
global BV solution to isentropic flow. Thus we will focus on the small smooth solutions.
According to the conjecture mentioned before, these smooth solutions are expected to
converge to certain solutions of

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ṽt = −p(ṽ, s)xx,

ũ = −p(ṽ, s)x,

st = 0,

ṽ(x, 0) = ṽ0(x), s(x, 0) = s0(x),

ṽ0(±∞) = v±, s0(±∞) = s±.

(1.5)

Partial evidences of such expectation are given in [10] for the case v− = v+ = v̄ and
s− = s+ = s̄; in [7,15] for the case s− = s+ = s̄; and in [15] for the case p(v−, s−) =
p(v+, s+). Thus, the case where p(v−, s−) �= p(v+, s+) and s− �= s+ remains open
while some initial boundary value problems have been solved completely; see [8,20].
In this article, we shall give a definite answer to the conjecture for adiabatic flows with
generic small smooth initial data away from vacuum. We are going to prove that the
small smooth solutions of (1.4) converge to those of (1.5) provided that the initial data
satisfies certain mass law. This justified the Darcy’s law in the time-asymptotic point
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of view. Furthermore, the large-time asymptotic profiles are constructed explicitly. The
striking point is that such a diffusive profile has singularity which is different from the
isentropic case [5] and the cases in [7,10,15,18].

Comparing with isentropic case, the first main difficulty in our case is the existence
and large-time behavior of the solutions to (1.5) is not known in literatures. This diffi-
culty prevented us to adopt the approach for isentropic flows, where the corresponding
large-time behavior for the diffusive problems is known as the self-similar solutions
[2,3]. This is because that the equations in (1.5) reduce to porous media equation when
entropy is a constant, which is invariant under diffusive rescalings. However, such in-
variance breaks down when entropy varies. Thus, one cannot work on (1.4) directly like
in isentropic case. The further study of problem (1.5) is necessary. In Sections 2–3,
we will establish the global existence and large-time behavior of solutions to (1.5),
the large-time profile will be constructed explicitly by means of self-similar solution
to the asymptotic problem of (1.5) (not (1.5) itself) for a carefully chosen variable.
Such self-similar solutions are singular in general (striking!). This differs from all pre-
vious results. The proof is based on the framework developed in [15]. However, the
singularity in asymptotic profiles requires the modification of several key steps in the
argument. One more feature distinguishing from isentropic case is that the asymptotic
profile for specific volume is not self-similar! In our case, the asymptotic profiles for
pressure and velocity are well-defined from asymptotic problem, while that for specific
volume is not a solution of the asymptotic problem.

The second main difficulty follows from the singularity in the asymptotic profiles
of solutions to (1.5). In previous work, the Darcy’s law was verified by comparing
the solutions of (1.4) with those of (1.5) using energy estimates up to second-order
derivatives of solutions to (1.4). Such approach is not suitable for our case due to the
singularity mentioned above. In Section 4, we thus adopt a modified version of the
framework introduced in [12] by means of weighted entropy estimates to prove that
the difference between solutions of (1.4) and (1.5) approaches to zero as time goes to
infinity with a uniform estimate in lower order. Then, we can adopt the argument of
[15] with regularity of the solutions of (1.5) obtained by standard theory of parabolic
equations.

To end this introduction, we make some remarks. (a) Our purpose here is the ver-
ification of Darcy’s law in large-time behavior of compressible adiabatic flows, the
decay rates in some of our theorems are not optimal. It is possible to improve them by
means of Green’s function approach as in [18]. It is of course an interesting problem,
but not the main concern of current paper. (b) It is remarkable that Theorem 4.2 below
provided a framework for possible large weak solutions with uniform L∞ bound. This
leads to the chance of a proof of the conjecture for large weak solutions once they are
obtained in the future.

2. Asymptotic profiles and main results

As explained in last section, one of the key difficulty in our problem is the mys-
tery of the asymptotic profile of the solutions of (1.5). This will be discovered by



R. Pan / J. Differential Equations 220 (2006) 121–146 125

a guess-and-check method. In this section, we first construct the asymptotic diffusive
profiles serving as long-time ansatz for (1.4) and (1.5) by means of asymptotic self-
similarity. To this end, we introduce the change of variables:

a(x) = (� − 1)
− 1

� e
− 1

� s(x)
,

w ≡ a(x)ṽ = p(ṽ, s)
− 1

� , (2.1)

then problem (1.4) is equivalent to the following one:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

wt + a(x)(w−�)xx = 0,

ũ = −(w−�)x,

s(x, t) = s0(x),

w(x, 0) = w0(x) = a(x)ṽ0(x),

w(±∞) = w± > 0, s(±∞) = s±.

(2.2)

We recall that the asymptotic diffusive profiles were similarity solutions found by
diffusive rescaling invariance for isentropic flow. For adiabatic flows, the first equa-
tion in (2.2) is not invariant under diffusive rescaling. However, one still can hope
the asymptotic profiles are similarity solutions invariant under diffusive rescaling for
w(x, t). One evidence was given by Marcati and Pan [15] for the case when s− = s+.
Roughly speaking, due to parabolicity of the first equation in (2.2), one expects that
the information of solutions will be dominated by the end states in large time since
the local information will diffuse. Thus, we expect the large-time asymptotic behavior
of (2.2) will be described by

{
w̄t + a1(w̄

−�)xx = 0,

w̄(±∞) = w±,
(2.3)

where, a1 = (� − 1)
− 1

� e
− 1

� s− , if x < 0; while a1 = (� − 1)
− 1

� e
− 1

� s+ , if x > 0. This
equation is invariant under diffusive rescaling, thus it has self-similar solutions. We
denote by w̄(�) (with � = x√

t+1
) the similarity solution of (2.3).

We now construct this profile. Inserting w̄(�) into (2.3), one has a two-point boundary
value problem for a second-order O.D.E.:

{
− 1

2 �w̄′ + a1(�)(w̄−�)′′ = 0,

w̄(±∞) = w±.
(2.4)

Define W = w̄−�, the first equation in (2.4) becomes

W ′′ = − �

2�a1(�)
W

−1− 1
� W ′, (2.5)
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which can be integrated as

W ′(�) = W ′(�0) exp

{
−

∫ �

�0

W
−1− 1

� (r)
r dr

2�a1(r)

}
. (2.6)

Thus, W was obtained by integrating (2.6) once more. Hence, the similarity profile w̄

was constructed. It is easy to see from above argument that w̄ has continuous first-order
derivatives and bounded second-order derivatives. However, w̄′′(�) has a jump at � = 0
in general if a1 has a jump. However, a1(w̄

−�)′′ is continuous by (2.4). Moreover, it
is clear that w̄ has the properties listed in the following lemma.

Lemma 2.1. Let w̄(�) be the similarity solution to (2.3) with w̄(±∞) = w± and
� = x√

1+t
. There are positive constants C, C1 and C2 such that

|w̄′(�)| + |w̄′′(�)|�C1|w+ − w−| exp{−C2�
2},

|w̄(�) − w−|�<0 + |w̄(�) − w+|�>0 �C1|w+ − w−| exp{−C2�
2},

w̄x = (1 + t)
− 1

2 w̄′(�), w̄t = −1

2
(1 + t)−1�w̄′(�), (w̄−�)xx = − w̄t

a1
,

‖w̄t (·, t)‖2
L2 + ‖w̄xx(·, t)‖2

L2 �C|w+ − w−|2(1 + t)
− 3

2 ,

‖Di
xD

j
x w̄(·, t)‖L∞ �C1|w+ − w−|(1 + t)

−(i+ 1
2 j)

for i = 0, 1, 2, j = 0, 1, 2 and i + j �1.

We conjecture that w̄ constructed above is the asymptotic profile of the solution to
(2.2). This will be stated in Theorem 2.1 below and be proved in the next section.

With the asymptotic profiles constructed above, we can state our main results in
mathematical rigors. Since st = 0 in both (1.4) and (1.5), then s(x, t) = s(x) = s0(x).
This is the advantage to use entropy instead of energy as variable. Let w̄ be the
similarity profiles defined above, v̄ = a−1w̄ and ū = −(w̄−�)x . The global existence
and large time behavior of solutions to (1.5) can be established by comparing w with
w̄ through a combination of L1 argument and weighted energy estimates. Thus, our
first main result is the following theorem.

Theorem 2.1. Assume that w0(x) and s0(x) are C2 functions such that w0(x) −
w̄(x, 0) ∈ H 2(R) ∩ L1(R) and

x(s0(x) − s−) ∈ L1(R−), x(s0(x) − s+) ∈ L1(R+). (2.7)

There exists �0 > 0 such that, if 0 < � < �0 and

|w+ − w−| + ‖w0(x) − w̄(x, 0)‖H 2 ��,
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then (1.5) has a unique global smooth solution (ṽ, ũ, s)(x, t), satisfying

w(x, t) − w̄ ∈ C0([0, t]; H 2), f or all t > 0.

Moreover, there exist positive constants C > 0, �1 > 1
3 and �2 > 1

2 , such that

‖(ṽ − v̄)(·, t)‖L∞ �C(1 + t)
− 1

2 (1 + log(1 + t))�1 ,

‖(ũ − ū)(·, t)‖L∞ �C(1 + t)−1(1 + log(1 + t))�2 . (2.8)

Remark 1. (a) Our results in Theorem 2.1 generalize those ones in [2], to the adiabatic
case and extend to a larger class of initial data. The decay rate here is better than in
[2] and it is almost optimal.

(b) Condition (2.7) can be weaken by replacing x with |x|� for � > 0. This is clear
from our proof below.

(c) (v̄, ū) is not a solution of the asymptotic problem (2.3), but they are the right
asymptotic profile for the solutions of (1.5) although they do not satisfy the equation
of mass conservation law.

We now compare the solutions of (1.4) and (1.5). Following [5], we define

m(x, t) ≡ −(u+ − u−)m0(x)e−t ,

um(x, t) ≡ u−e−t +
∫ x

−∞
mt(�, t) d�, (2.9)

where m0(x) is a smooth function with compact support such that

∫ +∞

−∞
m0(x) dx = 1.

Denote by (ṽ, ũ, s) the solution to (1.5) obtained in Theorem 2.1. In addition, we
assume

∫ +∞

−∞
(v0(x) − ṽ0(x)) dx = −(u+ − u−). (2.10)

A special choice of ṽ0 is given in Remark 2 below. Let us denote by y(x, t) =∫ x

−∞(v − ṽ − m)(�, t) d�, then y satisfies

⎧⎪⎨
⎪⎩

ytt + [p(yx + ṽ + m, s) − p(ṽ, s)]x + yt = p(ṽ, s)xt ,

y(x, 0) = y0(x) = ∫ x

−∞(v0(�) − ṽ0(�) − m(�, 0)) d�,

yt (x, 0) = y1(x) = u0(x) − ũ(x, 0) − um(x, 0).

(2.11)
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The following theorem shows that the solutions of (1.4) converge to the corresponding
solutions of (1.5) sharing the same asymptotic profile.

Theorem 2.2. Under the conditions of Theorem 2.1 and (2.10), if there exists �0 > 0
such that for all 0 < � < �0 and ‖y0‖H 3 + ‖y1‖H 2 ��, system (2.11) admits a unique
global smooth solution y, such that

y ∈ C0([0, t]; H 3), yt ∈ C0([0, t]; H 2)

for all t > 0. Moreover, there exists C > 0, such that

‖yx(·, t)‖L∞ �C(1 + t)
− 3

4 , ‖yt (·, t)‖L∞ �C(1 + t)
− 5

4 . (2.12)

Hence, v(x, t) = ṽ + m + yx and u(x, t) = ũ + um + yt , is the (unique) global smooth
solution (v, u, s) to (1.4), such that

‖(v − ṽ)(·, t)‖L∞ �C(1 + t)
− 3

4 , ‖(u − ũ)(·, t)‖L∞ �C(1 + t)
− 5

4 . (2.13)

Furthermore, in view of Theorem 2.1, it holds that

‖(v − v̄)(·, t)‖L∞ �C(1 + t)
− 1

2 (1 + log(1 + t))�1 ,

‖(u − ū)(·, t)‖L∞ �C(1 + t)−1(1 + log(1 + t))�2 , (2.14)

where �1 and �2 are the same as before.

Remark 2. (a) The decay rates in Theorem 2.2 are not optimal. Since we focus on
the verification of Darcy’s law, we did not attempt to obtain the optimal decay rates
in current paper.

(b) Condition (2.10) is the restriction on the initial data which comes from conser-
vation law of mass in (1.4) and (1.5). This condition enables us to choose potential
y through mass conservation law. In general, one cannot expect the stability of back-
ground if the perturbation carries unbounded excessive mass. There is a large class of
functions ṽ0(x) which can be chosen (for any given v0(x) in (1.4)). A special choice
is ṽ0(x) = a−1w̄(x + x0, 0), where x0 is uniquely determined by

∫ +∞

−∞
(v0(x) − a−1w̄(x + x0, 0)) dx = −(u+ − u−).

Apparently, such a ṽ0(x) satisfies the condition in Theorem 2.1.
(c) In Section 4, we will only prove Theorem 2.2 for the case u− = u+ = 0 where

m(x, t) = 0 and um = 0. The general case can be treated in the similar way since
m(x, t) and um decay to zero exponentially fast.



R. Pan / J. Differential Equations 220 (2006) 121–146 129

3. Nonlinear diffusive problems

In this section, we are going to compare the solutions of (2.2) with w̄(�) constructed
in last section. We will prove that (2.2) has a global smooth solution with w̄(�) as the
large-time asymptotic profile.

Let � = w − w̄. From (2.2) and (2.3), we have the following equation:{
�t + a(x)(	(w̄)�)xx + (a − a1)(w̄

−�)xx + a(x)(g(�, w̃)�2)xx = 0,

�(x, 0) = �0(x) = w0(x) − w̄(x, 0).
(3.1)

Here

	(w̄) = −�w̄−(�+1),

g(�, w̄)�2 = (� + w̄)−� − w̄−� − 	(w̄)�.

Now let F = −	(w̄)�, the corresponding problem on F is given by

⎧⎪⎨
⎪⎩

Ft + a(x)	(w̄)Fxx − 	(w̄)(a − a1)(w̄
−�)xx

−	1(w̄)F w̄t − a	(w̄)(f F 2)xx = 0,

F (x, 0) = F0(x) = −	(w̄(x, 0))�0(x),

(3.2)

where

−	1(w̄)F = 	′(w̄)�, f F 2 = g�2.

We will establish the global existence and large-time behavior, for the solution F to
(3.2), in the Banach space X(0, T ), defined, for all T > 0, by

X(0, t) = {F ∈ C0([0, t]; H 2), 0� t �T }

and equipped with the norm

N2(t) = sup
0�
� t

‖F(
)‖2
H 2 .

To simplify notations, we will use ‖f ‖ to denote L2 norm of function f in x throughout
this paper. The main result of this subsection is the following theorem.

Theorem 3.1. Assume that F0(x) and s(x) = s0(x) are C2 functions, such that F0 ∈
H 2(R) ∩ L1(R), and

x(a(x) − a1) ∈ L1(R). (3.3)
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Then there exist constants �0 > 0 and � > 0, such that if |w+−w−|�� and ‖F0‖H 2 ��0,
then, (3.2) has a unique global smooth solution F satisfying

2∑
j=0

wj+1(t)‖�j
xF (·, t)‖2 +

∫ t

0

3∑
j=1

wj(
)‖�j
xF (·, 
)‖2 d
�C,

where the weight functions wj(t) are given by

w1(t) = (1 + t)
1
2 (1 + log(1 + t))−k, wj (t) = (1 + t)j−1w1(t)

for j, k > 1.

Remark 3. (a) Condition (3.3) plays an important role in our proof of Theorem 2.2
(see Lemmas 3.2–3.10 below). This condition enables us to bound the L1-norm of F

(or �) for all time. It requires decay properties of s(x) at infinity. This condition can
be replaced by the weaker one such as

|x|�(a(x) − a1) ∈ L1(R) (3.3′)

for some � > 0. This is clear following our proof. Eq. (3.3) is equivalent to (2.7) in
Theorem 2.1.

(b) In general, we cannot bound the L1-norm of F for all time without the conditions
on the decay properties of a(x) − a1(x) as x → ±∞ such as (3.3′). One even cannot
bound the total mass of F uniformly in time under the condition a(x)−a1 ∈ L1. From
this point of view, (3.3′) is optimal.

The local existence and uniqueness of the solution to (3.2) in X(0, T ) is standard,
then to get the global existence, we will prove uniform estimates on the solution of
(3.2). Hence, from now on, we assume the local existence in X(0, T ), for some T > 0.

The following L1-estimate follows from the standard contraction property of the
porous media type equation and will play a fundamental role in the analysis.

Lemma 3.2. Under the conditions of Theorem 3.1, as long as the solution exists in
X(0, T ), there exist positive constants C1 and C2, such that

‖�(·, t)‖L1 �C1‖F(·, t)‖L1 �C2(‖�0‖L1 + �). (3.4)

Proof. We present here a formal argument which can be easily made rigorous by using
any sequence approximating the sign function and passing into the limit by means of the
Lebesgue Dominated Convergence Theorem. Observe that h = sign(�) = sign(F ). Let
us multiply the equation in (3.1) by a−1h, then by integrating over [0, t]×(−∞, +∞),
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it follows

∫ +∞

−∞
a−1|�|(x, t) dx +

∫ t

0

∫ +∞

−∞
sign′(F )F 2

x dx d


�C

∫ +∞

−∞
a−1|�0|(x) dx + C

∣∣∣∣
∫ t

0

∫ +∞

−∞
(a − a1)w̄t sign(F ) dx d


∣∣∣∣
+

∣∣∣∣
∫ t

0

∫ +∞

−∞
(f F 2)xFx sign′(F ) dx d


∣∣∣∣
�C(‖�0‖L1 + �). (3.5)

Here, we have used the following facts:

∣∣∣∣
∫ t

0

∫ +∞

−∞
(a − a1)w̄t sign(F ) dx d


∣∣∣∣
�C

∫ t

0

∫ +∞

−∞
|a − a1‖w̄t | dx d


�C

∫ t

0

∫ +∞

−∞
(1 + t)

− 3
2 |x(a − a1)‖w̄′(�)| dx d


�C�, (3.6)

∫ t

0

∫ +∞

−∞
(f F 2)xFx sign′(F ) dx d


=
∫ t

0

∫ +∞

−∞
Fx(2f Fx + fF FFx + fw̄F w̄x)F�{F=0} dx d


= 0. (3.7)

This gives the proof of (3.4). �

With the help of Lemma 3.2, we can make the energy estimates on F .

Lemma 3.3. Under the hypotheses of Theorem 3.1, there exists �∗ > 0 such that if
0 < � < �∗ and N(T )��, then it holds, for 0� t � T that

‖F(·, T )‖2 +
∫ t

0
‖Fx(·, 
)‖2 d
�C(‖F0‖2 + �). (3.8)
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Proof. Let us multiply Eq. (3.1) by a−1F and integrate the result over [0, t] ×
(−∞, +∞), then we get

∫ +∞

−∞
1

2
a−1F�(x, t) dx +

∫ t

0

∫ +∞

−∞
F 2

x dx d


�
∫ +∞

−∞
1

2
a−1F0�0 dx +

∣∣∣∣
∫ t

0

∫ +∞

−∞
a−1(a − a1)(w̄

−�)xxF dx d


∣∣∣∣
+

∣∣∣∣
∫ t

0

∫ +∞

−∞
1

2
a−1	2(w̄)F 2w̄t dx d


∣∣∣∣ +
∣∣∣∣
∫ t

0

∫ +∞

−∞
(f F 2)xFx dx d


∣∣∣∣
≡

∫ +∞

−∞
1

2
a−1F0�0 dx + I1 + I2 + I3, (3.9)

with 	2(w̄)F 2 = �2	′(w̄).
We estimate I1–I3 step by step as follows:

I1 =
∣∣∣∣
∫ t

0

∫ +∞

−∞
a−1(a − a1)(w̄

−�)xxF dx d


∣∣∣∣
� C��

∫ t

0
(1 + 
)−

3
2 ‖x(a − a1)‖L1 d


� C��, (3.10)

I2 =
∣∣∣∣
∫ t

0

∫ +∞

−∞
1

2
a−1	2(w̄)F 2w̄t dx d


∣∣∣∣
� C

∫ t

0
‖F‖L∞‖w̄t‖L∞‖F‖L1 dx d


� C�
∫ t

0
‖F‖ 1

2 ‖Fx‖
1
2 (1 + 
)−1 d


� C�

(∫ t

0
‖F‖2‖Fx‖2 d
 +

∫ t

0
(1 + 
)−

4
3 d


)

� C�

(
1 + �2

∫ t

0
‖Fx‖2 d


)
, (3.11)

I3 =
∣∣∣∣
∫ t

0

∫ +∞

−∞
(f F 2)xFx dx d


∣∣∣∣
�

(
1

2
+ C�

) ∫ t

0
‖Fx‖2 d
 + C�2

∫ t

0
‖F‖4

L∞ d
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�
(

1

2
+ C�

) ∫ t

0
‖Fx‖2 d
 + C�2

∫ t

0
‖F‖2‖Fx‖2 d


�
(

1

2
+ C�

) ∫ t

0
‖Fx‖2 d
. (3.12)

Owing to the smallness of � and �, we conclude from (3.9)–(3.12) that

‖F(·, t)‖2 +
∫ t

0
‖Fx(·, 
)‖2 d
�C(‖F0‖2 + �), (3.13)

which completes the proof of Lemma 3.3. �

For higher-order estimates, we use problem (3.2) to obtain the following results.

Lemma 3.4. Under the same conditions of Lemma 3.3, F satisfies

‖(Fx, Ft , Fxx)(·, t)‖2 +
∫ t

0
‖(Fxx, Ftx)(·, 
)‖2 d
�C(‖F0‖2

H 2 + �). (3.14)

Proof. Multiplying the equation in (3.2) by Fxx , and integrating over [0,t]×(−∞,+∞),
we have

∫ +∞

−∞
F 2

x (x, t) dx +
∫ t

0

∫ +∞

−∞
F 2

xx(x, 
) dx d


�C

(
‖F0x‖2 +

∣∣∣∣
∫ t

0

∫ +∞

−∞
w̄tFxx dx d


∣∣∣∣
+

∣∣∣∣
∫ t

0

∫ +∞

−∞
(f F 2)xxFxx dx d


∣∣∣∣
)

, (3.15)

which implies, with the help of Cauchy–Schwartz inequality and Lemma 2.1, that

∫ +∞

−∞
F 2

x (x, t) dx +
∫ t

0

∫ +∞

−∞
F 2

xx(x, 
) dx d


�C(‖F0x‖2 + �2) + C

∫ t

0

∫ +∞

−∞
(f F 2)2

xx dx d
. (3.16)

The last term in (3.16) is estimated as follows

∫ t

0

∫ +∞

−∞
(f F 2)2

xx dx d
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�C

∫ t

0

∫ +∞

−∞
[(|F | + |Fx | + |wx |)2F 2

x + F 2F 2
xx + F 4(w̄2

xx + w̄4
x)] dx d


�C�2�2 + C�
∫ t

0

∫ +∞

−∞
F 2

xx(
, x) dx d
.

This, together with (3.16), gives

‖Fx(·, t)‖2 +
∫ t

0
‖Fxx(·, 
)‖2 d
�C(‖F0x‖2 + �2). (3.17)

Now, differentiating the first equation in (3.2) in t , one has

Ftt + a	(w̄)Ftxx + a	′(w̄)w̄tFxx − [	(w̄)(a − a1)(w̄
−�)xx]t

−(	1(w̄)F w̄t )t − [a	(w̄)(f F 2)xx]t = 0. (3.18)

Multiplying (3.18) by Ft and then integrating over [0, t] × (−∞, +∞), we have

‖Ft(·, t)‖2 +
∫ t

0
‖Ftx(·, 
)‖2 d
�C(‖F0‖2

H 2 + �).

The estimate for ‖Fxx(·, t)‖2 can be easily proved by direct computation using
Eq. (3.2). �

Lemmas 3.3 and 3.4 provide uniform bounds of F(x, t) in X(0, T ) for any T > 0.
This, with local results, gives the global existence and uniqueness of the solution to
(3.2). Now we will use weighted energy method to prove the following decay estimates.

Lemma 3.5. The solution F of (3.2) obtained in Theorem 3.1 satisfies

w1(t)‖F(·, t)‖2 + w2(t)‖Fx(·, t)‖2

+
∫ t

0
(w1(
)‖Fx(·, 
)‖2 + w2(
)‖Fxx(·, 
)‖2) d
�C.

Proof. Let us multiply (3.1) by a−1w1(t)F , rearrange terms, we have(
1

2
F�a−1w1(t)

)
t

+ w1(t)F
2
x − 1

2
w′

1(t)a
−1	1(w̄)F 2

= 1

2
a−1w1(t)F

2w̄t − a−1w1(t)(a − a1)F (w̄−�)xx

+w1(t)Fx(f F 2)x + {· · ·}x. (3.19)
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Here {· · ·}x denotes the term which does not need to be computed explicitly, since it
will vanish after integration in x. When integrated on [0, t]×(−∞, +∞), (3.19) yields

w1(t)‖F(·, t)‖2 +
∫ t

0
w1(t)‖Fx(
)‖2 d


�C1

(
‖F0‖2 +

∣∣∣∣
∫ t

0

∫ +∞

−∞
w′

1(
)F
2 dx d


∣∣∣∣
+

∣∣∣∣
∫ t

0

∫ +∞

−∞
w1(
)F

2w̄t dx d


∣∣∣∣ +
∣∣∣∣
∫ t

0

∫ +∞

−∞
w1(
)w̄tF (a − a1) dx d


∣∣∣∣
+

∣∣∣∣
∫ t

0

∫ +∞

−∞
w1(
)(f F 2)2

x dx d


∣∣∣∣
)

. (3.20)

Observe that the following inequality on F ,

‖F‖L∞ �C‖Fx‖ 2
3 , (3.21)

Since

‖F‖L∞ � C‖F‖ 1
2 ‖Fx‖ 1

2

� C‖F‖
1
4
L∞‖Fx‖ 1

2 ‖F‖
1
4
L1 .

We have the following estimates:

∫ t

0

∫ +∞

−∞
(|w′

1(
)F
2| + |w1(
)w̄t (a − a1)F | + |w1(
)w̄tF

2|) dx d


�C

∫ t

0
(1 + 
)−1w1(
)‖F‖L∞ d


�C

∫ t

0
(1 + 
)−1w1(
)‖Fx(·, 
)‖ 2

3 d


�C + 1

2

∫ t

0
w1(
)‖Fx(·, 
)‖2 d
, (3.22)

∫ t

0

∫ +∞

−∞
w1(
)(f F 2)2

x dx d


�C�
∫ t

0
w1(
)‖Fx(·, 
)‖2 d
 + C�

∫ t

0
(1 + 
)−1w1(
)‖F‖L∞ d


�C� + C�
∫ t

0
w1(
)‖Fx(·, 
)‖2 d
, (3.23)
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where we have used

|w′
i (t)|�C(1 + t)−1wi(t), for i = 1, 2, . . . .

Hence, by the smallness of �, we conclude from (3.20)–(3.23) that

w1(t)‖F(·, t)‖2 +
∫ t

0
w1(t)‖Fx(·, 
)‖2 d
�C. (3.24)

For second-order estimate, we multiply (3.2) by w2(t)Fxx and hence(
1

2
w2(t)F

2
x

)
t

− a	(w̄)w2(t)F
2
xx − 1

2
w′

2(t)F
2
x − 	1(w̄)FFxxw̄tw2(t)

= −w2(t)	(w̄)(a − a1)(w̄
−�)xxFxx − a	(w̄)(f F 2)xxFxxw2(t) + {· · ·}x.

Then one has

w2(t)‖Fx(·, t)‖2 +
∫ t

0
w2(
)‖Fxx(·, 
)‖2 d


�C + C

(∣∣∣∣
∫ t

0

∫ +∞

−∞
w̄2

t w2(
)(a − a1)
2 dx d


∣∣∣∣
+

∣∣∣∣
∫ t

0

∫ +∞

−∞
F 2w̄2

t w2(
) dx d


∣∣∣∣ +
∫ t

0

∫ +∞

−∞
w2(
)(f F 2)2

xx dx d


)
.

(3.25)

Since ∣∣∣∣
∫ t

0

∫ +∞

−∞
w̄2

t w2(
)(a − a1)
2 dx d


∣∣∣∣ +
∣∣∣∣
∫ t

0

∫ +∞

−∞
F 2w̄2

t w2(
) dx d


∣∣∣∣
�C�2

∫ t

0
(1 + 
)−3w2(
) d
 + C�2

∫ t

0
(1 + 
)−1w1(
)‖F‖L∞ d


�C�2 (3.26)

and

(f F 2)xx = (2FFxf + fF F 2Fx + fw̄w̄xF
2)x

= (2f F + fF F 2)Fxx + (2f + 4fF F + fFF F 2)F 2
x

+(4fw̄F + 2fFw̄F 2)Fxw̄x + (fw̄w̄xx + fw̄w̄w̄2
x)F

2,



R. Pan / J. Differential Equations 220 (2006) 121–146 137

it follows that∣∣∣∣
∫ t

0

∫ +∞

−∞
w2(
)(f F 2)2

xx dx d


∣∣∣∣
�C + C�

∫ t

0
w2(
)‖Fxx(·, 
)‖2 d
 + C

∫ t

0

∫ +∞

−∞
F 4

x w2(
) dx d
 (3.27)

and ∫ t

0

∫ +∞

−∞
F 4

x w2(
) dx d


�C�2
∫ t

0
w2(
)‖Fxx(·, 
)‖2 d


+C

∫ t

0
w2(
)‖Fx(·, 
)‖2‖Fx(·, 
)‖2 d
. (3.28)

Owing to the smallness of �, we deduce from (3.25)–(3.28) that

w2(t)‖Fx(·, t)‖2 +
∫ t

0
w2(
)‖Fxx(·, 
)‖2 d


�C

(
1 +

∫ t

0
w2(
)‖Fx(·, 
)‖2‖Fx(·, 
)‖2 d


)
. (3.29)

Therefore Gronwall’s inequality gives

w2(t)‖Fx(·, t)‖2 +
∫ t

0
w2(
)‖Fxx(·, 
)‖2 d
�C. (3.30)

Hence, (3.24) and (3.30) complete the proof of this lemma. �

Now, Theorem 3.1 has been proved. The following lemma contains the decay rates
for the derivatives of F , which will be useful in the next section.

Lemma 3.6. The solution F to (3.2), obtained in Theorem 3.1, satisfies

w3(t)‖Ft(t)‖2 +
∫ t

0
w3(
)‖Ftx(
)‖2 d
�C�.

Proof. Differentiation on (3.2)1 in t leads to

Ftt + a	(w̄)Ftxx + a	′(w̄)w̄tFxx − [	(w̄)(a − a1)(w̄
−�)xx]t

−(	1(w̄)F w̄t )t − [a	(w̄)(f F 2)xx]t = 0. (3.31)
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Multiplying (3.31) by a−1w3(t)Ft , we have

(
1

2
a−1w3(t)F

2
t

)
t

− 	(w̄)w3(t)F
2
tx + 1

2
F 2

t 	(w̄)xxw3(t) − 1

2
F 2

t a−1w′
3(t)

+	′(w̄)w̄tFxxw3(t)Ft − a−1[	(w̄)(a − a1)(w̄
−�)xx]tw3(t)Ft

−a−1(	1(w̄)F w̄t )tw3(t)Ft − [	(w̄)(f F 2)xx]tw3(t)Ft + {· · ·}x = 0. (3.32)

From the proof of Lemma 2.9 and (3.2)1, it is clear that∫ t

0
w2(
)‖Ft(·, 
)‖2 d


�C

(∫ t

0
w2(t)‖Fxx(·, 
)‖2 d
 +

∫ t

0

∫ +∞

−∞
(a − a1)

2w̄2
t w2(
) dx d


+
∫ t

0

∫ +∞

−∞
F 2w̄2

t w2(
) dx d
 +
∫ t

0

∫ +∞

−∞
(f F 2)2

xxw2(
) dx d


)

�C. (3.33)

Moreover one has

a−1(	1(w̄)F w̄t )tw3(t)Ft = O(1)[w̄tw3(t)F
2
t + (w̄2

t + w̄tt )w3(t)FFt ],

a−1[	(w̄)(a − a1)(w̄
−�)xx]tw3(t)Ft = O(1)(a − a1)(w̄

2
t + w̄tt )w3(t)Ft ,

[	(w̄)(f F 2)xx]tw3(t)Ft = O(1)w̄t (f F 2)xxw3(t)Ft − 	(w̄)(f F 2)xxtw3(t)Ft .

Now, we can use a similar argument as used in deriving (3.24) to obtain

w3(t)‖Ft(·, t)‖2 +
∫ t

0
w3(
)‖Ftx(·, 
)‖2 d
�C, (3.34)

which completes the proof. �

Corollary 3.7. The solution F to (3.2) satisfies

w3(t)‖Fxx(·, t)‖2 �C, ‖Fx(·, t)‖2
L∞ �Cw3(t)

− 1
2 w2(t)

− 1
2 .

Proof. From (3.2), we see that

Fxx = O(1)(Ft + (a − a1)w̄t + Fw̄t + F 2
x

+FFxw̄x + (w̄xx + w̄2
x)F

2). (3.35)
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Taking the L2 norm in (3.35), we have

w3(t)‖Fxx‖2 � Cw3(t)(‖Ft‖2 + ‖(a − a1)w̄t‖2 + ‖Fw̄t‖2 + ‖F 2
x ‖2

+‖FFxw̄x‖2 + ‖(w̄xx + w̄2
x)F

2‖2)

� C(1 + w3(t)‖F 2
x ‖2)

� C(1 + w3(t)‖Fx‖2(‖Fx‖2 + ‖Fxx‖2))

� C + Cw3(t)‖Fx‖2‖Fxx‖2

which implies

w3(t)‖Fxx‖2 �C.

Then

‖Fx‖2
L∞ �Cw3(t)

− 1
2 w2(t)

− 1
2 . �

Now, from F , it is easy to obtain the solution � of (3.1) and from � the unique
smooth solution w of (2.2). We note that the regularity of F is stated as in Theorem
3.1, one cannot expect better regularity due to discontinuity of coefficients. However,
the solution w(x, t) of (2.2) is smooth for t > 0. Indeed, we concluded from Theorem
3.1 that w(x, t) has positive lower bound and finite upper bound, then the regularity
results of uniform parabolic equations applies to (2.2). Thus, we are safe to use the
regularity of w(x, t) in the next section. By defining ṽ = a−1(x)w and ũ = −(w−�)x ,
we obtain the unique smooth solution of (1.5). Theorem 2.1 then follows from Theorem
3.1, the decay estimates follow from the interpolation inequality and (3.21).

4. Hyperbolic problems

In this section, we will study (1.4). Since the result for s(x, t) is clear, in the
following part, we only deal with (v, u)(x, t).

Let (ṽ, ũ, s(x)) be the solution of (1.5) with the initial data (ṽ0(x), s0(x)). As men-
tioned in introduction, we will only prove Theorem 2.2 for the case where u− = u+ = 0
and thus (2.10) turns into

∫ +∞

−∞
(v0(x) − ṽ0(x)) dx = 0. (4.1)

Let us denote by

ve = v − ṽ, ue = u − ũ, (4.2)
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it follows from (1.4) and (1.5)

{
vet − uex = 0,

uet + [p(ṽ + ve, s) − p(ṽ, s)]x = −ue + p(ṽ, s)xt .
(4.3)

As usual let us consider

y(x, t) =
∫ x

−∞
ve(�) d�, (4.4)

which satisfies the following nonlinear wave equation:

⎧⎪⎨
⎪⎩

ytt + [p(yx + ṽ, s) − p(ṽ, s)]x + yt = p(ṽ, s)xt ,

y(x, 0) = y0(x) = ∫ x

−∞(v0 − ṽ0)(�) d�,

yt (x, 0) = y1(x) = u0(x) − ũ(x, 0),

(4.5)

since yx = ve and yt = ue. Therefore,

⎧⎪⎨
⎪⎩

ytt + (pv(ṽ, s)yx)x + yt = p(ṽ, s)xt − (F1(ṽ, yx, s)y
2
x )x,

y(x, 0) = y0(x) = ∫ x

−∞(v0 − ṽ0)(�) d�,

yt (x, 0) = y1(x) = u0(x) − ũ(x, 0),

(4.5′)

where

p(yx + ṽ, s) − p(ṽ, s) = pv(ṽ, s)yx + F1(ṽ, yx, s)y
2
x .

The main result of this section is the following.

Theorem 4.1. There exists �0 > 0 such that if 0 < � < �0 and

‖y0‖H 3 + ‖y1‖H 2 + |v+ − v−|��,

then (4.5) has a unique smooth solution y ∈ H 3 and yt ∈ H 2, satisfying

‖y(·, t)‖2
H 3 + ‖yt (·, t)‖2

H 2 +
∫ t

0
‖(yx, yt )(·, 
)‖H 2 d
�C�2.

Moreover,

(1 + t)‖yx(·, t)‖2 + (1 + t)2‖yt (·, t)‖2 �C, (4.6)
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and

‖yx(·, t)‖L∞ �C(1 + t)−
3
4 , ‖yt (·, t)‖L∞ �C(1 + t)−

5
4 . (4.7)

We now prove Theorem 4.1. First of all, we have

Theorem 4.2. Let (v, u, s)(x, t) be any C1 solutions of (1.4) with uniform C1 bounds.
If ‖y0‖H 1 +‖y1‖L2 �M , for some positive constant M, then there are positive constants
C and 0 < k < 1

4 such that

‖(y, yt , yx)(·, t)‖2
L2 +

∫ t

0
‖(yt , yx)(·, 
)‖2

L2 d
�C, (4.8)

(1 + t)k‖(yt , yx)(·, t)‖2 +
∫ t

0
(1 + 
)‖yt (·, t)‖2 d
�C. (4.9)

Remark 4. (a) The global existence of C1 solutions of (1.4) under small smooth
initial data has been proved in [22] by characteristic method. In particular, one has
the global existence of unique smooth solution for (1.4) under conditions of Theorem
4.1. A modified version of characteristic method of [22] can be found in [8] for initial
boundary value problems.

(b) It is worth to remark that Theorem 4.2 itself does not require any smallness on
initial data or wave strength. This is achieved by the dissipative nature of the problem
and entropy analysis.

Proof. Multiplying (4.5)1 by y, we have

[
1

2
y2 + yyt

]
t

− y2
t − [p(yx + ṽ, s) − p(ṽ, s)]yx

= p(ṽ, s)tyx + {· · ·}x,

where {· · ·}x denote the terms which vanish after integration with respect to x. Since
−[p(yx +ṽ, s)−p(ṽ, s)]yx �c1y

2
x for some positive constant c1, integrating over [0, t]×

(−∞, +∞), we get

∫ +∞

−∞

(
1

2
y2 + yyt

)
dx −

∫ t

0

∫ +∞

−∞
y2
t dx dt + c1

∫ t

0

∫ +∞

−∞
y2
x dx d


�C + C

∫ t

0

∫ +∞

−∞
p(ṽ, s)2

t dx d
 + 1

2
c1

∫ t

0

∫ +∞

−∞
y2
x dx d


�C + 1

2
c1

∫ t

0

∫ +∞

−∞
y2
x dx d
,
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which implies

∫ +∞

−∞

(
1

2
y2 + yyt

)
dx −

∫ t

0

∫ +∞

−∞
y2
t dx dt + 1

2
c1

∫ t

0

∫ +∞

−∞
y2
x dx d
�C. (4.10)

We now define �(v, u, s) = 1
2u2 + es(x)v−(�−1) the mechanical energy, which serves

as an entropy of system (1.4) with q(v, u, s) the corresponding flux. It is easy to see
that

�t + qx + u2 = 0 (4.11)

for smooth solutions of (1.4). Define

�∗ = 1

2
u2 + es[v−(�−1) − ṽ−(�−1) + (� − 1)ṽ−�(v − ṽ)],

it is easy to see from (1.4) that

�∗t + qx − [(p(ṽ, s)(v − ṽ)]t + (u2 − ũ2) = 0. (4.12)

Since

u2 = ũ2 + 2ũyt + y2
t ,

(4.12) is equivalent to

0 = �∗t + qx + [(p(ṽ, s)xy]t + y2
t + 2(p(ṽ, s)xyt + {· · ·}x

= �∗t + 3[(p(ṽ, s)xy]t + y2
t + 2(p(ṽ, s)tyx + {· · ·}x. (4.13)

Integrating (4.13) over [0, t] × (−∞, +∞), one has

∫ +∞

−∞
�∗(x, t) dx +

∫ +∞

−∞
p(ṽ, s)xy dx +

∫ t

0

∫ +∞

−∞
y2
t dx d


�C + 2

∣∣∣∣
∫ t

0

∫ +∞

−∞
p(ṽ, s)tyx dx d


∣∣∣∣ . (4.14)

By Cauchy–Schwartz inequality, for any positive constant �, we have

∣∣∣∣
∫ +∞

−∞
p(ṽ, s)xy dx

∣∣∣∣ �C(�) + �
∫ +∞

−∞
y2 dx
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and

2

∣∣∣∣
∫ t

0

∫ +∞

−∞
p(ṽ, s)tyx dx d


∣∣∣∣ �C(�) + �
∫ t

0

∫ +∞

−∞
y2
x dx d
.

Furthermore, it is easy to see that there exist positive constants c2 and c3 such that

�∗ �c2(y
2
t + y2

x ) − c3ũ
2. (4.15)

Hence, (4.14) implies that

c2

∫ ∞

−∞
(y2

t + y2
x ) dx +

∫ t

0

∫ +∞

−∞
y2
t dx d


�C(�) + �
∫ t

0

∫ +∞

−∞
y2
x dx d
 + �

∫ +∞

−∞
y2 dx. (4.16)

We now combine (4.10) with (4.16) by (4.10) + �(4.16) for some positive constant
� to be determined. One thus obtains

∫ +∞

−∞

[(
1

2
− ��

)
y2 + yyt + �c2y

2
t ) + c2y

2
x

]
dx

+
∫ t

0

∫ +∞

−∞

[
(� − 1)y2

t +
(

1

2
c1 − ��

)
y2
x

]
dx d
�C. (4.17)

We choose � and � such that

�� <
1

4
min{1, c1}, � > 2, and �c2 > 16,

which can be achieved by choosing � big and then choosing � small. Hence, (4.17)
leads to the following uniform estimates:

‖(y, yt , yx)(·, t)‖2
L2 +

∫ t

0
‖(yt , yx)(·, 
)‖2

L2 d
�C. (4.18)

In order to achieve decay estimates, we multiply (4.13) by (1 + t)k for 0 < k < 1
4 .

It turns out

[(1 + t)k�∗ + 3(1 + t)kyp(ṽ, s)x]t + (1 + t)ky2
t

= 2(1 + t)kp(ṽ, s)t yx + k(1 + t)k−1(�∗ − yp(ṽ, s)x) + {· · ·}x. (4.19)
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Integrating (4.19) over [0, t] × (−∞, ∞), one has

(1 + t)k
∫ +∞

−∞
[�∗ + 3yp(ṽ, s)x] dx +

∫ t

0

∫ +∞

−∞
(1 + 
)ky2

t dx d


�C + C

∫ t

0

∫ +∞

−∞
(1 + 
)2k(p(ṽ, s)t )

2 dx d
 + |I1| + |I2|. (4.20)

On the other hand, we observe that

∣∣∣∣(1 + t)k
∫ +∞

−∞
yp(ṽ, s)x dx

∣∣∣∣
�(1 + t)2k‖p(ṽ, s)t‖2

L2 + ‖y‖2
L2

�C. (4.21)

Choosing 0 < � < 1
4 − k, one has

|I2| =
∣∣∣∣
∫ t

0

∫ +∞

−∞
k(1 + 
)k−1yp(ṽ, s)x dx d


∣∣∣∣
�C

∫ t

0

∫
−∞

(1 + 
)2k−2+1+�p(ṽ, s)2
x + (1 + 
)−(1+�)y2 dx d


�C. (4.22)

Furthermore, I1 can be bounded by

|I1| =
∫ t

0

∫ +∞

−∞
k(1 + 
)k−1�∗ dx d


� C

∫ t

0

∫ +∞

−∞
(1 + 
)(k−1)(y2

t + y2
x + p(ṽ, s)2

x) dx d


� C. (4.23)

Thus, (4.20)–(4.23), together with (4.15), give the following estimates:

(1 + t)k‖(yt , yx)‖2 +
∫ t

0
(1 + 
)‖yt‖2 d
�C. (4.24)

This ends the proof of Theorem 4.2. �

With the uniform estimates (4.8)–(4.9) in hand, standard energy estimates and
weighted energy estimates give the proof of Theorem 4.1. For details, we refer the
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readers to the proof of Theorem 3.1 of [15], which consists Theorem 3.2, Lemmas
3.4–3.8 and Theorem 3.9 in [15]. We remark that the arguments of [15] go through
just fine with the help of Theorem 4.2, since the solution of (1.5) is smooth although
the asymptotic profile is singular.

Theorem 2.2 is then concluded from Theorems 4.1 and 2.1.
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