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Abstract

The asymptotic behavior of solutions of the damped compressible Euler equations is conjec-
tured to obey to the famous porous media equations (PMES). The previous works on this topic
concern the case away from vacuum where the system is strictly hyperbolic. In present paper,
we prove that the L∞ entropy weak solution with vacuum, obtained by the compensated com-
pactness theory, converges strongly in L

p
loc (1�p < ∞) space to the unique similarity solution

of the related PME, as time goes to infinity.
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1. Introduction

We study the asymptotic behavior of compressible isentropic flow through porous
media when vacuum occurs. The model system is the compressible Euler equation
with frictional damping and the density is conjectured to obey to the famous porous
media equation (PME) asymptotically, as t → ∞. Although, some results concerning
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the small smooth solutions or piecewise smooth Riemann solutions away from vacuum
have been obtained, most problems in this topic remain open. Among them, the large
time asymptotic behavior for the solutions with vacuum has been long-standing open
problem. The main difficulties come from the interaction of three mechanism: nonlinear
convection, lower order dissipation of damping and the resonance from vacuum. Since
any result on this problem will help us to understand the interaction of the effects of
these three mechanism, the evolution of vacuum boundary, singularity development and
other complicated phenomena caused by vacuum, it is of mathematical significance and
physical importance, in view of the strong physical background of vacuum. Besides,
this study may present useful information, say, proper ansatz for approximation, for the
design of effective numerical schemes to capture the vacuum boundary. In this paper,
we prove that the L∞ weak entropy solution with vacuum, selected by the physical
(energy) entropy–flux pairs, converge strongly in L

p

loc(1�p < ∞) to the similarity
solution of the PME, determined uniquely by the end–states of the initial data. A
direct consequence of our results implies the following simple fact: If the vacuum is
surrounded by gas initially, then there is no vacuum almost everywhere as time goes
to infinity.

We now formulate our results. In one-dimensional porous media, the motion of the
isentropic compressible flow is described by the damped compressible Euler equations
which express the conservation of mass and the balance momentum as follows:

{
�t + (�u)x = 0,

(�u)t + (�u2 + P(�))x = −��u.
(1.1)

Here �, u and P denote, respectively, the density, velocity, and pressure, m = �u is
the momentum and � > 0 is a frictional constant. For convenience, we consider the
polytropic perfect gas where

P(�) = P0�
�, 1�� < 3 (1.2)

with P0 a positive constant. Without loss of generality, � and P0 are normalized to be
1 throughout this paper.

It is known that (1.1) is of the hyperbolic type with two characteristic speeds �1 =
u−√P ′(�) and �2 = u+√P ′(�). Furthermore, (1.1) is strictly hyperbolic at the point
away from vacuum where two characteristics coincide. We will consider the Cauchy
problem of (1.1) with the following initial data

�(x, 0) = �0(x)�0, m(x, 0) = m0(x). (1.3)

Namely, the vacuum may present initially. In what following, we will use m as unknown
instead of u since u may be singular at vacuum for � = 1.

For the case away from vacuum, (1.1) is already very complicated under the inter-
action between the nonlinear convection and damping. By changing into Lagrangian
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coordinates, (1.1) becomes into the p-system with damping:

{
vt − ux = 0,

ut + P(v)x = −�u
(1.4)

with v the specific volume. Its Cauchy problem has globally defined classical solutions
if the C1 norm of the initial data are small, see [29]; while shock will form in finite time
if the data are large, see [38]. Since the damping term breaks the self-similarity of the
system, it is observed by Hsiao and Tang [14,15] that the shock curve of the Riemann
solutions to (1.4) is not straight line. On the other hand, damping is dissipative effects
so that the wave strength of such shock decreases exponentially in time. Although
BV solutions have been constructed by Luskin and Temple [25] when � = 1 and by
Dafermos in [4] where P is allowed to be any smooth, decreasing function for the
initial data with small oscillation about some fixed equilibrium state, the question on
global BV entropy weak solution to (1.4) for general BV initial data remains open!

When vacuum occurs in the solutions, the difficulty of the problem increases a lot.
The vacuum here is a kind of resonance phenomenon, since two characteristics of (1.1)
coincide each other. It is known that the resonance is a mechanism for singularity. Thus
the presence of vacuum produces huge complexity in both theoretical and numerical
analysis. In particularly, the velocity may become singular at vacuum state when � = 1.
This is why we know so little in vacuum case. The local existence of smooth solution
to (1.1) under smooth initial data with vacuum is only known under some restriction on
sound speed, see [22,23]. Liu and Yang [22] also observed that their smooth solutions
blow up in finite time before shock formation. This implies the moving of the interface
between vacuum and gas. And thus the vacuum is the dominant reason of singularity. In
turn, Riemann problem of (1.1) still remains open and it seems very difficult to obtain
the piecewise smooth solutions or BV solutions in the presence of vacuum, although
some special global solutions are constructed by Liu [21]. Thus, we turn to consider
the L∞ weak solution.

Definition 1. We call (�, m)(x, t) ∈ L∞ an entropy weak solution of (1.1)–(1.3), if it
holds, for any non-negative test function � ∈ D(R2+), that

⎧⎪⎪⎨
⎪⎪⎩

∫∫
t>0(��t + m�x) dx dt + ∫

R �0(x)�(x, 0) dx = 0,∫∫
t>0

[
m�t +

(
m2

� + P(�)
)

�x − m�
]

dx dt + ∫
R m0(x)�(x, 0) dx = 0,∫∫

t>0(�e�t + qe�x − �u2�) dx dt + ∫
R �e(x, 0)�(x, 0) dx�0.

Here, the entropy–flux pair (�e, qe) is associating with physical energy:

{
�e = 1

2 �u2 + 1
(�−1)

��,

qe = 1
2 �u3 + �

�−1 ��u, � > 1;
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{
�e = 1

2 �u2 + ∫ �
0 log s ds,

qe = 1
2 �u3 + �u log �, � = 1.

Fortunately, our system (1.1) is 2 × 2, so that the compensated compactness theory
[36] is applicable to obtain the L∞ weak solution. This was done by Ding et al. [6]
in the case of 1 < �� 5

3 by means of the frictional step Lax–Friedrichs scheme. We
will prove here the existence of the global L∞ weak entropy solutions, for 1�� <

3. It is remarkable for the case � = 1, where the classical compensated compactness
frameworks fail. This is due to the fact that the velocity may tend to infinity at vacuum.
We adopt a new approach in the entropy analysis to make it possible.

For the large time asymptotic behavior, it is conjectured that the system (1.1) is
time-asymptotically equivalent to the PME,

{
�t = P(�)xx,

m = −P(�)x.
(1.5)

This was justified first by Hsiao and Liu [10,11] for smooth solutions away from vac-
uum. Since then, this problem attracts considerable attentions, see [9,12,13,24,30–32,37].
These results are based on the energy estimates on the derivatives of the solutions. How-
ever, as the compensated compactness theory gives no information on the regularity of
the solutions, their methods are not applicable here. Recently, a new method has been
developed by Serre and Xiao [35] for elastic equations with damping, which takes the
same form as (1.4) while P ∈ C2 satisfies P ′(v) < 0 and (v − v̂)P ′′(v) < 0 for v �= v̂.
Where, the large time behavior of L∞ weak solution has been proved by combining
the natural energy estimates to compensated compactness theory. However, the vacuum
here breaks not only the strict hyperbolicity of system (1.1) but also the parabolicity
of (1.5), i.e., the solutions to (1.5) may be singular at vacuum. This leads to new
difficulties since the case in [35] has no degeneracy. Fortunately again, the detail in-
formation on the self-similar solution of PME as well as smart entropy analysis help
us to improve the argument of [35] for the desired results.

Our main results state as follows:

Theorem 1 (Existence). If 1 < � < 3, (�0, m0) ∈ L∞ such that

0��0(x)�C, |m0(x)|�C�0(x),

then (1.1)–(1.3) has a global entropy weak solution (�, m)(x, t) ∈ L∞ such that

0��(x, t)�C, |m(x, t)|�C�(x, t).

If � = 1, (�0, m0) ∈ L∞ such that

0��0(x)�C, |m0(x)|�C�0(x)| log �0(x)|,
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then (1.1)–(1.3) has a global entropy weak solution (�, m)(x, t) ∈ L∞ such that

0��(x, t)�C, |m(x, t)|�C�(x, t)| log �(x, t)|.

Theorem 2 (Asymptotic behavior). Suppose �− �0, �+ �0 and max{�−, �+} > 0. As-
sume that the sequence {�0(�x)}�>0 converges as � → ∞, in the weak-star topology of
L∞, to �−�(x < 0) + �+�(x > 0) with � the characteristic function. Let (�, m) be an
L∞ entropy weak solution of the Cauchy problem (1.1)–(1.3), satisfying the following
estimates

{
0��(x, t)�C, |m(x, t)|�C�(x, t), if 1 < � < 3,

0��(x, t)�C, |m(x, t)|�C�(x, t)| log �(x, t)|, if � = 1,

and let �̄(z)
(
z = x√

t

)
be the similarity solution of (1.5) with boundary condition

�̄(±∞) = �±. Then � approaches to �̄ in the sense that

lim
t→∞

∫ L

−L

|�
(
z
√

t, t
)

− �̄(z)|q dz = 0

for all L > 0 and q �1.

Remark 1. (1) Theorem 2 implies that the function w(t) : z → �
(
z
√

t, t
)

converges
strongly in L

q

loc towards the diffusive profile �̄ as t → ∞.
(2) This kind of measurement of convergence is appropriate for this problem, since

z = const. is the level curve of �̄ in the (x, t)-plane. Similar measurement can be
found in the recent works by Chen and Frid on the large time behavior for L∞ weak
solutions to hyperbolic conservation laws; see for instance [2].

(3) Theorem 2 claims the uniqueness of the asymptotic behavior for the solutions to
(1.1)–(1.3), if the initial data has the same end-states. Hence, the asymptotic behavior
of the solutions to (1.1)–(1.3) are uniquely determined by the end-states of initial data.

(4) Our results implies the following simple fact: If the vacuum is surrounded by
gas; then there is not vacuum almost everywhere, time asymptotically. This is clear by
the properties of �̄ in Proposition 2.5 below in the case �− > 0 and �+ > 0.

(5) The case where �− = �+ = 0 is out of the scope of Theorem 2. This is because
the scaling we used in (1.6) below destroys the conservation of mass in this case. It
is obvious that the total mass of non-trivial �0(x) is uniformly away from zero, while
the total mass of �0(�x) tends to zero when � goes to infinity if �− = �+ = 0.
In the case of Theorem 2, the total mass of both �0 and �0(�x) remains infinite
independent of �. However, the case for compact support �0 has particular interest for
which the asymptotic behavior is expected to be the famous Barenblatt’s solution of
PME. Therefore, this case remains as an important open problem. We will treat this
case in the future.
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Let us explain the basic ideas of this paper. By using the compensated compactness
theory, we first establish the global existence of L∞ entropy weak solution. The case
for 1 < � < 3 are rather standard by using the convergence framework of [19,20]
to frictional step Lax–Friedrichs scheme with the invariant region theory [3]. In the
case of � = 1, the classical framework fails due to the singularity of velocity. As
pointed out in [19,20], the strong entropy is useless for the case � > 1, however, we
will make use of both the strong and weak entropies. Based on the observation in
[16], we carefully studied a class of entropies, parametrized by a complex number,
and proved the commutation relations for some weak entropies. This commutation
relations are shown to be valid for strong entropies by analytic extension upon the
complex parameter. Hence, the support of the corresponding Young measure is proved
to be either vacuum or one point. This shows the strong convergence of the viscosity
approximation solutions.

Based on the existence results, we prove that any L∞ entropy weak solutions of
(1.1)–(1.3) converge strongly towards the unique self-similar solution of the PME. To
this end, we first rescale the problem (1.1)–(1.3) by the diffusive scales:

��(x, t) = �(�x, �2t), m�(x, t) = �m(�x, �2t). (1.6)

This produces a sequence of the functions (��, m�), satisfying the rescaled problem,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

��t + m�x = 0,

�−2m�t +
(

m2
�

�2��
+ P(��)

)
x

= −m�,

��(x, 0) = �0(�x), m�(x, 0) = �m0(�x).

(1.7)

Formally, (1.7) converges to the related PME (1.5) with self-similar singular initial data
as � → ∞. The natural energy estimates through physical entropy inequality enables
us to apply the compensated compactness upon such a sequence (��, m�). This com-
pactness, together with the uniqueness established for the L∞ weak solution for PME,
implies the rigorous justification of the previous formal convergence. The convergence
of (��, m�) is then translated to the weak justification of the large time asymptotic
behavior of the solution (�, m) to (1.1)–(1.3) in the sense of the “convergence mean in
time", which, combined with some energy estimates by entropy analysis, implies the
strong convergence in large time and thus close the argument.

It should be mentioned that an analogous convergence result on the sequence (��, m�)

of (1.7) to the solution of PME (1.5) has been obtained by Marcati and Milani [26].
Where, they studied the behavior of (�ε, uε) of the following problem

⎧⎪⎨
⎪⎩

�ε
t + (�εuε)x = 0,

ε(�εuε)t + (ε�ε(uε)2 + P(�ε))x = −kuε,

�ε(x, 0) = �0(x)�0, uε(x, 0) = u0(x),

(1.8)
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as ε → 0+, and showed �ε → � in L
p

loc, uε → u in L2 weak for all p ∈ [1, ∞).
Moreover, it was shown that � satisfies, in the sense of distributions, Darcy’s law, so
that � is a weak solution of the PME

{
�t = �

k(�+1)
(��+1)xx,

�(x, 0) = �0(x)�0.
(1.9)

However, our case is different from theirs. First, the source term in (1.7) is different
from (1.8) and the limit equations are different (see (1.5) and (1.9)). Next, the initial
data in (1.8) is uniformly bounded while our initial data depends on the parameter �
which is more singular in the convergence. Indeed, m�(x, 0) is not uniformly bounded
in any Lq space for q ∈ (1, +∞] as � → ∞. Finally, our limit function of density is
necessary to be self-similar and theirs may be not.

Another interesting paper related to the same issue of [26] is [27], where the singular
limit problems are discussed for hyperbolic relaxation to parabolic equations.

The arrangement of the present paper is as follows. In Section 2, some knowledge on
the PME are prepared carefully. A uniqueness for the L∞ weak solution is established.
The global existence of L∞ weak entropy solution for the problem (1.1)–(1.3) is
given in Section 3 by the compensated compactness theory. The large time asymptotic
behavior is then presented in Section 4 with the help of the idea of [35].

2. Porous media equation

Consider the following Cauchy problem for PME:

{
�t = (��)xx, ��1, t > 0,

�(x, 0) = �0(x) = �−�(x < 0) + �+�(x > 0),
(2.1)

where, � is the characteristic function and �± are non-negative constants. Since the
case �− = �+ = 0 is out of the interest of this paper, we assume that �− ��+ �0 and
�− > 0 if �+ = 0 in the discussion of this section without loss of generality.

If � = 1, Eq. (2.1) becomes heat equation. The global existence, uniqueness and
regularity of the non-negative solution to (2.1) are clear. Due to the similarity of the
initial data, the solution is necessary to be self-similar.

Lemma 2.1. For � = 1, (2.1) has a unique solution �(x, t) satisfying:

(1) �+ ����− and �(x, t) > 0 for any t > 0;

(2) �(x, t) = �̄
(

x√
t

)
;

(3) (|(log �)x |, |(log �)t |)�C(t1)
(
t− 1

2 , t−1
)

for any t � t1 > 0.
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In the following of this section, we assume � > 1. It is clear that the PME is parabolic
if � > 0 and is not if � = 0. Furthermore, the derivatives of � is not necessary to be
continuous across the interface which differs the state of vacuum from � > 0. Thus it
is necessary to introduce weak solution.

Definition 2.2. A function �(x, t) ∈ L∞(QT ), QT := [0, T ] × R, is called the weak
solution of the problem (2.1), if it satisfies the following:

(1) �(x, t)�0 for any (x, t) ∈ QT ;
(2)

∫∫
QT

(��t + ���xx)(x, t) dx dt + ∫
R �0(x)�(x, 0) dx = 0 for smooth function

�(x, t) which vanishing for |x| large and t = T .

The study on PME is extensive in literature. The global existence and uniqueness
for suitable generalized solution (different from the Definition 2.2) of PME under the
bounded continuous non-negative initial datum are proved in [33]. We refer to [8,17,34]
for some further existence and/or uniqueness results of PME. However, these results
need either the regularity or L1 requirement on initial datum. For a good review on the
existence, uniqueness and regularity of the solutions to PME as well as the behavior
of interface, we refer to [1].

By modifying the approach of [17], we can prove the uniqueness of the weak solution
to (2.1) defined above.

Theorem 2.3. Eq. (2.1) has at most one weak solution.

Proof. Suppose �1 and �2 are two weak solutions of (2.1) such that 0��1, �2 �M . It
turns out

∫ T

0

∫
R
(�1 − �2)(�t + a(x, t)�xx)(x, t) dx dt = 0, (2.2)

where a(x, t) = ∫ 1
0 �(��1 + (1 − �)�2)

�−1 d��0. For any given test function F(x, t) ∈
C∞ such that supp F(x, t) ⊂ [0, T ) × [−�0, �0], with some number �0 > 0, we are
going to prove

∫ T

0

∫
R
(�1 − �2)F (x, t) dx dt = 0, (2.3)

that implies Theorem 2.3.
We choose aε(x, t) ∈ C∞ to be a sequence of functions with the property 0 <

1
2ε�aε(x, t) − a(x, t)�ε for suitable small positive constant ε. This is possible by
first smoothing out a(x, t) then adding 1

2 ε. It is known that, [18], for any � =
max

{
1√
ε
, �0 + 1

}
, there is a C∞ solution f (x, t; �, ε) to the following backward
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problem:

{
ft + aεfxx = F(x, t), (x, t) ∈ QT ,

f (x, T ) = 0, f (∓�, t) = 0.
(2.4)

Due to the maximum principle, we have for any � and ε,

|f (x, t; �, ε)|�T ‖F(x, t)‖L∞ ≡ C1. (2.5)

Multiply (2.4) by fxx , then integrate the resulting equation on QT , we yield

1

2

∫ �

�
f 2

x (x, t) dx +
∫ T

t

∫ �

�
aεf

2
xx dx dt �C2, (2.6)

for any t ∈ [0, T ]. We remark that C1 and C2 depend on T and F(x, t) but neither on
� or ε.

Now, we set �(x, t; �, ε) = f (x, t; �, ε)	�(x). Where, 	�(x) ∈ C∞
0 (R), 0�	�(x)�1,

and 	�(x) = 1, for |x|��0, 	�(x) = 0 for |x|��. Furthermore, it is possible to require
|	′

�(x)|� 2
�−�0

. We thus extend �(x, t; �, ε) to be a test function in QT by putting
�(x, t; �, ε) = 0 for |x|��. Substituting such a � into (2.2), we arrive at

∣∣∣∣
∫ T

0

∫ ∞

−∞
(�1 − �2)F (x, t) dx dt

∣∣∣∣
�
∣∣∣∣
∫ T

0

∫ ∞

−∞
(�1 − �2)a(2	′

�fx + f 	′′
�) dx dt

∣∣∣∣
+
∣∣∣∣
∫ T

0

∫ ∞

−∞
(�1 − �2)(a − aε)fxx	�(x) dx dt

∣∣∣∣
≡ I1 + I2. (2.7)

Since �i (i = 1, 2) are uniformly bounded, we have

I1 � C

⎡
⎣(∫ T

0

∫ �

−�
	′
�

2
dx dt

) 1
2
(∫ T

0

∫ �

−�
f 2

x dx dt

) 1
2

+
∫ T

0

∫ �

−�
|	′′

�| dx dt

⎤
⎦

� C
[
(� − �0)

− 1
2 (T .V .{	�(x)}) 1

2 + T .V .{	′
�(x)}

]
� C

[
(� − �0)

− 1
2 + (� − �0)

−1
]
, (2.8)
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and

I2 � ‖(�1 − �2)‖L∞
(∫ T

0

∫ �

−�
aεf

2
xx dx dt

) 1
2
(∫ T

0

∫ �

−�

(a − aε)
2

aε

dx dt

) 1
2

� C�
1
2 ‖a − aε‖

1
2
L∞

� Cε
1
4 . (2.9)

Eq. (2.3) follows from (2.7)–(2.9) by letting ε → 0. This completes the proof of
Theorem 2.3. �

Remark 2.4. From the proof of Theorem 2.3, it is clear that we have proved the
uniqueness of the L∞ weak solution to the following problem

{
�t = (��)xx, ��1, t > 0,

�(x, 0) = �0(x)�0,

if �0(x) ∈ L∞.

Due to the similarity of �0, the above uniqueness implies that � itself is self-similar,

i.e., �(x, t) = �̄(z)
(
z = x√

t

)
, which satisfies

{ (
��̄�−1�̄z

)
z
+ 1

2z�̄z = 0,

�̄(−∞) = �−, �̄(+∞) = �+.
(2.10)

The problem (2.10) has been investigated clearly by [8]. The following propositions
are due to [1,8].

Proposition 2.5. If �+ > 0, then there is one and only one solution �̄(z) ∈ C2 to
(2.10) satisfying the following:

(1) �+ � �̄(z)��− is monotone decreasing on R.

(2) (|�̄x |, |�̄t |)�C(t1)(t
− 1

2 , t−1) for any t � t1 > 0.

Proposition 2.6. If �+ = 0 and �− > 0, then there is one and only one solution �̄(z)

to (2.10). Furthermore, the follows hold.

(1) 0� �̄(z)��− is continuous and monotone decreasing on R.
(2) �̄�(z) is smooth on R.
(3) There is a number b > 0, such that �̄(z) > 0 if z < b and �̄(z) = 0 if z�b.
(4) �̄(z) is smooth if z < b.
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(5) (�̄�)′(z) → 0 as z → b − 0.

(6) (|�x(�̄�−1)|, |�t (�̄�−1)|)�C(t1)(t
− 1

2 , t−1) for any t � t1 > 0.

Proof. Proposition 2.5 and the first five statements of Proposition 2.6 are from [8]
where the estimates in Proposition 2.5 are easily obtained from the explicit formula of
the solution �̄(z). The estimates in Proposition 2.6 can be proved as follows.

For any t � t1 > 0, �̄(z) satisfies the definition of the solution in [1]. The velocity

estimate in [1] implies that |�x(�̄�−1)|�C(t1)t
− 1

2 . We see �x(�̄�−1) = t− 1
2 (�̄�−1)z and

thus |(�̄�−1)z|�C(t1). Again, by [8] one can prove that |�t (�̄�−1)|�C(t1)t
−1 for z�0,

and |�t (�̄�−1)| = 0 if z > b. Thus we have

|�t (�̄
�−1)| = 1

2 t−1z(�̄�−1)z

� C(t1)t
−1b, f or 0�z�b. �

3. Entropy weak solutions

We will study the global existence of the weak entropy solution to the Cauchy
problem of (1.1). Namely,

⎧⎪⎪⎨
⎪⎪⎩

�t + mt = 0,

mt +
(

m2

� + P(�)
)

x
= −m,

�(x, 0) = �0(x), m(x, 0) = m0(x).

(3.1)

For the homogeneous case, i.e., the system of isentropic gas dynamics:

⎧⎪⎪⎨
⎪⎪⎩

�t + mt = 0,

mt +
(

m2

� + P(�)
)

x
= 0,

�(x, 0) = �0(x), m(x, 0) = m0(x),

(3.1′)

the global existence of entropy weak solution of Cauchy problem has been obtained by
DiPerna [7] for � = 1+ 2

2n+1 , n�2, Ding et al. [5] for 1 < �� 5
3 , and Lions, Perthame

et al. [19,20] for � > 5
3 by the theory of compensated compactness. Recently, the case

for � = 1 was solved by Huang and Wang [16] with a new convergence theorem.
In order to deal with source term, Ding et al. [6] proved the convergence of the

frictional step Lax–Friedrichs scheme for the isentropic gas dynamic system with a
class of source, if 1 < �� 5

3 . In particularly, their results give the global existence
of weak entropy solutions for (3.1). Since the entropy is governed by Euler–Poisson–
Douboux equation when � > 1 and the compactness frameworks have been established
by Lions, Perthame et al. [19,20], the global existence of weak solutions to (3.1)
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for 5
3 < � < 3 can be proved in a quite similar analysis as the case of [6] by the

approximation generated by frictional step Lax–Friedrichs scheme. We will omit the
details of the proof for 1 < � < 3 and focus to the case � = 1, where the above
compactness frameworks fail. Here, we will sketch a proof based on the approach of
[16] by viscosity approximation.

As usual, the proof of the global existence of weak solutions to (3.1) follows two
steps:

• To build an approximate solution (�ε, mε) by artificial viscosity method and establish
an uniformly L∞ estimate by positively invariant region due to [3].

• To apply the div-curl Lemma [28] to infinite entropy–flux pairs.

As remarked in [19,20], the strong entropy–flux pairs are not useful for convergence
in the case � > 1, however, they are crucial for our proof when � = 1.

Consider the viscous perturbation of (3.1)

⎧⎪⎪⎨
⎪⎪⎩

�εt + mεx = ε�εxx,

mεt +
(

m2
ε

�ε
+ P(�ε)

)
x

= −mε + εmεxx,

�ε(x, 0) = �ε0(x), mε(x, 0) = mε0(x),

(3.2)

where

�ε0(x) = (�0 + ε) ∗ jε, mε0(x) = �ε0(u0 ∗ jε) (3.3)

with jε a standard mollifier and ∗ the convolution product.
The corresponding Riemann invariants of (3.1) reads

w = �eu, z = �e−u (3.4)

and the invariant region is


 = {(w, z) : 0�w�const., 0�z�const.}. (3.5)

Since the origin is a singular point of 
, we cannot use the invariant region theory of
[3] directly. However, Marcati and Milani [26] gave an important approach to recover
this case. By their results, together with �ε(x, t) > 0 due to DiPerna [7], we have

0�w�const., 0�z�const, (3.6)

which implies

0 < �ε �const., |mε|�const. (3.7)
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We remark that uε may tend to infinity as �ε goes to zero. However, one infers from
(3.6) that |uε|�C| log �ε|. It is easy to see that there exists a global solution to (3.2)
due to the local existence results and the a priori estimate (3.7). This completes the
first step.

In order to obtain the global solution of (3.1), it suffices to establish the strong con-
vergence of the sequence (�ε, mε), extracting to the subsequence if necessary. However,
the uniform bound of (�ε, mε) can only give the convergence in weak-star topology.
We thus have to use the theory of compensated compactness.

We now recall the entropy–flux pairs. The functions (�, q) is an entropy–flux pair if
they satisfy

�t (�, u) + qx(�, u) = 0

for any smooth solutions of (3.1′). Thus, (�, q) satisfy Dq = D�Df , with D the
gradient operator, i.e.,

q� = u�� + 1

�
�u, qu = ��� + u�u, (3.8)

which indicates

��� = 1

�2
�uu. (3.9)

A typical choice of the entropy is the physical energy pair:

�e = 1

2
�u2 +

∫ �

0
log s ds, qe = 1

2
�u3 + �u log �. (3.10)

By weak entropies, we call the entropy � vanishing at vacuum state.
Since the entropy equation for � = 1 is completely different from the case for � > 1,

the compactness frameworks due to [5–7] and [19,20] fail here. We shall explore the
idea developed in [16] to study the entropy equation (3.9).

To this end, we choose

� = �
1

1−	2 exp

{
	

1 − 	2
u

}
= w

1
2(1−	) z

1
2(1+	) , q = (u + 	)� (3.11)

with a complex number 	 ∈ C. It is easy to see that such an (�, q) solves the equation
(3.9). Furthermore, the formula (3.11) includes both weak and strong entropy pairs. We
expect the strong entropy will be also useful in our analysis.

From (3.11), we see � is a weak entropy if and only if

	 ∈ 
w := {	 ∈ C; −1 < Re	 < 1}. (3.12)
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To apply the div-curl lemma, we need to prove that �t (�ε, mε) + qx(�ε, mε) lie in a
compact set of H−1

loc for weak entropy pairs. We compute that

�et + qex = (D�e)(0, −mε)
t + ε�exx − ε(�εx, mεx)(D2�e)(�εx, mεx)

t . (3.13)

Choosing any � ∈ C∞
0 (R2+) satisfying �2

x

� �C, ��0, we have from (3.13) that

∫ ∫
ε

�ε

[
�2

εx +
(

mεx − mε

�ε

�εx

)2
]

� dx dt

=
∫ ∫

�e�t + qe�x dx dt −
∫ ∫

�emmε� dx dt

− ε

∫ ∫ [(
− m2

ε

2�2
ε

+ log �ε

)
�εx + mε

�ε

mεx

]
�x dx dt,

where,

∣∣∣∣ε
∫ ∫ [(

− m2
ε

2�2
ε

+ log �ε

)
�εx + mε

�ε

mεx

]
�x dx dt

∣∣∣∣
� 1

2
ε

∫ ∫
��−1+k

ε

[
m2

ε

�2
ε

(
mεx − mε

�ε

�εx

)2

+
(

log �ε + m2
ε

2�2
ε

)
�2

εx

]
dx dt

+ C

∫ ∫
�1−k

ε

�2
x

�
dx dt, f or 0 < k < 1.

Therefore, one has

ε

∫ ∫
(�εx, mεx)(D2�e)(�εx, mεx)

t� dx dt �C(�). (3.14)

For any weak entropy � = w
1

2(1−	) z
1

2(1+	) , 	 ∈ 
w, it is easy to show that �t (�ε, mε)+
qx(�ε, mε) lie in a compact set of H−1

loc , if

|D2�|�C|D2�e|. (3.15)

However, (3.15) is not true due to the singularity of u. Hence, we have to study the
behavior of Hessian matrix of � near the vacuum carefully. By f, we denote the flux

function f =
(
m, m2

� + �
)

. And r1 = (1, u− 1)t , r2 = (1, u+ 1)t are two eigenvectors
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of the Jacobi matrix Df of f. Since D2�Df is symmetric, we have

D2�(ri, rj ) = 0, i �= j,

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D2�(r1, r1) = 2	2

(1−	2
)2

(
1 − 	 − 2u + 2u2

)
�

	2

1−	2 −1
exp

{
	

1−	2 u
}

,

D2�(r2, r2) = 2	2(
1−	2

r
)2 (1 + 	 + 2u + 2u2)�

	2

1−	2 −1
exp

{
	

1−	2 u
}

.

(3.16)

It is clear that

D2�(r1, r1)�0, D2�(r2, r2)�0,

if 	 ∈ (−1, 1) and |u| > 2. If |u|�2, we have

|D2�|�C|D2�e|, if |u|�2.

Now, in the same version of (3.14), by separating the value of u for discussion, one
has

ε

∫ ∫
(�εx, mεx)D2�(�εx, mεx)

t� dx dt �C(�). (3.17)

for 	 ∈ (−1, 1).
Since (D�)(0, −mε)

t is bounded in Radon measure space, ε�xx is compact in H
−1,2
loc ,

and �t + qx is bounded in H
−1,∞
loc , we conclude by Murat’s Lemma that

Lemma 3.1. If 	 ∈ (−1, 1), then

�t (�ε, mε) + qx(�ε, mε) is compact in H−1
loc , (3.18)

where (�, q) defined as in (3.11).

Due to div-curl lemma, for any two entropy pairs (�1, q1)(	1) and (�2, q2)(	2),
	1, 	2 ∈ (−1, 1), chosen as in (3.11), we have the so-called commutation relations

〈�, q1�2 − q2�1〉 = 〈�, q1〉〈�, �2〉 − 〈�, q2〉〈�, �1〉 (3.19)

with � the corresponding Young measure. It is observed by Huang and Wang [16], Eq.
(3.19) is valid for not only the weak entropies but the strong ones. In fact, Eq. (3.19)
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holds for 	 ∈ C except two points (−1, 0) and (1, 0). This can be verified by analytic
extension on 	. Then they can show the Young measure �x,t is either point mass or
supported in vacuum. Thus we have proved

Theorem 3.2. If � = 1 and

0��0(x)�C, |m0(x)|�C�0(x)| log �0(x)|, a.e. x ∈ R,

then, Eq. (3.1) has a global entropy weak solution (�, m)(x, t) satisfying

0��(x, t)�C, |m(x, t)|�C�(x, t)| log �(x, t)|, a.e. x ∈ R.

4. Large time asymptotic behavior

This section is devoted to the proof of Theorem 2.
First of all, we prove the following simple lemma which will be useful in our

argument below.

Lemma 4.1. Let 0�a, b�M < ∞, there are positive constants C1 and C2 such that

(1) |a − b|�+1 �(a − b)(P (a) − P(b)),
(2) C1|a − b|2 �[P(a) − P(b) − P ′(b)(a − b)]�C2|a − b|, if 1 < ��2,
(3) C1|a − b|� �[P(a) − P(b) − P ′(b)(a − b)]�C2|a − b|, if � > 2.

Proof. It is clear that (a − b)(P (a) − P(b))�0, P(a) − P(b) − P ′(b)(a − b)�0 and
Lemma 4.1 is true if a = b. We assume that a > b in the following discussion. The
case for a < b can be treated similarly, and will be omitted.

The first inequality is obvious, since (b + (a − b))� − b� − (a − b)� �0.
For � > 1, P ′(b) is bounded, thus [P(a) − P(b) − P ′(b)(a − b)]�C2|a − b|. Then,

we notice that

[P(a) − P(b) − P ′(b)(a − b)] = P ′′(b + �(a − b))(a − b)2

� �(� − 1)M�−2(a − b)2

� C1(a − b)2,

if 1 < ��2. The second relations are proved.
We turn to prove the left side of the third inequality. It is easy to check that f (x) =

P(b + x) − P(b) − P ′(b)x − P(x) is convex when x�0 and f (0) = f ′(0) = 0. Thus,
f (x)�0 and the proof is completed. �
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In order to study the time asymptotic behavior of the entropy weak solutions (�, m)

of (1.1)–(1.3), we introduce the following rescaled problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

��t + m�x = 0,

�−2m�t +
(

m2
�

�2��
+ P(��)

)
x

= −m�,

��(x, 0) = �0(�x), m�(x, 0) = �m0(�x),

(4.1)

where, (��, m�)(x, t) is defined as following

��(x, t) = �(�x, �2t), m�(x, t) = �m(�x, �2t). (4.2)

Let (�, m) be an L∞ entropy weak solution to (1.1)–(1.3) satisfying the conditions
in Theorem 2. For any fixed �, (��, m�)(x, t) ∈ L∞ is an entropy weak solution to
(4.1). Therefore, we have, for any non-negative test function � ∈ D(R2+), that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫∫
t>0(���t + m��x) dx dt + ∫

R �0(�x)�(x, 0) dx = 0

∫∫
t>0

[
�−2

(
m��t + m2

�
��

�x

)
+ P(��)�x − m��

]
dx dt,

+ ∫
R �−1m0(�x)�(x, 0) dx = 0,∫∫

t>0

(
��e�t + q�e�x − ��u

2
��
)

dx dt + ∫
R ��e(x, 0)�(x, 0) dx�0,

(4.3)

where, ��e = �e
(
��,

m�
�

)
, q�e = �qe

(
��,

m�
�

)
. The following theorem claimed the

convergence of the whole sequence (��, m�)(x, t) towards the unique similarity solution
(�̄, m̄)(x, t) of

{
�̄t = P(�̄)xx,

�̄(x, 0) = �−�(x < 0) + �+(x > 0),
(4.4)

and

m̄(x, t) = −P(�̄)x. (4.5)

Theorem 4.1. The uniformly bounded sequence �� converges strongly in L
�+1
loc towards

the unique similarity solution �̄ of (4.4) and m� converges weakly towards −P(�̄)x as
� → ∞.

Proof. We choose test function �(x, t) = �(t)�(x) such that 0��(x) ∈ C2(R) with

compact support and �′2
� �M1 for some constant M1 while 0��(t) ∈ C2(R+) vanishing
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for t �T . Substituting such test function into the entropy inequality in (4.3), we get

∫ ∫
t>0

(
��e�

′� + q�e��′ − m2
�

��
��

)
dx dt

+
∫

R

(
m2

0

2�0
+ 1

(� − 1)
��

0

)
(�x)�(x, 0) dx�0, (� > 1), (4.6)

∫ ∫
t>0

[(
��e�

′� + q�e��′ − m2
�

��
��

]
dx dt

+
∫

R

(
m2

0

2�0
+
∫ �0

0
log s ds

)
(�x)�(x, 0) dx�0, (� = 1). (4.7)

These imply that

d

dt

∫
R

(
m2

�

2�2��
+ 1

(� − 1)
��

�

)
� dx +

∫
R

m2
�

��
� dx

�
∣∣∣∣∣
∫

R

(
m3

�

2�2�2
�

+ �

� − 1
��

�−1m�

)
�′ dx

∣∣∣∣∣
�M2

∫
R

|m��
′| dx

� 1

2

∫
R

m2
�

��
� dx + M3

∫
R

�′2

�
dx, (� > 1), (4.8)

d

dt

∫
R

(
m2

�

2�2��
+
∫ ��

0
log s ds

)
� dx +

∫
R

m2
�

��
� dx

�
∣∣∣∣∣
∫

R

(
m3

�

2�2�2
�

+ m� log(��)

)
�′
∣∣∣∣∣ dx

�M4

∫
R

∣∣∣∣ m�√
��

�′
∣∣∣∣ dx

� 1

2

∫
R

m2
�

��
� dx + M5

∫
R

�′2

�
dx, (� = 1), (4.9)
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and we get

d

dt

∫
R

(
m2

�

2�2��
+ 1

(� − 1)
��

�

)
� dx + 1

2

∫
R

m2
�

��
� dx�M6, � > 1,

d

dt

∫
R

(
m2

�

2�2��
+
∫ ��

0
log s ds

)
� dx + 1

2

∫
R

m2
�

��
� dx�M6, � = 1. (4.10)

Hence, by integrating (4.10) on [0, T ], it holds that

∫
R

(
m2

�

2�2��
+ 1

(� − 1)
��

�

)
�(x, T ) dx +

∫ T

0

∫
R

m2
�

��
� dx dt

�M6(1 + T ), � > 1,

∫
R

(
m2

�

2�2��
+
∫ ��

0
log s ds

)
�(x, T ) dx +

∫ T

0

∫
R

m2
�

��
� dx

�M6(1 + T ), � = 1. (4.11)

In fact, we have obtained the following estimates:

• ��, m�
�
√

��
and m�

� are uniformly bounded in L∞;

• m� and m�√
��

are uniformly bounded in L2
loc

Thus, by passing to subsequence if necessary, we may claim the convergence of ��
towards �̄ in the weak-star topology of L∞ and m� to m̄ in the weak-star topology

of L2
loc. Since both ��t + m�x and �−2m�t +

(
m2

�

�2��
+ P(��)

)
x

lie in a compact set

of H−1
loc , and ��, m�, m�

�2 ,
m2

�

�2��
+ P(��) remain bounded in L2

loc, we can use div-curl

lemma to obtain that

lim
�→∞

((m�

�

)2 + ��P(��)

)
− lim

�→∞

(m�

�

)2

= lim
�→∞

��P(��)

= lim
�→∞

�� lim
�→∞

(
�−2 m2

�

��
+ P(��)

)
− lim

�→∞
m� lim

�→∞
m�

�2

= lim
�→∞

�� lim
�→∞

P(��), (4.12)
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i.e.,

lim
�→∞

(�� − �̄)(P (��) − P(�̄)) = 0. (4.13)

We observe from Lemma 4.1 that

|�� − �̄|�+1 �(�� − �̄)(P (��) − P(�̄)),

which, together with (4.13), means that

lim
�→∞

∫ ∫
t>0

�|�� − �̄|�+1 dx dt = 0, ∀� ∈ D+(R2). (4.14)

This shows that �� converges strongly in L
�+1
loc to �̄, and then P(��) converges to

P(�̄). Therefore, we may take the limits in (4.3) to get that

∫ ∫
t>0

(�̄�t + m̄�x) dx dt +
∫

R
�̄0(x)�(x, 0) dx = 0, ∀� ∈ D(R2) (4.15)

and ∫ ∫
t>0

[P(�̄)�x − m̄�] dx dt = 0, ∀� ∈ D(R2). (4.16)

Namely, we have proved m̄ = −P(�̄)x , and thus �̄ ∈ L∞ satisfies

{
�̄t = (�̄�)xx, ��1, t > 0,

�̄(x, 0) = �̄0(x) = �−�(x < 0) + �+�(x > 0).
(4.17)

It is shown in Section 2, that (4.17) has a unique solution which is self-similar
in the form of �̄(z) with z = x√

t
. Its regularity and properties can be found in the

propositions there. The uniqueness of solutions to (4.17) implies the convergence of
the whole sequence (��, m�). This completes the proof of Theorem 4.1. �

It is observed in [35] that the convergence results in Theorem 4.1 implies some
information on the asymptotic behavior of (�, m) to (1.1)(see Corollary 3.2 of [35]).
However, we need a much stronger result.

Corollary 4.2. Let E

L(t) = ∫ L

−L
|� (z√t, t

)− �̄(z)| dz. It holds for any L > 0,  > 0
that

lim
T →∞

1

T

∫ T

0
E


L(t) dt = 0.
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Proof. In fact, the convergence of �� holds in L
q

loc for any finite q �1, since both ��
and �̄ are uniformly bounded. By choosing q > max{2, 2/}, one has

lim
�→∞

∫ 1

0

∫ L

−L

1√
�

∣∣∣∣��(x, �) − �̄

(
x√
�

)∣∣∣∣


dx d�

� lim
�→∞

(∫ 1

0

∫ L

−L

∣∣∣∣��(x, �) − �̄

(
x√
�

)∣∣∣∣
q

dx d�

) 1
q
(

2L

∫ 1

0
�− q′

2 d�

) 1
q′

�C(L, q ′) lim
�→∞

(∫ 1

0

∫ L

−L

∣∣∣∣��(x, �) − �̄

(
x√
�

)∣∣∣∣
q

dx d�

) 1
q

= 0, (4.18)

where q ′ = 1 + 1
q−1 < 2. Taking z = x√

�
and t = �2�, (4.18) infers that

lim
�→∞

�−2
∫ �2

0

∫ �L√
t

− �L√
t

|�
(
z
√

t, t
)

− �̄(z)| dz dt = 0. (4.19)

Denoting �2 by T, we have

lim
T →∞

1

T

∫ T

0

∫ L

−L

|�
(
z
√

t, t
)

− �̄(z)| dz dt

� lim
T →∞

1

T

∫ T

0

∫ L
√

T√
t

− L
√

T√
t

|�
(
z
√

t, t
)

− �̄(z)| dz dt

= 0. � (4.20)

Based on this “convergence mean in time", we can prove the strong convergence
with the help of the following lemma which is essentially the same as Lemma 4.1 in
[35].

Lemma 4.3. Let F(t)�0, G(t)�0 and 0�H(t)�C2 satisfy the following:

F(t) = G(t) + H(t), lim
T →∞

1

T

∫ T

t1

G(t) dt = 0,

dF (t)

dt
+ H(t)� C0

t
,

for any t1 > 0. Then, lim
t→∞ F(t) = 0.
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Proof. Given T > 0, we define � = T exp
{
−F(T )

C0

}
�T and F1(t) = F(t) − C0 log t .

It follows that

(T − �)F1(T ) =
∫ T

�
(t − �)F ′

1(t) dt +
∫ T

�
F1(t) dt

=
∫ T

�
(t − �)

(
F ′(t) − C0

t

)
dt +

∫ T

�
(G(t) + H(t) − C0 log t) dt

�
∫ T

�
(1 + � − t)H(t) dt +

∫ T

�
(G(t) − C0 log t) dt

�
∫ T

�
(G(t) − C0 log t) dt +

∫ �+1

�
H(t) dt. (4.21)

It is easy to check the following:

(T − �)F1(T ) +
∫ T

�
C0 log t dt

= C0(T − �)

(
log

T

�
− log T

)
+ C0(T log T − T − � log � + �)

= C0T

(
log

T

�
− 1 + �

T

)

≡ C0T M

(
F(T )

C0

)
,

where the strictly convex function M(s) is defined by M(s) = s + e−s − 1. Since
M(0) = M ′(0) = 0. Thus, M(s) > 0, if s �= 0. Hence, it follows from (4.21) that

M

(
F(T )

C0

)
� 1

C0T

[∫ T

�
G(t) dt + C2

]
→ 0, as T → ∞. (4.22)

This implies lim
t→∞ F(t) = 0. �

In the following, we will prove the strong convergence of � − �̄ to zero as t → ∞.
The cases for � > 1 and � = 1 are separated.

4.1. Proof of Theorem 2: case � > 1

Define

�(x, t) = �e(�, m) − 1

� − 1
(P (�̄) + P ′(�̄)(� − �̄)). (4.21′)
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For any given non-negative test function �, we denote

E�(t) =
∫

R
�(z)

1

� − 1
(P (�) − P(�̄) − P ′(�̄) (� − �̄))(z

√
t, t) dz. (4.22′)

From Lemma 4.1, one has

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C1
∫

R �(z)(� − �̄)2
(
z
√

t, t
)

dz�E�(t)

�C2
∫

R �(z)|� − �̄| (z√t, t
)

dz, 1 < ��2,

C1
∫

R �(z)(� − �̄)�
(
z
√

t, t
)

dz�E�(t)

�C2
∫

R �(z)|� − �̄|2 (z√t, t
)

dz, 2 < � < 3

(4.23)

with two positive constants C1 and C2 independent of time. Thus, Corollary 4.2 implies,
for any � > 0 that

lim
T →∞

1

T

∫ T

�
E�(t) dt = 0. (4.24)

Let

{
Z�(t) = 1

2

∫
R �(z)m2

�

(
z
√

t, t
)

dz,

Y�(t) = ∫
R �(z)�

(
z
√

t, t
)

dz = E�(t) + Z�(t).
(4.25)

For any t > 0, we compute that

�t� = �t�e − �

� − 1
�̄�−1�t − ��̄�−2(� − �̄)�̄t

= �t�e + �

� − 1
�̄�−1mx − ��̄�−2(� − �̄)�̄t .

Due to the entropy inequality, we have

�t� + �xqe(�, m) − �x

(
�

� − 1
�̄�−1m

)
+ m2

�

� − ��̄�−2m�̄x − ��̄�−2(� − �̄)�̄t

= − �

� − 1
m�x(�̄

�−1) − �

� − 1
(� − �̄)�t (�̄

�−1),
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and thus

�t� + �xqe − �x

(
�

� − 1
�̄�−1m

)
+ m2

�

�C
(
(�̄�−1)2

x + |�̄�−1
t |

)
. (4.26)

By choosing �(x, t) = 1√
t
�
(

x√
t

)
with �′2

� bounded, we have

�t (��) + �x

(
m3

2�2
� + �

� − 1
��−1m

)
�) − �x

(
�

� − 1
�̄�−1m�

)
+ m2

�
�

�C
(
�(�̄�−1)2

x + �|�̄�−1
t | + |�t | + |m�x |

)
, (4.27)

which implies that

�t (��) + �x

(
m3

2�2
� + �

� − 1
��−1m

)
�

)
− �x

(
�

� − 1
�̄�−1m�

)
+ m2

2�
�

�C

(
�(�̄�−1)2

x + �|�̄�−1
t | + |�t | + �′2

�

)

� t−
3
2 f

(
x√
t

)
, (4.28)

where, f is a continuous function. By integrating the above inequality, we have

dY�

dt
+ Z� �C0t

−1, (4.29)

which, together with (4.24), (4.25) and Lemma 4.3, implies that

lim
t→∞ E�(t) = 0. (4.30)

This proves the strong convergence of (�− �̄) to zero in L2
loc for 1 < ��2 and in L

�
loc

for 2 < � < 3.

4.2. Proof of Theorem 2: case � = 1

In this case, we have for any t > 0, 0 < �̄(x, t) ∈ C∞ due to the well-
known properties of heat equation. The quantities �, E� and Y� are defined as
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follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�(x, t) = �e(�, m) − ∫ �̄
0 log s ds − (� − �̄) log �̄,

E�(t) = ∫
R

(∫ �
0 log s ds − ∫ �̄

0 log s ds − (log �̄)(� − �̄)
) (

z
√

t, t
)
�(z) dz,

Y�(t) = ∫
R �

(
z
√

t, t
)
�(z) dz,

Z�(t) = 1
2

∫
R �(z)m2

�

(
z
√

t, t
)

dz,

(4.31)

where

C1

∫
R

�(z) (� − �̄)2
(
z
√

t, t
)

dz�E�(t)

�C2

∫
R

�(z)|� − �̄| 1
2

(
z
√

t, t
)

dz, (4.32)

and

Y�(t) = E�(t) + Z�(t).

By means of the entropy inequality, it is easy to check that

�t (��) + �x(qe�) − �x(�m log �̄) + �
m2

�

�C
(
�|�x log �̄|2 + �|�t log �̄| + |qe − m log �̄||�x |

)
,

which implies

�t (��) + �x(qe�) − �x(�m log �̄) + �
m2

2�

�C(�|�x log �̄|2 + �|�t log �̄|) + �′2

�

)

� t−
3
2 f

(
x√
t

)
. (4.33)

We have again that

dY�

dt
+ Z� �C0t

−1 (4.34)
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and then

lim
t→∞ E�(t) = 0. (4.35)

Thus, we have proved the desired strong convergence of � − �̄ in L2
loc for � = 1.

Since � and �̄ are uniformly bounded, the convergence obtained in Sections 4.1 and
4.2 are true in L

q

loc for any q �1. Thus we completed the proof of Theorem 2.
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