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Abstract

We study the initial boundary value problem of 2D viscous Boussinesq equations
over a bounded domain with smooth boundary. We show that the equations have
a unique classical solution for H3 initial data and no-slip boundary condition. In
addition, we show that the kinetic energy is uniformly bounded in time.
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1 Introduction

Consider the 2D viscous Boussinesq equations
Ut + U · ∇U +∇P = ν∆U + ρe2,

ρt + U · ∇ρ = 0,

∇ · U = 0,

(1)
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where U = (u, v) is the velocity vector field, P is the scalar pressure, ρ is the scalar

density, the constant ν > 0 models viscous dissipation, and e2 = (0, 1)T. In this paper,

we consider (1) in a bounded domain Ω ⊂ R2 with smooth boundary ∂Ω. The system is

supplemented by the following initial and boundary conditions:{
(U, ρ)(x, 0) = (U0, ρ0)(x), x ∈ Ω,

U |∂Ω = 0.
(2)

The Boussinesq system is potentially relevant to the study of atmospheric and oceano-

graphic turbulence, as well as other astrophysical situations where rotation and stratifi-

cation play a dominant role (see e.g. [16] and [18]). In fluid mechanics, system (1) is

used in the field of buoyancy-driven flow. It describes the motion of an incompressible

inhomogeneous viscous fluid under the influence of gravitational force (c.f. [17]).

In addition to its own physical background, Boussinesq system was known by its close

connection to the fundamental models, such as Euler and Navier-Stokes equations, for

3D incompressible flows. Due to the vortex stretching effect in 3D flows, the question of

global existence/finite time blow-up of smooth solutions for the three-dimensional incom-

pressible Euler or Navier-Stokes equations has been one of the most outstanding open

problems in mathematics. Enormous efforts have been made during the last decades on

this subject, yet the resolution is still elusive. There are a great amount of literatures

concerning partial answers to this question. As part of the effort to understand the vor-

tex stretching effect in 3D flows, various simplified model equations have been proposed.

Among these models, the Boussinesq system is known to be one of the most commonly

used because it is analogous to the 3D incompressible Euler or Navier-Stokes equations

for axisymmetric swirling flow, and it shares a similar vortex stretching effect as that

in the 3D incompressible flow. Better understanding of the 2D Boussinesq system will

undoubtedly shed light on the understanding of 3D flows, at least for swirling flow (c.f.

[17]).

In recent years, the 2D Boussinesq equations (1) have attracted significant attention.

When Ω = R2, the Cauchy problem for 2D Boussinesq equations with full viscosity has

been well studied. In [3], Cannon and DiBenedetto studied the Cauchy problem for the

Boussinesq equations with full viscosity
Ut + U · ∇U +∇P = ν∆U + θe2,

θt + U · ∇θ = κ∆θ,

∇ · U = 0,

(U, θ)(x, 0) = (U0, θ0)(x), x ∈ R2,

(3)
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which describe the flow of a viscous incompressible fluid subject to convective heat trans-

fer, where ν > 0, κ > 0 are constants. They found a unique, global in time, weak solution.

Furthermore, they improved the regularity of the solution when initial data is smooth.

Recently, the result of global existence of smooth solutions to (3) is generalized to the

cases of “partial viscosity” (i.e., either ν > 0 and κ = 0, or ν = 0 and κ > 0) by Hou-Li

[10] and Chae [4] independently. In [10], Hou and Li proved the global well-posedness

of the Cauchy problem of the viscous Boussinesq equations. They showed that solutions

with initial data in Hm (m ≥ 3) do not develop finite-time singularities. In [4], Chae

considered the Boussinesq system for incompressible fluid in R2 with either zero diffusion

(κ = 0) or zero viscosity(ν = 0). He proved global-in-time regularity in both cases. On

the other hand, the global regularity/singularity question for the case of (3) with zero

viscosity and zero diffusion (κ = ν = 0) still remains an outstanding open problem in

mathematical fluid mechanics, and we refer the readers to [5], [6], [8], [9], [19] for studies

in this direction.

In real world, the flows often move in bounded domains with constraints from bound-

aries, where the initial-boundary value problems appears. The solutions of the initial-

boundary value problems usually exhibit different behaviors and much richer phenomena

comparing with the Cauchy problem. In this direction, the case of ν > 0 and κ > 0 has

been analyzed in great extent (see e.g. [14] and references therein). The local existence

and blow-up criterion of smooth solutions for the inviscid case (ν = κ = 0) is established

very recently in [11], see also [7]. However, to the authors’ knowledge, the question of

global regularity/finite time singularity for the cases of “partial viscosity”, such as (1), is

still open. We will give a definite result to this problem in current paper.

Throughout this paper, ‖·‖Lp , ‖·‖W s,p and ‖·‖L∞ denote the norms of Lp(Ω), W s,p(Ω)

and L∞(Ω) respectively, i.e.,

‖f‖Lp ≡ ‖f‖Lp(Ω) =

(∫
Ω

|f |pdx
)1/p

, for f ∈ Lp(Ω),

‖f‖W s,p ≡ ‖f‖W s,p(Ω) =

(∑
|α|≤s

∫
Ω

|Dαf |pdx
)1/p

, for f ∈ W s,p(Ω), 1 ≤ p <∞,

‖f‖L∞ ≡ ‖f‖L∞(Ω) = ess sup
Ω
|f |, for f ∈ L∞(Ω),

where α = (α1, α2) is any multi-index with order |α| = α1 + α2 and Dα = ∂α1
x ∂

α2
y . For

p = 2, we denote the norms ‖ · ‖L2 and ‖ · ‖W s,2 by ‖ · ‖ and ‖ · ‖Hs respectively. The

function spaces under consideration are:

C([0, T ];H3(Ω)) and L2([0, T ];H4(Ω)),
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equipped with norms

sup
0≤t≤T

‖Ψ(·, t)‖H3 , for Ψ ∈ C([0, T ];H3(Ω)),(∫ T

0

‖Ψ(·, τ)‖2
H4dτ

)1/2

, for Ψ ∈ L2([0, T ];H4(Ω)).

Unless specified, C will denote a generic constant which is independent of ρ and U , but

may be dependent on ν and the time T throughout the paper.

In this paper, we will generalize the study of [4] and [10] to bounded domains with

typical physical boundary conditions (2)2. For the global existence of smooth solutions,

we require the following compatibility conditions{
∇ · U0 = 0, U0|∂Ω = 0,

ν∆U0 + ρ0e2 −∇P0 = 0, x ∈ ∂Ω, t = 0,
(4)

where P0(x) = P (x, 0) is the solution to the Neumann boundary problem{
∆P0 = ∇ · [ρ0e2 − U0 · ∇U0], x ∈ Ω,

∇P0 · n|∂Ω = [ν∆U0 + ρ0e2] · n|∂Ω,
(5)

with n the unit outward normal to ∂Ω.

Our main results are stated in the following theorem.

Theorem 1.1 Let Ω ⊂ R2 be a bounded domain with smooth boundary. If (ρ0(x), U0(x)) ∈
H3(Ω) satisfies the compatibility conditions (4)–(5), then there exists a unique solution

(ρ, U) of (1)–(2) globally in time such that ρ(x, t) ∈ C([0, T ];H3(Ω)) and U(x, t) ∈
C([0, T ];H3(Ω)) ∩ L2([0, T ];H4(Ω)) for any T > 0. Moreover, there exists a constant

C̄ > 0 independent of t such that

‖U(·, t)‖2
L2 ≤ max

{
‖U(·, 0)‖2

L2 ,
C̄2

ν2
‖ρ(·, 0)‖2

L2

}
, ∀ t ≥ 0. (6)

The proof of Theorem 1.1 mainly consists of two parts. First, we show the global

existence of weak solutions to (1)-(2), i.e., solutions satisfying the following definition:

Definition 1.1 (ρ, U) is said to be a global weak solution of (1)–(2), if for any T > 0,

U ∈ C([0, T ];L2(Ω)) ∩ L2([0, T ];H1
0 (Ω)), ρ ∈ C([0, T ];Lp(Ω)),∀ 1 ≤ p <∞, and it holds

that
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∫
Ω

U0 · Φ(x, 0)dx +

∫ T

0

∫
Ω

(
U · Φt + U · (U · ∇Φ) + ρφ2 − ν∇φ1 · ∇u− ν∇φ2 · ∇v

)
dxdt = 0,∫

Ω

ρ0ψ(x, 0)dx +

∫ T

0

∫
Ω

(
ρψt + ρU · ∇ψ

)
dxdt = 0,

for any Φ = (φ1, φ2) ∈ C∞0 (Ω× [0, T ])2 satisfying Φ(x, T ) = 0 and ∇ ·Φ = 0, and for any

ψ ∈ C∞0 (Ω× [0, T ]) satisfying ψ(x, T ) = 0.

We then build up the regularity of the solution by energy estimate under the initial

and boundary conditions (2). The energy estimate is somewhat delicate mainly due to

the coupling between the velocity and density equations by convection and gravitational

force and the boundary effects. Great efforts have been made to simplify the proof.

Current proof involves intensive applications of Sobolev embeddings and we will see that

the Ladyzhenskaya’s inequalities, see Lemma 2.2, play a crucial role in the estimation of

the velocity field. The results on Stokes equations by Temam [20], see lemma 2.1, are

important in our energy framework. These are mainly due to the problem is set on the

bounded domain, distinguishing itself from the Cauchy problem in [10] and [4]. Roughly

speaking, because of the lack of the spatial derivatives of the solution at the boundary, our

energy framework proceeds as follows: We first apply the standard energy estimate on the

solution and the temporal derivatives of the solution. We then apply the Temam’s results

on Stokes equation to obtain the spatial derivatives. Such a process will be repeated up

to third order, and then the carefully coupled estimates will be composed into a desired

estimate leading to global regularity and uniqueness of solution. Finally, the uniform

bound of the kinetic energy is shown in a very simple way. This result suggests that the

viscous dissipation is strong enough to compensate the effects of gravitational force and

nonlinear convection in order to prevent the development of singularity of the system. It

should be pointed out that in the theorem obtained above, no smallness restriction is put

upon the initial data.

The plan of the rest of this paper is as follows. In Section 2, we give some basic facts

that will be used in this paper together with the global existence of weak solutions. Then

we improve the regularity of the solution obtained in Section 2 by energy estimate in

Section 3. We conclude the paper by proposing some future research problems in Section

4.
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2 Preliminaries and Weak Solutions

In this section, we will list several facts which will be used in the proof of Theorem 1.1.

Then we prove the global existence of weak solutions of (1)-(2). First we recall some

useful results from [20].

Lemma 2.1 Let Ω be any open bounded domain in R2 with smooth boundary ∂Ω. Con-

sider the Stokes problem 
− ν∆U +∇P = f, in Ω,

∇ · U = 0, in Ω,

U = 0, on ∂Ω.

If f ∈ Wm,p, then U ∈ Wm+2,p, P ∈ Wm+1,p and there exists a constant c0 = c0(p, ν,m,Ω)

such that

‖U‖Wm+2,p + ‖P‖Wm+1,p ≤ c0‖f‖Wm,p ,

for any p ∈ (1,∞) and the integer m ≥ −1.

We also need the following Sobolev Embeddings and Ladyzhenskaya’s inequalities

which are well-known and standard, (cf. [1] and [15]).

Lemma 2.2 Let Ω ⊂ R2 be any bounded domain with C1 smooth boundary. Then the

following embeddings and inequalities hold:

(i) H1(Ω) ↪→ Lp(Ω), ∀ 1 < p <∞;

(ii) W 1,p(Ω) ↪→ L∞(Ω), ∀ 2 < p <∞;

(iii) ‖f‖2
L4 ≤ 2‖f‖‖∇f‖, ∀ f : Ω→ R and f ∈ H1

0 (Ω);

(iv) ‖f‖2
L4 ≤ C

(
‖f‖‖∇f‖+ ‖f‖2

)
, ∀ f : Ω→ R and f ∈ H1(Ω).

Next, we establish the global existence of weak solutions of (1)-(2).

Lemma 2.3 Under the assumptions in Theorem 1.1, there exists a global weak solution

(U, ρ) of (1)-(2) such that, for any T > 0, U ∈ C([0, T );L2(Ω)) ∩ L2([0, T );H1
0 (Ω)), and

ρ ∈ C([0, T );Lp(Ω)),∀ 1 ≤ p <∞.

Proof. Following [13], we prove the lemma by a fixed point argument. To do so, we fix

any T ∈ (0,∞) and consider the problem (1)-(2) in Ω× [0, T ]. Let B be the closed convex

set in C([0, T ];L2(Ω)) ∩ L2([0, T ];H1
0 (Ω)) defined by

B =
{
V = (v1, v2) ∈ C([0, T ];L2(Ω)) ∩ L2([0, T ];H1

0 (Ω))
∣∣

∇ · V = 0, a.e. on Ω× (0, T ), ‖V ‖2
C([0,T ];L2(Ω)) + ‖V ‖2

L2([0,T ];H1
0 (Ω)) ≤ R0

}
,

(7)
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where R0 will be determined later. For fixed ε ∈ (0, 1) and any V ∈ B, we first mollify V

using the standard procedure (c.f. [13]) to get

Vε = V ε ∗ ηε/2,

where V ε is the truncation of V in Ωε = {x ∈ Ω | dist(x, ∂Ω) > ε} (extended by 0 to Ω),

and ηε/2 is the standard mollifier. Then Vε satisfies

Vε ∈ C([0, T ];C∞0 (Ω̄)), ∇ · Vε = 0,

‖Vε‖C([0,T ];L2(Ω)) ≤ C‖V ‖C([0,T ];L2(Ω)),

‖Vε‖L2([0,T ];H1
0 (Ω)) ≤ C‖V ‖L2([0,T ];H1

0 (Ω)),

(8)

for some constant C > 0 which is independent of ε. Similarly, we regularize the initial

data to obtain the smooth approximation ρε0(x) for ρ0(x) and U ε
0 (x) for U0(x) respectively,

such that

ρε0(x) ∈ C∞0 (Ω̄), ‖ρε0(x)− ρ0(x)‖H1(Ω) < ε,

U ε
0 (x) ∈ C∞0 (Ω̄), ∇ · U ε

0 (x) = 0 and ‖U ε
0 (x)− U0(x)‖H1(Ω) < ε.

Then we solve the transport equation with smooth initial data{
ρt + Vε · ∇ρ = 0,

ρ(x, 0) = ρε0(x),
(9)

and we denote the solution by ρε. Next, we solve the nonhomogeneous (linearized) Navier-

Stokes equation with smooth initial data
∇ · U = 0

Ut + Vε · ∇U +∇P = ν∆U + ρεe2,

U |∂Ω = 0, U(x, 0) = U ε
0 (x),

(10)

and denote the solution by U ε and the corresponding pressure by P ε. Then we define the

mapping Fε(V ) = U ε. The solvabilities of (9) and (10) follow easily from [13]. Next, we

prove that Fε satisfies the conditions of Schauder fixed point theorem, i.e., Fε : B → B is

continuous and compact. These will be achieved by the method of energy estimate.

We start from (9). For any 2 ≤ p < ∞, multiplying (9)1 by ρ|ρ|p−2 and integrating

the resulting equation over Ω by parts, we get

‖ρ(·, t)‖Lp = ‖ρε0‖Lp ≤ ‖ρ0‖Lp + εc(Ω, p), ∀ 0 ≤ t ≤ T, ∀ 0 < ε < 1,
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i.e.,

‖ρε(·, t)‖Lp = ‖ρε0‖Lp ≤ ‖ρ0‖Lp + εc(Ω, p), ∀ 0 ≤ t ≤ T, ∀ 0 < ε < 1, (11)

where c(Ω, p) is a constant depending only on Ω and p. We then estimate ‖U ε‖2
L2([0,T ];H1

0 (Ω))
.

Taking L2 inner product of (10)2 with U , after integrating by parts and using Young’s

inequality, we have

1

2

d

dt
‖U‖2 + ν‖∇U‖2 ≤ C(δ)‖ρε‖2 + δ‖U‖2, (12)

where δ > 0 is a constant to be determined. Since U satisfies the no-slip boundary con-

dition, Poincaré’s inequality implies that ‖U‖ ≤ C‖∇U‖ for some constant C depending

only on Ω. Choosing δ = ν/2C in (12) we obtain

1

2

d

dt
‖U‖2 +

ν

2
‖∇U‖2 ≤ C‖ρε‖2, (13)

which together with (11) yields, after integration over [0, T ], that

‖U‖2
C([0,T ];L2(Ω)) + ν‖∇U‖2

L2([0,T ];L2(Ω)) ≤ CT (‖ρ0‖2 + ε) + (‖U0‖2 + ε).

Since 0 < ε < 1, we have

‖U‖2
C([0,T ];L2(Ω)) + ‖U‖2

L2([0,T ];H1
0 (Ω)) ≤ C(T, ρ0, U0, ν,Ω),

i.e.,

‖U ε‖2
C([0,T ];L2(Ω)) + ‖U ε‖2

L2([0,T ];H1
0 (Ω)) ≤ C(T, ρ0, U0, ν,Ω). (14)

Choosing R0 such that R0 ≥ C(T, ρ0, U0, ν,Ω) we see that Fε maps B into B for any

0 < ε < 1. We remark that the constant C(T, ρ0, U0, ν,Ω) in (14) does not depend on ε.

Next we prove the compactness of Fε. For this purpose, we continue to find estimates

of ‖∇U ε‖2
C([0,T ];L2(Ω)) and ‖U ε

t ‖2
L2([0,T ];L2(Ω)). Taking L2 inner product of (10)2 with Ut, one

has
ν

2

d

dt
‖∇U‖2 + ‖Ut‖2 ≤

∫
Ω

|Vε||Ut||∇U |dx +

∫
Ω

ρe2 · Utdx

≤ 1

4
‖Ut‖2 + ‖Vε∇U‖2 +

1

4
‖Ut‖2 + ‖ρ‖2

≤ 1

2
‖Ut‖2 + ‖Vε‖2

L∞‖∇U‖2 + C

which implies that

ν

2

d

dt
‖∇U‖2 +

1

2
‖Ut‖2 ≤ ‖Vε‖2

L∞‖∇U‖2 + C. (15)
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Applying Gronwall’s inequality to (15) and using (8) we have

‖∇U‖2
C([0,T ];L2(Ω)) + ‖Ut‖2

L2([0,T ];L2(Ω)) ≤ C. (16)

By Lemma 2.1 we know that

‖U‖H2 ≤ C
(
‖Ut‖+ ‖ρ‖+ ‖Vε · ∇U‖

)
≤ C

(
‖Ut‖+ C + C‖Vε‖L∞‖∇U‖

)
,

(17)

which together with (16) yields

‖U ε‖2
L2([0,T ];H2(Ω)) ≤ C. (18)

From (16) and (18) we know that Fε is compact by Sobolev embedding theorem.

Now we prove the continuity of Fε. Let Fε(Vi) = U ε
i , by definition we know

ρεit + Viε · ∇ρεi = 0,

U ε
it + Viε · ∇U ε

i +∇P ε
i = ν∆U ε

i + ρεie2,

∇ · U ε
i = 0, U ε

i |∂Ω = 0,

(ρεi , U
ε
i )(x, 0) = (ρε0, U

ε
0 )(x), i = 1, 2.

Subtracting the equation for i = 2 from the one for i = 1 we have
%εt + V1ε · ∇%ε +Wε · ∇ρε2 = 0,

χεt + V1ε · ∇χε +Wε · ∇U ε
2 +∇Qε = ν∆χε + %εe2,

∇ · χε = 0, χε|∂Ω = 0,

(%ε, χε)(x, 0) = 0,

(19)

where %ε = ρε1 − ρε2, Wε = V1ε − V2ε, χ
ε = U ε

1 − U ε
2 , and Qε = P ε

1 − P ε
2 . Taking the L2

inner products of (19)1 with %ε and (19)2 with χε we obtain

1

2

d

dt
‖%ε‖2 = −

∫
Ω

(Wε · ∇ρε2)%εdx,

1

2

d

dt
‖χε‖2 + ν‖∇χε‖2 = −

∫
Ω

(Wε · ∇U ε
2 )χεdx +

∫
Ω

%εe2 · χεdx.
(20)

Since ρε2 ∈ C([0, T ];C∞(Ω̄)), we get from (20)1 that

1

2

d

dt
‖%ε‖2 ≤ ‖∇ρε2‖L∞‖Wε‖‖%ε‖

≤ C(‖Wε‖2 + ‖%ε‖2),
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from which we get

‖%ε‖2 ≤ eCT
∫ T

0

‖Wε‖2dτ

≤ C‖Wε‖2
C([0,T ];L2(Ω)).

(21)

Since U ε
2 ∈ L2([0, T ];H2(Ω)), we derive from (20)2:

1

2

d

dt
‖χε‖2 + ν‖∇χε‖2 ≤ ‖Wε‖‖∇U ε

2‖L4‖χε‖L4 + ‖%ε‖‖χε‖

≤ C‖Wε‖‖U ε
2‖H2‖χε‖H1 + ‖%ε‖‖χε‖

≤ C‖Wε‖‖U ε
2‖H2‖∇χε‖+ ‖%ε‖‖χε‖

≤ C‖Wε‖2‖U ε
2‖2

H2 +
ν

2
‖∇χε‖2 +

1

2
‖%ε‖2 +

1

2
‖χε‖2

≤ C(t)‖Wε‖2
C([0,T ];L2(Ω)) +

ν

2
‖∇χε‖2 +

1

2
‖χε‖2,

(22)

where

∫ T

0

C(τ)dτ ≤ C and we have used (21). From (22) we get

1

2

d

dt
‖χε‖2 +

ν

2
‖∇χε‖2 ≤ 1

2
‖χε‖2 + C(t)‖Wε‖2

C([0,T ];L2(Ω)), (23)

which implies, after applying Gronwall’s inequality, that

‖χε‖2 ≤ C‖Wε‖2
C([0,T ];L2(Ω)). (24)

Integrating (23) over [0, T ] using (24) we have∫ T

0

‖∇χε‖2dτ ≤ C‖Wε‖2
C([0,T ];L2(Ω)). (25)

Combining (24) and (25) we get

‖χε‖2
C([0,T ];L2(Ω)) + ‖χε‖2

L2([0,T ];H1
0 (Ω)) ≤ C‖V1 − V2‖2

C([0,T ];L2(Ω)),

i.e.,

‖U ε
1 − U ε

2‖2
B ≤ C‖V1 − V2‖2

B,

where ‖ · ‖2
B = ‖ · ‖2

C([0,T ];L2(Ω)) + ‖ · ‖2
L2([0,T ];H1

0 (Ω))
. By definition we know

‖Fε(V1)− Fε(V2)‖2
B ≤ C‖V1 − V2‖2

B,

which implies that Fε : B → B is continuous.
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Therefore, Schauder theorem implies that for any fixed ε ∈ (0, 1), there exists U ε ∈ B
such that Fε(U

ε) = U ε, namely,
ρεt + Uε · ∇ρε = 0

U ε
t + Uε · ∇U ε +∇P ε = ν∆U ε + ρεe2,

∇ · U ε = 0,

U ε|∂Ω = 0, (ρε, U ε)(x, 0) = (ρε0, U
ε
0 )(x),

where Uε is the regularization of U ε. By a bootstrap argument (c.f. [13]) we know that

(ρε, U ε) ∈ C∞(Ω̄× [0, T ]). Then it is obvious that (ρε, U ε) satisfy the integral identities,

i.e.,

0 =

∫
Ω

U ε
0 · Φ(x, 0)dx

+

∫ T

0

∫
Ω

(
U ε · Φt + Uε · (U ε · ∇Φ) + ρεe2 · Φ− ν∇φ1 · ∇uε − ν∇φ2 · ∇vε

)
dxdt,

0 =

∫
Ω

ρε0ψ(x, 0)dx +

∫ T

0

∫
Ω

(
ρεψt + ρεUε · ∇ψ

)
dxdt,

(26)

for any ε > 0, Φ = (φ1, φ2) ∈ C∞0 (Ω̄× [0, T ])2 satisfying Φ(x, T ) = 0 and ∇ · Φ = 0, and

for any ψ ∈ C∞(Ω̄× [0, T ]) satisfying ψ(x, T ) = 0.

In view of (11), (14) and from the definition of Uε we know that there exist functions

U ∈ B and ρ ∈ C([0, T ];Lp(Ω)), ∀ 2 ≤ p <∞ such that as ε→ 0+,

Uε ⇀ U weakly in C([0, T ];L2(Ω)) ∩ L2([0, T ];H1
0 (Ω)),

U ε ⇀ U weakly in C([0, T ];L2(Ω)) ∩ L2([0, T ];H1
0 (Ω)),

ρε ⇀ ρ weakly in C([0, T ];Lp(Ω)), ∀ 2 ≤ p <∞,

and
‖U‖2

C([0,T ];L2(Ω)) + ‖U‖2
L2([0,T ];H1

0 (Ω)) ≤ C(T, ρ0, U0, ν,Ω),

‖ρ‖C([0,T ];Lp(Ω) ≤ ‖ρ0‖C([0,T ];Lp(Ω), ∀ 2 ≤ p <∞.
(27)

Since

U · ∇ψ ∈ C([0, T ];L2(Ω)),

11



we have∣∣∣∣ ∫ T

0

∫
Ω

(ρεU ε · ∇ψ − ρU · ∇ψ) dxdt

∣∣∣∣
≤C‖ρε‖L2([0,T ];L2(Ω))‖U ε − U‖L2([0,T ];L2(Ω)) +

∣∣∣∣ ∫ T

0

∫
Ω

(ρεU · ∇ψ − ρU · ∇ψ) dxdt

∣∣∣∣
≤C‖U ε − U‖L2([0,T ];L2(Ω)) +

∣∣∣∣ ∫ T

0

∫
Ω

(ρε − ρ)U · ∇ψdxdt
∣∣∣∣

→ 0, as ε→ 0 + .

Moreover, since∣∣∣∣ ∫ T

0

∫
Ω

[Uε · (U ε · ∇Φ)− U · (U · ∇Φ)] dxdt

∣∣∣∣
=

∣∣∣∣ ∫ T

0

∫
Ω

[Uε · (U ε · ∇Φ)− Uε · (U · ∇Φ) + Uε · (U · ∇Φ)− U · (U · ∇Φ)] dxdt

∣∣∣∣
≤C

∫ T

0

∫
Ω

(|Uε||U ε − U |+ |U ||Uε − U |) dxdt

≤C
(
‖Uε‖L2([0,T ];L2(Ω))‖Uε − U‖L2([0,T ];L2(Ω)) + ‖U‖L2([0,T ];L2(Ω))‖Uε − U‖L2([0,T ];L2(Ω))

)
≤C‖Uε − U‖L2([0,T ];L2(Ω)) → 0, as ε→ 0+,

letting ε → 0+ in (26) we verified that (ρ, U) is a weak solution to (1)-(2) in Ω × [0, T ].

We conclude the argument by noticing that T is arbitrary. This combining with (27)

completes the proof of Lemma 2.3.

3 Global Regularity

In this section, we shall establish the regularity and uniqueness of the solution obtained in

Lemma 2.3, and therefore give a proof of our main result, the Theorem 1.1. The following

theorem gives the key estimates

Theorem 3.1 Under the assumption of Theorem 1.1, the solution obtained in Lemma

2.3 satisfies the following estimates:

‖U‖C([0,T );H3(Ω)) + ‖U‖L2([0,T );H4(Ω)) + ‖ρ‖C([0,T );H3(Ω)) ≤ C,

for any T > 0. Moreover, there exists a constant C̄ > 0 independent of t such that

‖U(·, t)‖2 ≤ max
{
‖U(·, 0)‖2 ,

C̄2

ν2
‖ρ(·, 0)‖2

}
, ∀ t ≥ 0. (28)
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Remark 3.1 The constant C̄ in the Theorem is actually the constant of Poincaré’s in-

equality on the domain Ω. Therefore, it depends only on Ω. See the proof of Lemma 3.9

below for details.

The proof of Theorem 3.1 is based on several steps of careful energy estimates which

are stated as a sequence of lemmas. First, we observe that the same method used to

derive (11) can be applied to (1)2 if Vε is replaced by U in (9). Therefore, we have the

conservation of Lp norm for ρ, i.e., for any p ∈ [2,∞), it holds that

‖ρ(·, t)‖Lp = ‖ρ0‖Lp , ∀ t ≥ 0.

Furthermore, by letting p→∞ in the above estimate, one has

‖ρ(·, t)‖L∞ = ‖ρ0‖L∞ , ∀ t ≥ 0.

Fix any T > 0. In the rest part of this section, the time is restricted to be within the

interval [0, T ] until specified otherwise. Then we start with estimates of ‖U‖2
C([0,T ];L2(Ω))

and ‖∇U‖2
L2([0,T ];L2(Ω)).

Lemma 3.1 Under the assumptions of Theorem 1.1, it holds that

‖U‖2
C([0,T ];L2(Ω)) ≤ C and ‖∇U‖2

L2([0,T ];L2(Ω)) ≤ C. (29)

Proof. Taking L2 inner product of (1)1 with U , we obtain, after integration by parts,

that
1

2

d

dt
‖U‖2 + ν‖∇U‖2 = −

∫
Ω

(U · ∇U) · Udx +

∫
Ω

ρe2 · Udx

= −1

2

∫
Ω

U · ∇(|U |2)dx +

∫
Ω

ρe2 · Udx

= −1

2

∫
Ω

∇ · (U |U |2)dx +

∫
Ω

ρe2 · Udx

=

∫
Ω

ρe2 · Udx.

Applying Cauchy-Schwarz inequality to the right hand side of the above equality, we get

1

2

d

dt
‖U‖2 + ν‖∇U‖2 ≤ 1

2
‖ρ‖2 +

1

2
‖U‖2. (30)

By dropping ν‖∇U‖2 from (30) and then applying Gronwall’s inequality to the resulting

inequality, we find that

‖U(·, t)‖2 ≤ et
(
‖U0‖2 +

∫ t

0

‖ρ0‖2dτ
)

≤ eT
(
‖U0‖2 + T‖ρ0‖2

)
≤ C, ∀ t ∈ [0, T ],
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which also implies, after integrating (30) over [0, T ], that

ν

∫ T

0

‖∇U(·, τ)‖2dτ ≤ C.

This completes the proof of Lemma 3.1.

The next Lemma is dealing with ‖∇U‖2
C([0,T ];L2(Ω)) and ‖Ut‖2

L2([0,T ];L2(Ω)).

Lemma 3.2 Under the assumptions of Theorem 1.1, it holds that

‖∇U‖2
C([0,T ];L2(Ω)) ≤ C and ‖Ut‖2

L2([0,T ];L2(Ω)) ≤ C.

Proof. Taking L2 inner product of (1)1 with Ut, integrating the resulting equations over

Ω by parts, we get

ν

2

d

dt
‖∇U‖2 + ‖Ut‖2 ≤

∫
Ω

|U ||Ut||∇U | dx +

∫
Ω

ρvt dx

≤ C‖U‖2
L4‖∇U‖2

L4 +
1

4
‖Ut‖2 + C‖ρ0‖2,

(31)

where we have used Hölder’s inequality and Cauchy-Schwarz inequality as follows:∫
Ω

|U ||Ut||∇U | dx ≤ C‖U‖2
L4‖∇U‖2

L4 +
1

8
‖Ut‖2,

and ∫
Ω

ρvt dx ≤
1

8
‖Ut‖2 + C‖ρ0‖2.

We now apply the Ladyzhenskaya’s inequality to estimate ‖U‖2
L4‖∇U‖2

L4 . Applying

Lemma 2.2 (iii) on U and (iv) on ∇U , we have

‖U‖2
L4‖∇U‖2

L4 ≤ C(‖U‖‖∇U‖)
(
‖∇U‖‖∇2U‖+ ‖∇U‖2

)
≤ C‖∇U‖2‖∇2U‖+ C‖∇U‖3

≤ C(δ)‖∇U‖4 + C‖∇U‖3 + δ‖U‖2
H2 ,

(32)

where we have used Lemma 3.1 and δ > 0 is a small number to be determined. Therefore,

we update (31) as

ν

2

d

dt
‖∇U‖2 +

3

4
‖Ut‖2 ≤ C + C(δ)‖∇U‖4 + C‖∇U‖3 + δ‖U‖2

H2 . (33)

We now rewrite the equation (1)1 as

−ν∆U +∇P = −Ut − U · ∇U + ρe2.
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Lemma 2.1 with m = 0 and p = 2 implies that

‖U‖2
H2 ≤ C

(
‖Ut‖2 + ‖ρ‖2 + ‖U · ∇U‖2

)
≤ C

(
‖Ut‖2 + C

)
+ C‖U‖2

L4‖∇U‖2
L4

≤ C̃
(
C + ‖Ut‖2 + ‖∇U‖4 + ‖∇U‖3

)
+

1

2
‖U‖2

H2 ,

(34)

where we have used (32). Now, choosing δ = 1/(4C̃) and combining (33) and (34), we get

ν

2

d

dt
‖∇U‖2 +

1

2
‖Ut‖2 ≤ C

(
‖∇U‖4 + ‖∇U‖3

)
+ C.

Therefore, Young’s inequality yields

ν

2

d

dt
‖∇U‖2 +

1

2
‖Ut‖2 ≤ C‖∇U‖2‖∇U‖2 + C. (35)

By dropping 1
2
‖Ut‖2 from (35) we obtain

ν

2

d

dt
‖∇U‖2 ≤ C

(
‖∇U‖2‖∇U‖2 + C

)
. (36)

Then using Lemma 3.1, Gronwall’s inequality implies that

‖∇U(·, t)‖2 ≤ C, ∀ t ∈ [0, T ]. (37)

Using (37), after integrating (35) over [0, T ] we obtain∫ T

0

‖Ut(·, τ)‖2dτ ≤ C, (38)

which completes the proof of Lemma 3.2.

Next, we estimate ‖Ut‖2
C([0,T ];L2(Ω)) and ‖∇Ut‖2

L2([0,T ];L2(Ω)).

Lemma 3.3 Under the assumptions of Theorem 1.1, it holds that

‖Ut‖2
C([0,T ];L2(Ω)) ≤ C and ‖∇Ut‖2

L2([0,T ];L2(Ω)) ≤ C. (39)

Proof. We take the temporal derivative of (1)1 to get

Utt + Ut · ∇U + U · ∇Ut +∇Pt = ν∆Ut + ρt~e2. (40)

Taking L2 inner product of (40) with Ut we have

1

2

d

dt
‖Ut‖2 + ν‖∇Ut‖2 = −

∫
Ω

(Ut · ∇U) · Utdx +

∫
Ω

ρtvtdx

= −
∫

Ω

(Ut · ∇U) · Utdx−
∫

Ω

(U · ∇ρ)vtdx

≤ ‖Ut‖2
L4‖∇U‖+

∫
Ω

ρ(U · ∇vt)dx.

(41)
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With the help of Lemma 3.1 and 3.2, and Lemma 2.2 (iii) on Ut, we note that

‖Ut‖2
L4‖∇U‖ ≤ C‖Ut‖2

L4

≤ C‖Ut‖‖∇Ut‖

≤ ν

4
‖∇Ut‖2 + C‖Ut‖2.

(42)

On the other hand, we have∫
Ω

ρ(U · ∇vt)dx ≤ ‖ρ‖L∞‖U‖‖∇Ut‖

≤ ν

4
‖∇Ut‖2 + C.

(43)

Therefore, combining (41)–(43), we arrive at

1

2

d

dt
‖Ut‖2 +

ν

2
‖∇Ut‖2 ≤ C(‖Ut‖2 + 1). (44)

Using Gronwall’s inequality, and Lemma 3.2, we obtain (39). This completes the proof of

Lemma 3.3.

As an immediate consquence of Lemma 3.3 and Lemma 2.2 (i), one has

Lemma 3.4 Under the assumptions of Theorem 1.1, it holds that∫ T

0

‖Ut(·, τ)‖2
Lpdτ ≤ C, ∀ 1 ≤ p <∞. (45)

This lemma will play an important role on the estimations of the maximum norms of

U and ∇U in the following Lemma.

Lemma 3.5 Under the assumptions of Theorem 1.1, it holds that

‖U‖2
C([0,T ];L∞(Ω)) ≤ C and ‖∇U‖2

L2([0,T ];L∞(Ω)) ≤ C. (46)

Proof. We see that ‖Ut‖ and ‖∇U‖ are bounded by Lemmas 3.2 and 3.3. Therefore, one

reads from (34) that

‖U‖2
H2 ≤ C

(
‖Ut‖2 + ‖∇U‖3 + ‖∇U‖4 + C

)
≤ C, (47)

which implies, by Sobolev embedding,

‖U(·, t)‖2
L∞ ≤ C, ∀ t ∈ [0, T ]. (48)
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As an immediate consequence of (47)-(48) we see that

‖U · ∇U‖2
H1 ≤ C

(
‖U‖2

L∞ + ‖U‖2
H2

)
‖U‖2

H2 ≤ C, ∀ t ∈ [0, T ], (49)

which implies by Lemma 2.2 (i) that

‖U · ∇U‖2
Lp ≤ C, ∀ 1 ≤ p <∞, ∀ t ∈ [0, T ]. (50)

Therefore, using Lemma 2.1, (45) and (50) we obtain∫ T

0

‖U‖2
W 2,p dτ ≤ C

∫ T

0

(‖Ut‖2
Lp + ‖U · ∇U‖2

Lp + ‖ρ‖2
Lp) dτ

≤ C, ∀ 1 ≤ p <∞.
(51)

Applying Lemma 2.2 (ii) to ∇U we get the second half of (46) from (51) immediately.

This completes the proof of Lemma 3.5.

In order to improve the regularity of U , the problem will involve the spatial derivatives

of ρ. We now establish the following lemma to estimate ∇ρ.

Lemma 3.6 Under the assumptions of Theorem 1.1, it holds that

‖∇ρ(·, t)‖L∞ ≤ C, ∀ t ∈ [0, T ]. (52)

Proof. For any p ≥ 2, taking ∇ of (1)2, dot multiplying the resulting equation with

|∇ρ|p−2∇ρ, after integration by parts we get

1

p

d

dt

(
‖∇ρ‖pLp

)
≤ ‖∇U‖L∞‖∇ρ‖pLp , (53)

which yields
d

dt

(
‖∇ρ‖Lp

)
≤ ‖∇U‖L∞‖∇ρ‖Lp . (54)

Gronwall’s inequality yields

‖∇ρ(·, t)‖Lp ≤ ‖∇ρ0‖Lp exp
{∫ T

0

‖∇U‖L∞dτ
}

≤ C, ∀ p ≥ 2, and ∀ t ∈ [0, T ].

(55)

Letting p→∞ we obtain (52). This completes the proof of Lemma 3.6.

The estimates of ‖∇Ut‖2
C([0,T ];L2(Ω)) and ‖Utt‖2

L2([0,T ];L2(Ω)) will be given in the next

lemma, based on which we will establish the desired regularity stated in Theorem 3.1.
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Lemma 3.7 Under the assumptions of Theorem 1.1, it holds that

‖∇Ut‖2
C([0,T ];L2(Ω)) ≤ C, and ‖Utt‖2

L2([0,T ];L2(Ω)) ≤ C. (56)

Proof. Taking L2 inner product of (40) with Utt we get

ν

2

d

dt
‖∇Ut‖2 + ‖Utt‖2 ≤

∫
Ω

(|Utt||Ut||∇U |+ |Utt||U ||∇Ut|+ ρtvtt) dx. (57)

We now estimate the right hand side term by term. First of all, we apply the Hölder

inequality and Lemma 3.3 to obtain∫
Ω

|Utt||Ut||∇U | dx ≤
1

6
‖Utt‖2 + C‖∇U‖2

L∞‖Ut‖2

≤ 1

6
‖Utt‖2 + C‖∇U‖2

L∞ , ∀ t ∈ [0, T ].

(58)

Similarly, using Hölder inequality and Lemmas 3.5 and 3.6, we have the following estimates∫
Ω

|Utt||U ||∇Ut| dx ≤
1

6
‖Utt‖2 + C‖U‖2

L∞‖∇Ut‖2

≤ 1

6
‖Utt‖2 + C‖∇Ut‖2, ∀ t ∈ [0, T ],

(59)

and ∫
Ω

|ρtvtt| dx ≤
1

6
‖Utt‖2 + C‖ρt‖2

≤ 1

6
‖Utt‖2 + C‖U · ∇ρ‖2

≤ 1

6
‖Utt‖2 + C‖∇ρ‖2

L∞‖U‖2

≤ 1

6
‖Utt‖2 + C, ∀ t ∈ [0, T ].

(60)

Substituting (58)–(60) into (57), one has

ν

2

d

dt
‖∇Ut‖2 +

1

2
‖Utt‖2 ≤ C + C‖∇U‖2

L∞ + C‖∇Ut‖2. (61)

We note that all the terms on the right hand side of (61) are integrable in time due

to Lemmas 3.3 and 3.5. Therefore, we integrate (61) in time over [0, T ] to obtain the

estimates in (56). This completes the proof of Lemma 3.7.

We are now ready to complete the regularity stated in Theorem 3.1.

Lemma 3.8 Under the assumptions of Theorem 1.1, it holds that

‖(ρ, U)‖2
C([0,T ];H3(Ω)) ≤ C, and ‖U‖2

L2([0,T ];H4(Ω)) ≤ C. (62)
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Proof. Based on (49), (55) and (56), we see from Lemma 2.1 that,

‖U(·, t)‖2
H3 ≤ C(‖ρ‖2

H1 + ‖U · ∇U‖2
H1 + ‖Ut‖2

H1) ≤ C, ∀ t ∈ [0, T ], (63)

which implies by Sobolev inequality (c.f. Lemma 2.2) that

‖U(·, t)‖2
W 2,p ≤ C‖U(·, t)‖2

H3 ≤ C, ∀ t ∈ [0, T ], ∀ 1 ≤ p <∞, (64)

and thus

‖∇U(·, t)‖L∞ ≤ C, ∀ t ∈ [0, T ]. (65)

Furthermore, for t ∈ [0, T ], it is easy to see that

‖Ut · ∇U‖2 ≤ ‖Ut‖2‖∇U‖2
L∞ ≤ C,

‖U · ∇Ut‖2 ≤ ‖U‖2
L∞‖∇Ut‖2 ≤ C,

‖ρt‖2 = ‖U · ∇ρ‖2 ≤ ‖U‖2
L∞‖∇ρ‖2 ≤ C.

(66)

From (40) and Lemma 2.1, we know∫ T

0

‖Ut‖2
H2dτ ≤ C

∫ T

0

(
‖Utt‖2 + ‖Ut · ∇U‖2 + ‖U · ∇Ut‖2 + ‖ρt‖2

)
dτ, (67)

which, together with (56) and (66), gives∫ T

0

‖Ut(·, τ)‖2
H2dτ ≤ C. (68)

In addition, Sobolev inequality and (63) yield

‖U · ∇U‖2
H2 ≤ C

(
‖U‖2

L∞‖U‖2
H3 + ‖∇U‖2

L∞‖U‖2
H2

)
≤ C‖U‖2

H2‖U‖2
H3 ≤ C, ∀ t ∈ [0, T ].

(69)

Now, it is clear that one needs higher order estimate on ρ to complete the proof of

this lemma. For this purpose, taking ∂xx of (1)2, we get

ρxxt + uxxρx + 2uxρxx + vxxρy + 2vxρxy + U · ∇ρxx = 0. (70)

For any p ≥ 2, multiplying (70) by |ρxx|p−2ρxx, integrating over Ω, and using Hölder’s

inequality, we obtain

1

p

d

dt

∫
Ω

|ρxx|pdx = −
∫

Ω

(
uxxρx + vxxρy + 2uxρxx + 2vxρxy

)
|ρxx|p−2ρxxdx

≤ ‖∇ρ‖L∞‖∇2U‖Lp‖∇2ρ‖p−1
Lp + 2‖∇U‖L∞‖∇2ρ‖pLp

≤ C
(
‖∇2ρ‖p−1

Lp + ‖∇2ρ‖pLp

)
,

(71)
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where we have used (52), (64) and (65). Similarly, one can show

1

p

d

dt

∫
Ω

|ρxy|pdx ≤ C
(
‖∇2ρ‖p−1

Lp + ‖∇2ρ‖pLp

)
, (72)

1

p

d

dt

∫
Ω

|ρyy|pdx ≤ C
(
‖∇2ρ‖p−1

Lp + ‖∇2ρ‖pLp

)
. (73)

Summing (71)–(73) together, we obtain

1

p

d

dt

(
‖∇2ρ‖pLp

)
≤ C

(
‖∇2ρ‖p−1

Lp + ‖∇2ρ‖pLp

)
. (74)

It follows that
d

dt

(
‖∇2ρ‖Lp

)
≤ C

(
1 + ‖∇2ρ‖Lp

)
, (75)

Applying Gronwall inequality to (75), one has

‖∇2ρ(·, t)‖Lp ≤ C, ∀ 2 ≤ p <∞, ∀ t ∈ [0, T ]. (76)

In a quite similar manner as in the derivation of (76), further estimates show that

d

dt
‖∇3ρ‖2 ≤ C

(
‖∇U‖L∞‖∇3ρ‖2 + ‖∇ρ‖L∞‖∇3U‖‖∇3ρ‖+ ‖∇2U‖L4‖∇2ρ‖L4‖∇3ρ‖

)
≤ C(‖∇3ρ‖2 + ‖∇3ρ‖)
≤ C(‖∇3ρ‖2 + 1),

(77)

which implies

‖ρ(·, t)‖2
H3 ≤ C, ∀ t ∈ [0, T ]. (78)

Now, by Lemma 2.1, combining (68), (69) and (78), one has∫ T

0

‖U(·, τ)‖2
H4 dτ ≤ C

∫ T

0

(
‖Ut‖2

H2 + ‖U · ∇U‖2
H2 + ‖ρ‖2

H2

)
dτ ≤ C,

which completes the proof of Lemma 3.8.

For the proof of Theorem 3.1, it remains to prove the uniform bound of the kinetic

energy (28).

Lemma 3.9 Under the assumptions of Theorem 1.1, there is a uniform constant C̄ in-

dependent of t, such that

‖U(·, t)‖2 ≤ max
{
‖U(·, 0)‖2 ,

C̄2

ν2
‖ρ(·, 0)‖2

}
, ∀ t ≥ 0. (79)
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Proof. From the proof of Lemma 3.1, we observe that

1

2

d

dt
‖U‖2 + ν‖∇U‖2 =

∫
Ω

ρe2 · U dx

≤ 1

2δν
‖ρ‖2 + δ

ν

2
‖U‖2,

(80)

for any positive δ. Poincaré’s inequality says that there is a constant C̄ = C̄(Ω) such that

‖U‖ ≤ C̄‖∇U‖.

Choosing δ = 1
C̄

, we know from (80) that

d

dt
‖U‖2 +

ν

C̄
‖U‖2 ≤ C̄

ν
‖ρ‖2. (81)

Solving the above differential inequality we get

exp
{ ν
C̄
t
}
‖U(·, t)‖2 − ‖U(·, 0)‖2 ≤ C̄2

ν2
‖ρ0‖2

(
exp

{ ν
C̄
t
}
− 1
)
, (82)

which implies

‖U(·, t)‖2 ≤ exp
{
− ν

C̄
t
}(
‖U(·, 0)‖2 − C̄2

ν2
‖ρ0‖2

)
+
C̄2

ν2
‖ρ0‖2, ∀ t > 0. (83)

Therefore, (79) follows immediately from (83). This completes the proof of Lemma 3.9.

Lemmas 3.8-3.9 conclude Theorem 3.1. With the global regularity established in

Lemmas 3.1–3.8, we are able to prove the uniqueness of the solution.

Theorem 3.2 Under the assumptions of Theorem 1.1, the solution of (1)–(2) is unique.

Proof. Suppose there are two solutions (ρ1, U1, P1) and (ρ2, U2, P2) to (1)–(2). Setting

ρ̃ = ρ1 − ρ2, Ũ = U1 − U2, and P̃ = P1 − P2, then (ρ̃, Ũ , P̃ ) satisfy

Ũt + U1 · ∇Ũ + Ũ · ∇U2 +∇P̃ = ν∆Ũ + ρ̃e2

ρ̃t + U1 · ∇ρ̃+ Ũ · ∇ρ2 = 0,

∇ · Ũ = 0,

Ũ |∂Ω = 0,

Ũ(x, 0) = 0, ρ̃(x, 0) = 0, x ∈ Ω.

(84)

Since ∇ · U1 = 0 and U1|∂Ω = 0, taking the L2 inner products of (84)1 with Ũ and (84)2

with ρ̃, one has

1

2

d

dt

(
‖ρ̃‖2 + ‖Ũ‖2

)
+ ν‖∇Ũ‖2 = −

∫
Ω

ρ̃(Ũ · ∇ρ2)dx−
∫

Ω

Ũ · (Ũ · ∇U2)dx +

∫
Ω

ρ̃ṽdx,
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where ṽ is the second component of Ũ . Using the estimates for ρ2 and U2, standard

calculations give that

1

2

d

dt

(
‖ρ̃‖2 + ‖Ũ‖2

)
+ ν‖∇Ũ‖2

≤ ‖∇ρ2‖L∞(‖ρ̃‖2 + ‖Ũ‖2) + ‖∇U2‖L∞‖Ũ‖2 + (‖ρ̃‖2 + ‖Ũ‖2)

≤ C(‖ρ̃‖2 + ‖Ũ‖2),

which implies that

e−2Ct(‖ρ̃‖2 + ‖Ũ‖2) ≤ ‖ρ̃(0)‖2 + ‖Ũ(0)‖2 = 0,

for any t ≥ 0. So the solution of (1)–(2) is unique. This completes the proof of Theorem

3.2.

This theorem and Theorem 3.1 implies our main result, Theorem 1.1.

4 Remarks

We have the following remarks in order.

1. It is interesting to study the 2D Boussinesq equations over bounded domains with

non-smooth boundary, e.g., any polygonal domain. In that case, we have to in-

troduce a weak solution. Similar to Navier-Stokes equations, one could use several

formulations, e.g., velocity and pressure formulation, vorticity and stream function

formulation or stream function formulation. In particular, the regularity of the so-

lutions is an interesting problem when the domain is a polygon. We leave the study

in a future paper.

2. It is also interesting to study the 2D inviscid Boussinesq equations with density

diffusion in bounded domains with smooth boundary. Due to the diffusion and

boundary effect, the potential energy associated with the density is expected to

converge exponentially to a constant, which is either the value of the density on

the boundary of the domain in the case of the Dirichlet boundary condition, or

the average of the density over the domain in the case of the Neumann boundary

condition due to the conservation of total mass. The investigation will be carried

out in a forthcoming paper.
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