CS 1050 Homework 10 Solutions

1. We need to prove that f is not O(g). Suppose that f is O(g). Then there are constants c, n_0 such that $f(n) \leq c \cdot g(n)$ for all $n \geq n_0$. Let m be any odd integer greater than c and n_0 , i.e. $m = \max\{c, n_0\}$ and m is odd. Clearly m exists since c, n_0 are constants. Since m is odd, g(m) = 1. Therefore we get,

$$f(m) = m$$

$$\Rightarrow f(m) > c$$

$$\Rightarrow f(m) > c \cdot g(m)$$

which is a contradiction since $m > n_0$. Therefore out initial assumption is wrong. So f is not O(q).

2.a In homework 9, problem 5, we showed that given a positive integer A, for all $n \geq 2A^2$, $n! > A^n$. We will use this fact in our proof here. Suppose that f is O(g). Then there exists constants c, n_0 such that $f(n) \leq c \cdot g(n)$ for all $n \geq n_0$. That is, $n! \leq c \cdot 3^n$ for all $n \geq n_0$. Now pick an integer m such that $m > \max\{3c, 2 \cdot 3^2, n_0\}$. That is, $m - 1 \geq 2 \cdot 3^2$. We know from our proof in homework 9, that $(m-1)! > 3^{m-1}$. So, we get,

$$f(m) = m \cdot (m-1)!$$

$$\Rightarrow f(m) > m \cdot 3^{m-1}$$

$$\Rightarrow f(m) > 3c \cdot 3^{m-1} \text{ (since } m > 3c)$$

$$\Rightarrow f(m) > c \cdot 3^m = c \cdot q(m).$$

which is a contradiction because $m > n_0$. Therefore our initial assumption is wrong. So f is not O(g).

- **b.** Again, in problem 5 of homework 9, we showed that given a positive integer A, for all $n \ge 2A^2$, $n! > A^n$. Substituting, A = 3, we get that for all $n \ge 2 \cdot 3^2 = 18$, $n! > 3^n$, i.e. f(n) > g(n). Therefore g is O(f).
- **3. Proof.** We consider the ratio of g(n) and f(n), as follows,

$$\frac{g(n)}{f(n)} = n^{\beta - \alpha}$$

Now since $n \geq 1$, and $\beta - \alpha \geq 0$, we get that $n^{\beta - \alpha} \geq 1$. Therefore $\frac{g(n)}{f(n)} \geq 1$ for all $n \geq 1$.

$$\Rightarrow g(n) \geq f(n)$$
 for all $n \geq 1$.

which implies f is O(g).

4. Taking the ratio of f(n) and g(n), we get,

$$\frac{f(n)}{g(n)} = \frac{4^n}{2^n} = 2^n$$

Taking limits,

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} 2^n = \infty$$

So, the limit does not converge. Therefore f is not O(g).

5. Taking the ratio of f(n) and g(n), we get,

$$\frac{f(n)}{g(n)} = \frac{n \log_2 n}{n} = \log_2 n$$

Taking limits,

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \log_2 n = \infty$$

So, the limit does not converge. Therefore f is not O(g).

6a. We have $f(n)=\log_2^3(n)=(\log_2 n)^3$, and $g(n)=\log_e n^3=(3\log_e 2)\log_2 n$. Taking the ratio of f(n) and g(n) we get,

$$\frac{f(n)}{g(n)} = \frac{(\log_2 n)^3}{(3\log_e 2)\log_2 n} = \frac{(\log_2 n)^2}{3\log_e 2}.$$

Taking the limit,

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{(\log_2 n)^2}{3\log_e 2} = \infty \qquad \text{(since } 3\log_e 2 \text{ is a constant)}$$

So, the limit does not converge to a constant. Hence, f is not O(g).

b. First we show that h is O(g).

$$\frac{h(n)}{g(n)} = \frac{\log_2 n}{(3\log_e 2)\log_2 n} = \frac{1}{3\log_e 2}$$

Taking the limit,

$$\lim_{n \to \infty} \frac{h(n)}{g(n)} = \lim_{n \to \infty} \frac{1}{3 \log_e 2} = \frac{1}{3 \log_e 2}$$

which is a constant. Therefore we have that h is O(g). We also have that,

$$\lim_{n \to \infty} \frac{g(n)}{h(n)} = \lim_{n \to \infty} \frac{3\log_e 2}{1} = 3\log_e 2$$

which is a constant. So we also have that g is O(h).