## Grassmannian as Continuous Abstract Data Type with Computable Semantics

Seokbin Lee, Donghyun Lim, Sewon Park, and Martin Ziegler Korea Advanced Institute of Science and Technology

1st July 2020

## Grassmannians

## We can think of a Grassmannian as a subspace of a given vector space.

## Grassmannians

We can think of a Grassmannian as a subspace of a given vector space.
More formally, we denote $\operatorname{Gr}(k, V)$ to be the set of all $k$-dimensional linear subspaces of a vector space $V$.

## Grassmannians

We can think of a Grassmannian as a subspace of a given vector space.
More formally, we denote $\operatorname{Gr}(k, V)$ to be the set of all $k$-dimensional linear subspaces of a vector space $V$.

## Example.

The Grassmannian $\operatorname{Gr}\left(1, \mathbb{R}^{3}\right)$ is the set of all lines in $\mathbb{R}^{3}$ passing through the origin. The Grassmannian $\operatorname{Gr}\left(n-1, \mathbb{R}^{n}\right)$ is the set of hyperplanes in $\mathbb{R}^{n}$, passing through the origin.

## Representation of Grassmannian elements

An intuitive way of representing Grassmannian elements is to consider a basis for the subspace, and encoding the basis as column vectors for a $d \times m$ matrix, where $m$ is the subspace dimension and $d$ is the ambient dimension.

## Representation of Grassmannian elements

An intuitive way of representing Grassmannian elements is to consider a basis for the subspace, and encoding the basis as column vectors for a $d \times m$ matrix, where $m$ is the subspace dimension and $d$ is the ambient dimension.
Computation of operations on the Grassmannian is defined with respect to such a basis representation.

## Operations on Grassmannian elements $(1 / 3)$

We are interested in operations on Grassmannian elements.

## Operations on Grassmannian elements $(1 / 3)$

We are interested in operations on Grassmannian elements. In particular, given a subspaces $A$ and $B$ of a $d$-dimensional Euclidean space, we are interested in the complement of $A$, the join and meet of $A$ and $B$, and the projection of $B$ onto $A$.

## Definition.

Given a Grassmannian element $A$, its orthogonal complement is the set $A^{\perp}=\{x: \forall a \in A, x \perp a\}$.

## Operations on Grassmannian elements $(2 / 3)$

## Definition.

Given Grassmannian elements $A$ and $B$, the set
$A+B=\{a+b: a \in A, b \in B\}$ is the join (or Minkowski sum) of $A$ and $B$.

## Operations on Grassmannian elements $(2 / 3)$

## Definition.

Given Grassmannian elements $A$ and $B$, the set
$A+B=\{a+b: a \in A, b \in B\}$ is the join (or Minkowski sum) of $A$ and $B$.

## Definition.

Given Grassmannian elements $A$ and $B$, the set $A \cap B$ is the meet (or intersection) of $A$ and $B$.

## Operations on Grassmannian elements $(3 / 3)$

## Definition.

Given Grassmannian elements $A$ and $B$, the set $\operatorname{proj}_{A} B$ is the projection of $B$ onto $A$.


## Specifications $(1 / 3)$

We will be utilizing Gaussian Elimination for the input matrices.

## Specifications (1/3)

We will be utilizing Gaussian Elimination for the input matrices. The specification on operations has a non-triviality:

## Fact.

Testing inequality in Exact Real Computation is equivalent to the Halting problem, so in undecidable (yet semidecidable).

## Specifications (1/3)

We will be utilizing Gaussian Elimination for the input matrices. The specification on operations has a non-triviality:

## Fact.

Testing inequality in Exact Real Computation is equivalent to the Halting problem, so in undecidable (yet semidecidable).

Since we are representing subspaces as matrices with elements in $\mathbb{R}$, we have the following:

## Corollary.

Testing equality " $x=0$ " is undecidable.

## Specifications (2/3)

Fortunately, we have the following multi-valued "select" operator, which is computable:

## Specifications (2/3)

Fortunately, we have the following multi-valued "select" operator, which is computable:

## Definition.

The multi-valued select function takes two inputs $b$ and $c$ from $\{0,1, \perp\}$, and computes as follows:

$$
\operatorname{select}(b, c)= \begin{cases}0 & \text { if } b \text { is defined } \\ 1 & \text { if } c \text { is defined } \\ 0 / 1 & \text { if both are defined } \\ \perp & \text { if neither are defined }\end{cases}
$$

## Specifications (3/3)

We will thus use a modified version of Gaussian Elimination that instead does not check for equality.

We will thus use a modified version of Gaussian Elimination that instead does not check for equality.

* Gaussian elimination will fall pint searching bat without column soritannz
(1) locate non-zero entry
(2) Switch rows
(3) reduce
(4) iterate


$$
\left[\begin{array}{llll}
7 & * & * \\
* & * & * \\
* * & 0 & * \\
* & * 0 & 7
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
7 * * * \\
7 * 0 & \frac{7}{4} \\
* * 0 & 7 \\
* * 0 & 7
\end{array}\right]
$$

## Specifications (3/3)

We will thus use a modified version of Gaussian Elimination that instead does not check for equality.

* Gaussian elimenination will fall pius t saucbing bat without column soothing
(1) late mon-zero entry
(3) reduce
(4) iterate
$\left[\begin{array}{lll}7 * & 7 & 7 \\ 7 & * & * \\ * & * & * \\ * \\ * & * & 7\end{array}\right]$



Also, we will specify that the dimension of the output space is given as part of the input.

## Algorithms for operations (1/4)

The algorithm for the orthogonal complement of a subspace $A$ is given in the following pseudocode.

## Algorithms for operations (1/4)

The algorithm for the orthogonal complement of a subspace $A$ is given in the following pseudocode.

```
procedure Gaussian1( }A,k
```

            for \(i\) from 1 to \(k\) do
                \(j \leftarrow \operatorname{select}\left(\left|A_{i, i}\right|>0, \ldots,\left|A_{i, n}\right|>0\right)\)
                    Swap \(c_{i}\) and \(c_{j}\) of \(A \quad D c_{i}\) denotes the \(i\)-th column of \(A\)
            for \(p\) from \(i+1\) to \(n\) do
                    \(c_{p} \leftarrow c_{p}-\frac{A_{i, p}}{A_{i, i}} c_{i}\)
        return \(A\)
    procedure \(\operatorname{Complement}(A, m, d)\)
    9: $M \leftarrow\left[\begin{array}{c}A^{T} \\ I_{d}\end{array}\right] \quad \triangleright I_{d}$ is the $d \times d$ identity matrix
10: $\quad M \leftarrow \operatorname{Gaussian}(M, m)$
11: return $M[m+1: m+d, m+1: d] \quad \triangleright$ return the last $d$ rows and $d-m$ columns of $M$

## Algorithms for operations (1/4)

The algorithm for the orthogonal complement of a subspace $A$ is given in the following pseudocode.
procedure Gaussian $1(A, k)$
for $i$ from 1 to $k$ do
$j \leftarrow \operatorname{select}\left(\left|A_{i, i}\right|>0, \ldots,\left|A_{i, n}\right|>0\right)$
Swap $c_{i}$ and $c_{j}$ of $A \quad \triangleright c_{i}$ denotes the $i$-th column of $A$ for $p$ from $i+1$ to $n$ do

$$
c_{p} \leftarrow c_{p}-\frac{A_{i, p}}{A_{i, i}} c_{i}
$$

        return \(A\)
    : procedure Complement $(A, m, d)$

```
9: \(\quad M \leftarrow\left[\begin{array}{c}A^{T} \\ I_{d}\end{array}\right]\)

10: \(\quad M \leftarrow \operatorname{Gaussian}(M, m)\)
11: return \(M[m+1: m+d, m+1: d] \quad \triangleright\) return the last \(d\) rows and \(d-m\) columns of \(M\)
This follows from the fact that \(\operatorname{col}(A)^{\perp}=\operatorname{ker}\left(A^{T}\right)\).

\section*{Algorithms for operations (2/4)}

The following describe the algorithm for the join, meet, and projection of two subspaces.

\section*{Algorithms for operations (2/4)}

The following describe the algorithm for the join, meet, and projection of two subspaces.
For join and meet, we want to reduce the matrix \(\left[\begin{array}{c|c}A & B \\ A & 0\end{array}\right]\) to column-reduced form \(\left[\begin{array}{c|c}C & 0 \\ * & D\end{array}\right]\) via Zassenhaus' Algorithm.

\section*{Algorithms for operations (2/4)}

The following describe the algorithm for the join, meet, and projection of two subspaces.
For join and meet, we want to reduce the matrix \(\left[\begin{array}{c|c}A & B \\ A & 0\end{array}\right]\) to column-reduced form \(\left[\begin{array}{c|c}C & 0 \\ * & D\end{array}\right]\) via Zassenhaus' Algorithm.
```

    procedure Gaussian2 \((A, r)\)
    for \(i\) from 1 to \(k\) do
        if \(r=0\) then
            return \(A\)
        \(j, k \leftarrow \operatorname{select}\left(\left|A_{1,1}\right|>0, \ldots,\left|A_{2 d, m+n}\right|>0\right)\)
        Swap \(c_{1}\) and \(c_{k}\) of \(A\)
        for \(p\) from 2 to \(n\) do
            \(c_{p} \leftarrow c_{p}-\frac{A_{j, p}}{A_{j, 1}} c_{1}\)
        \(A[1: j-1 \cup j+1: m, 2: n] \leftarrow \operatorname{Gaussian} 2(A[1: j-1 \cup j+1: m, 2: n], r-1)\)
        return \(A\)
    procedure \(\operatorname{Join}(A, B, l)\)
    12: $\quad M \leftarrow\left[\begin{array}{c|c}A & B \\ A & 0\end{array}\right]$
$M \leftarrow \operatorname{Gaussian} 2(M, l)$
return $M[1: d, 1: l]$

```

\section*{Algorithms for operations (3/4)}

Whereas the submatrix \(C\) has the information of the join, the submatrix \(D\) has the meet:

\section*{Algorithms for operations (3/4)}

Whereas the submatrix \(C\) has the information of the join, the submatrix \(D\) has the meet:
procedure \(\operatorname{Meet}(A, B, l)\)
12: \(\quad M \leftarrow\left[\begin{array}{l|l}A & B \\ A & 0\end{array}\right]\)
\(M \leftarrow \operatorname{Gaussian} 2(M, l)\)
return \(M[d+1: 2 d, m+n-k+1: m+n]\)

\section*{Algorithms for operations (4/4)}

Finally, the algorithm for projection is given as below; recall that a projection matrix is of the form \(A\left(A^{T} A\right)^{-1} A^{T}\) for the underlying subspace \(A\).

\section*{Algorithms for operations (4/4)}

Finally, the algorithm for projection is given as below; recall that a projection matrix is of the form \(A\left(A^{T} A\right)^{-1} A^{T}\) for the underlying subspace \(A\).
procedure \(\operatorname{Projection}(A, B, l)\)
12: \(\quad P \leftarrow A\left(A^{T} A\right)^{-1} A^{T} \quad \triangleright\) We are guaranteed the existence of \(\left(A^{T} A\right)^{-1}\) because \(A^{T} A\) is regular return Gaussian2 \((P B, l)[1: d, 1: l]\)

\section*{Implementation in iRRAM}

The source code can be viewed at https://github.com/realcomputation/irramplus/tree/master/ GRASSMANN.

Thank you!```

