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Grassmannians

We can think of a Grassmannian as a subspace of a given vector
space.

More formally, we denote Gr(k, V ) to be the set of all
k-dimensional linear subspaces of a vector space V .

Example.

The Grassmannian Gr(1,R3) is the set of all lines in R3 passing
through the origin. The Grassmannian Gr(n− 1,Rn) is the set of
hyperplanes in Rn, passing through the origin.
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Representation of Grassmannian elements

An intuitive way of representing Grassmannian elements is to
consider a basis for the subspace, and encoding the basis as
column vectors for a d×m matrix, where m is the subspace
dimension and d is the ambient dimension.

Computation of operations on the Grassmannian is defined with
respect to such a basis representation.
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Operations on Grassmannian elements (1/3)

We are interested in operations on Grassmannian elements.

In particular, given a subspaces A and B of a d-dimensional
Euclidean space, we are interested in the complement of A, the
join and meet of A and B, and the projection of B onto A.

Definition.

Given a Grassmannian element A, its orthogonal complement is
the set A⊥ = {x : ∀a ∈ A, x⊥ a}.
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Operations on Grassmannian elements (2/3)

Definition.

Given Grassmannian elements A and B, the set
A+B = {a+ b : a ∈ A, b ∈ B} is the join (or Minkowski sum) of
A and B.

Definition.

Given Grassmannian elements A and B, the set A ∩B is the meet
(or intersection) of A and B.
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Operations on Grassmannian elements (3/3)

Definition.

Given Grassmannian elements A and B, the set projAB is the
projection of B onto A.
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Specifications (1/3)

We will be utilizing Gaussian Elimination for the input matrices.

The specification on operations has a non-triviality:

Fact.

Testing inequality in Exact Real Computation is equivalent to the
Halting problem, so in undecidable (yet semidecidable).

Since we are representing subspaces as matrices with elements in
R, we have the following:

Corollary.

Testing equality “x = 0” is undecidable.
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Specifications (2/3)

Fortunately, we have the following multi-valued ”select” operator,
which is computable:

Definition.

The multi-valued select function takes two inputs b and c from
{0, 1,⊥}, and computes as follows:

select(b, c) =


0 if b is defined

1 if c is defined

0/1 if both are defined

⊥ if neither are defined
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Specifications (3/3)

We will thus use a modified version of Gaussian Elimination that
instead does not check for equality.

Also, we will specify that the dimension of the output space is
given as part of the input.
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Algorithms for operations (1/4)

The algorithm for the orthogonal complement of a subspace A is
given in the following pseudocode.

This follows from the fact that col(A)⊥ = ker(AT ).
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Algorithms for operations (2/4)

The following describe the algorithm for the join, meet, and
projection of two subspaces.

For join and meet, we want to reduce the matrix

[
A B
A 0

]
to

column-reduced form

[
C 0
∗ D

]
via Zassenhaus’ Algorithm.
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Algorithms for operations (3/4)

Whereas the submatrix C has the information of the join, the
submatrix D has the meet:
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Algorithms for operations (4/4)

Finally, the algorithm for projection is given as below; recall that a
projection matrix is of the form A(ATA)

−1
AT for the underlying

subspace A.
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Implementation in iRRAM

The source code can be viewed at
https://github.com/realcomputation/irramplus/tree/master/
GRASSMANN.
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Thank you!
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