
RESURGENCE OF THE FRACTIONAL POLYLOGARITHMS

OVIDIU COSTIN AND STAVROS GAROUFALIDIS

Abstract. The fractional polylogarithms, depending on a complex parameter α, are defined by a series
which is analytic inside the unit disk. After an elementary conversion of the series into an integral presen-
tation, we show that the fractional polylogarithms are multivalued analytic functions in the complex plane
minus 0 and 1. For non-integer values of α, we prove the analytic continuation, compute the monodromy
around 0 and 1, give a Mittag-Leffler decomposition and compute the asymptotic behavior for large values
of the complex variable. The fractional polylogarithms are building blocks of resurgent functions that are
used in proving that certain power series associated with knotted objects are resurgent. This is explained
in a separate publication [CG3]. The motivic or physical interpretation of the monodromy of the fractional
polylogarithms for non-integer values of α is unknown to the authors.
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1. Introduction

1.1. The fractional polylogarithm and its history. For a complex number α, let us define the α-

polylogarithm function Liα(z) by the following series:

(1) Liα(z) =
∞
∑

n=1

zn

nα

which is absolutely convergent for |z| < 1. These functions appear in algebraic geometry, number theory,
mathematical physics, applied mathematics and the theory of special functions. Since

(2) z
d

dz
Liα(z) = Liα−1(z)

we really need to study Liα(z) for α mod Z.
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For integer α a lot is known about the α-polylogarithm. For example, Li0(z) = 1/(1− z), thus (2) implies
that for all α ∈ Z−, Liα(z) ∈ Q(z) is a rational function with a single singularity at z = 1.

When α ∈ N, the functions Liα(z) were studied in the nineteenth century, forgotten for many years, and
rediscovered by the algebraic geometers in the late 1970s; see for example Lewin’s book [Lw], Bloch’s paper
[Bl] and the survey articles [Oe, Za1, Za2]. It is well known that Liα(z) is a multivalued function defined on
C \ {0, 1} with computable monodromy; see [We, Ha, BD, Oe] and [MPV]. For α ∈ N, the α-polylogarithms
are special functions that play a key role in algebraic geometry. For α ∈ N, the special values

(3) Liα(1) = ζ(α)

are well-known examples of periods; see [KZ]. This is not an accident. Zagier and Deligne conjectured
that special values (at integers) of L-functions of algebraic varieties are expressed by the α-polylogarithm
for α ∈ N; see [Za1] and [De]. A motivic interpretation of Liα(z) for α ∈ N is given in [BD], as well as a
conjecture that the α-th Beilinson-Deligne regulator maps are expressed by the α-polylogarithm for α ∈ N.

For integer α, elliptic polylogarithms that resemble Liα(ez) were introduced by Beilinson-Levin in [BL],
and further studied in [Lv] in relation to motivic cohomology conjectures for elliptic curves. For a recent
survey on the better-known dilogarithm, see [Za2].

The α-polylogarithms for noninteger α are also classical and modern objects. They were studied in
the eighteenth century by Jonquière as a function of two complex variables α and z; see [Jo]. Several
approximation formulas were obtained by Jonquière and half a century later by Truesdell, whose motivation
was asymptotic properties of polymer structures; see [Tr]. Further results regarding approximation and
analytic continuation were obtained by Pickard in the sixties, and more recently by Kenyon-Wilson in
relation to resonance of some statistical mechanical models; see [Pi, KW] and also [CLZ, Prop.1].

The α-polylogarithm functions for half-integer α appear naturally in the context of an Euler-MacLaurin

summation, and are also used in proving resurgence of some power series associated to knotted objects; see
[CG2] and [CG3]. They also play a prominent role in proving analytic continuation of some power series
that encode quantum invariants of knotted objects; see for example [Ga, Sec.7].

In addition, in 1994, M. Kruskal proposed to the first author to study the analytic continuation and the
global bahavior of the function Li1/2(z). This problem was a motivation for a global reconstruction theorem
of resurgent functions from local data, developed by the first author several years ago (and independently

by Écalle in [Ec2]), and recently written in [C].
The purpose of this short note is to study the

(a) the analytic continuation
(b) the Mittag-Leffler decomposition
(c) the asymptotic behavior for large |z|

of the polylogarithm function Liα(z) for non-integer α. With over a century of history on the fractional
polylogarithm, some of our results resemble statements of the above mentioned literature. However, we were
not able to find the key Equation (13), nor an explicit computation of the monodromy around z = 0 and
z = 1 in the literature. The latter does not seem to have a finite dimensional faithful representation, and its
motivic or physical origin is unknown when α ∈ Q \ Z.

1.2. Statement of the results. Let us recall first what is a multivalued analytic function on C \ {0, 1}.
Such functions are examples of global analytic functions (see [Ah]) and examples of resurgent functions in

the sense of Écalle, [Ec1]. Let X denote the universal cover of (C \ {0, 1}, 1/2) with base point at 1/2. As a
set, we have:

(4) X =

{

homotopy classes [c] of paths c in C \ {0, 1} starting at
1

2

}

.

There is an action of F = π1(C \ {0, 1}, 1/2) on X given by g · [c] = [γ.c] for g = [αγ] and [c] ∈ X . By a
multivalued analytic (in short, resurgent) function f on C \ {0, 1} we mean an analytic function on X . For
[c] ∈ X , where c is a path from 1/2 to z, we write, following [Oe]:

(5) f [c](z) := f([c]).
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Observe that F is a free group on [c0] and [c1], where

c0(t) =
1

2
e2πit, c1(t) = 1 +

1

2
e2πit

are paths around 0 and 1 respectively:
c

0 c
1

0 1

1/2

In what follows, α is not an integer. Let us introduce some useful notation. Let γ denote a Hankel contour

that encircles the positive real axis:

0

γ

The next definition uses notation familiar to algebraic geometry. See for example the survey paper [Oe].

Definition 1.1. For α ∈ C \ Z, let Mα(z) denote the multivalued function on C \ {0, 1} given by:

(6) Mα(z) = Cα (log z)α−1

where

(7) Cα = eπi(−α−1)Γ(1 − α)

For k ∈ Z, let us define the twisted multivalued functions Mα[k](z) for z ∈ C \ {0, 1} by:

(8) Mα[k](z) := Mα(z e2πik) = Cα (log z + 2πik)α−1.

The following theorem converts the series (1) of Liα(z) into an integral, from which we can easily deduce
the existence of analytic continuation.

Theorem 1. (a) For |z| < 1 and α such that Re(α) > 0, Liα(z) has an integral representation:

Liα(z) =
1

Γ(α)

∫ ∞

0

qα−1 z

eq − z
dq(9)

known as Appell’s integral in [Tr, Sec.2].
(b) For |z| < 1 and α ∈ C \ Z, Liα(z) has an integral representation:

Liα(z) =
Cα

2πi

∫

γ

qα−1 z

eq − z
dq(10)

(c) For all α ∈ C \ Z, Liα(z) has an analytic continuation to a multivalued function on C \ {0, 1}. More
precisely, let z ∈ C \ {0, 1} and c any path from 1/2 to z in C \ {0, 1}. Then, we have:

Li[c0c]
α (z) = Li[c]α (z) Li[c1c]

α (z) = Li[c]α (z) − (1 − e2πiα)M [c]
α (z)(11)

M [c0c]
α (z) = M [c]

α [1](z) M [c1c]
α (z) = −(1 − e2πiα)M [c]

α (z)(12)

(d) For α such that Re(α) < 0, Liα(z) has a Mittag-Leffler type decomposition:

(13) Liα(z) = Cα

(

(log z)α−1 +
∞
∑

k=1

(log z + 2πik)α−1 + (log z − 2πik)α−1

)

where the series is uniformly convergent on compact sets. Thus, we have:

(14) Liα =
∑

k∈Z

Mα[k] := lim
N→∞

N
∑

k=−N

Mα[k].

When α is a negative integer, the right hand side of (14) is an Eisenstein series; see [Ap]. The Mittag-
Leffler decomposition (14) is an analogue of Hurwitz’s theorem; see [Ap]. The Mittag-Leffler (14) implies is
the following corollary.
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Corollary 1.2. For α such that Re(α) < 0 and z such that Re(z) < 0 and |z| < 2π we have:

(15) Liα(ez) = Cαzα−1 +

∞
∑

n=0

ζ(α − n)

n!
zn.

Compare with [CLZ, Prop.1].
The integral formula (9) and some stationary phase implies the following estimate for the behavior of the

fractional polylogarithms for large |z|.

Corollary 1.3. For Re(α) > 0 and z large we have:

(16) Liα(z) = −
1

Γ(α + 1)
((log z)α + o(1)) .

For α ∈ N, this is known; see [Oe, Eqn.7].

1.3. Plan of the proof. Once we convert the series definition of the α-polylogarithms into an integral
formula, analytic continuation follows from a general principle, i.e., by moving the contour of integration
and achieving analytic continuation. If we move the contour of integration to −∞, and the integral vanishes
at −∞, collecting residues gives a Mittag-Leffler type decomposition of Liα(z) for α < 0, α /∈ Z.

1.4. Acknowledgement. An early version of this paper was presented at talks in Orsay and the University
of Maryland in the fall of 2006. The authors wish to thank J. Écalle for encouraging conversations. M.
Kontsevich pointed out to the second author that some aspects of the fractional polylogarithms have been
studied independently by M. Kontsevich and D. Zagier. After the paper was written, J. Morava informed
us of [EM], where the fractional polylogarithms are also studied from the point of view of distributions over
the real numbers.

2. Proofs

2.1. Proof of Theorem 1. In this section we give a proof of Theorem 1.

Proof. (a) For Re(α) > 0 and n ∈ N+ we have:

1

nα
=

1

Γ(α)

∫ ∞

0

qα−1e−nqdq

Interchanging summation and integration (valid for |z| < 1) gives:

Liα(z) =

∞
∑

n=1

1

nα
zn

=
1

Γ(α)

∫ ∞

0

qα−1
∞
∑

n=1

(ze−q)ndq

=
1

Γ(α)

∫ ∞

0

qα−1 z

eq − z
dq.

(b) Let

(17) Iα(z) = Cα

∫

γ

qα−1 z

eq − z
dq

denote the right hand side of Equation (10). Observe that Iα(z) is well-defined for α ∈ C\Z, and z ∈ C\[1,∞).
Since for fixed z inside the unit disk, both sides of (10) are analytic functions of α ∈ C \ Z, it suffices to

prove (10) for Re(α) > 0, α 6∈ Z. We claim that for such α, we have:

(18)

∫ ∞

0

qα−1 z

eq − z
dq =

1

1 − e2πiα

∫

γ

qα−1 z

eq − z
dq.
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Indeed, we push the Hankel contour γ until its upper (resp. lower) part touches R+ from above (resp. below)
and push the tip of the contour to touch zero. On the upper part we have qα−1 = |q|α−1, and on the lower
side we have

(19) qα−1 = e(α−1) ln |q|+2πi(α−1) = |q|α−1e2πiα.

Moreover, the upper integral is traversed in the direction (0,∞) while the lower one is traversed from (∞, 0).
We thus get

(20)

∫

γ

qα−1 1

eq − z
dq = (1 − e2πiα)

∫ ∞

0

qα−1 1

eq − z
dq

Thus, (18) follows. Since for α ∈ C \ Z the Γ function satisfies the the reflexion symmetry (see eg. [Ol]):

(21)
1

(1 − e2πiα)Γ(α)
=

eπi(−α−1)Γ(1 − α)

2πi
=

Cα

2πi
,

(b) follows.
(c) Fix α such that Re(α) > 0, α /∈ Z. The integral representation (9) analytically continues Liα(z) for z in
the cut plane C \ [1,∞). Let us compute the variation (i.e., jump) of the function across the cut z ∈ (1,∞).
Changing variable to eq = x in (9), we have:

Liα(z) =
1

Γ(α)

∫ ∞

1

(log x)α−1

x

z

x − z
dx

Fix z ∈ (1,∞). Then the above equality gives by contour deformation and Cauchy’s theorem (see eg. [Df]):

lim
ǫ→0+

(Liα(z + iǫ) − Liα(z − iǫ)) =
2πi

Γ(α)
Res

(

(log x)α−1

x

z

x − z
, x = z

)

=
2πi

Γ(α)
(log z)α−1

= (1 − e2πiα)Mα(z).

On the other hand, Equation (19) implies that

lim
ǫ→0+

(Mα(z + iǫ) − Mα(z − iǫ)) = (1 − e2πiα)Mα(z).

Since

(22) f [c1c](z) = − lim
ǫ→0+

(f [c](z + iǫ) − f [c](z − iǫ)),

the above equations imply that

Li[c1c]
α (z) = Li[c]α (z) − (1 − e2πiα)M [c]

α (z)

M [c1c]
α (z) = −(1 − e2πiα)M [c]

α (z).

On the other hand, (9) defines an analytic function for z ∈ (−∞, 0), and the monodromy of Mα(z) for z = 0
can be computed from the definition of Mα(z). Thus, we obtain

Li[c0c]
α (z) = Li[c]α (z)

M [c0c]
α (z) = M [c]

α [1](z).

This proves that when Re(α) > 0, α /∈ Z, Liα(z) is a multivalued function on C \ {0, 1} with monodromy
given by (11) and (12). If α ∈ C \ Z, use (2), the fact

(23) z
d

dz
Mα(z) = Mα−1(z)

and differentiation to conclude (c).
(d) Since both sides of (13) are analytic functions of α for fixed z, it suffices to prove (13) for α such

that Re(α) < 0, α /∈ Z. For such α, we will use the integral representation of Liα(z) given by (10). Fix a
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complex number z ∈ C \ [1,∞) and the Hankel contour γ which separates the plane into two regions so that
2πik + log z lies in the region that contains −∞ for all k ∈ Z. This is possible since the points 2πik + log z
lie in a vertical line. Now, push the Hankel contour to the left, and deform it to −∞. Since Re(α) < 0, the
integral vanishes when the contour is deformed to −∞. In the process of deformation, we apply Cauchy’s
theorem and collect residues at the singularities. The singularities of the integrand are simple poles at the
points where q = log z + 2πik for integer k. The residue is given by:

Res

(

qα−1 z

eq − z
, q = log z + 2πik

)

= (log z + 2πik)α−1

When we push the contour to −∞, we collect the series (13) which is absolutely convergent on compact sets.
The result follows. �

Remark 2.1. Part (b) of Theorem 1 states that for all α ∈ C \ Z and |z| < 1 we have:

Liα(z) = Iα(z).

Moreover, Liα(z) satisfies the differential equation (2). It is easy to show independently from Theorem 1
that for every α ∈ C \ Z, Iα(z) satisfies the differential equation

(24) z
d

dz
Iα(z) = Iα−1(z).

Indeed, use the algebraic identity:

(25)
d

dz

z

eq − z
=

eq

(eq − z)2
=

d

dq

−1

eq − z

After differentiation and integration by parts, we have:

zI ′α(z) = Cαz

∫

γ

qα−1 eq

(eq − z)2
dq

= Cαz

∫

γ

qα−1 d

dq

−1

eq − z
dq

= Cα(α − 1)z

∫

γ

qα−2 1

eq − z
dq

= Cα−1z

∫

γ

qα−2 1

eq − z
dq

= Iα−1(z).

Remark 2.2. An alternative way to prove part (d) of Theorem 1 is to use the Mittag-Leffler decomposition
of the function q → 1/(eq − z) (see [Cn, Sec.V])

(26)
z

eq − z
= −

1

2
+

1

q − log z
+

∞
∑

k=1

1

q − log z + 2πik
+

1

q − log z − 2πik
,

interchange summation and integration in (17) and use the fact that
∫

γ

qα−1 dq

q − log z − 2πik
= 2πi(log z + 2πik)α−1

Remark 2.3. In Écalle’s language, (18) is a special case of

(27)

∫ ∞

0

f(q)dq =
1

1 − e2πiα

∫

γ

f̌(q)dq

together with the fact that if f(q) = qα−1, then f̌(q) = (1 − e2πiα)−1f(q). For a self-contained introduction
to majors/minors, see also [Ma].
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Remark 2.4. The Mittag-Leffler type decomposition (13) implies that Liα(z) is multivalued on C\ {0, 1}, for
all α such that Re(α) < 0, α /∈ Z. It also implies Equations (11) and (12). Indeed, for z near 1 and k 6= 0,
Mα(z) is analytic. Thus, (13) implies that for z near 1 we have

Liα(z) = Mα(z) + h(z)

where h is analytic for z near 1. This proves the second part of Equation (11). If z is near 0, then

Liα(z e2πi) − Liα(z) = Mα[1](z) +
∞
∑

k=1

Mα[k + 1](z) + Mα[−k + 1](z)

−Mα[0](z) −

∞
∑

k=1

Mα[k](z) + Mα[−k](z) = 0.

This implies the first part of Equation (11). Equation (12) follows easily from the definition of Mα(z).

2.2. Proof of Corollaries 1.2 and 1.3. Corollary 1.2 follows by expanding the sum in (13) as a convergent
power series in log z, and using the functional equation for the Riemann zeta function:

ζ(s) = 2sπs−1 sin
(πs

2

)

Γ(1 − s)ζ(1 − s).

Compare with [CLZ, Prop.1].
To prove Corollary 1.3, let us fix α with Re(α) > 0 and consider the right hand side of Equation (9),

which makes sense for z ∈ C \ [1,∞). The idea is to make some changes of variables and integration by
parts. Let us fix an angle θ ∈ (0, 2π) and consider a complex z = |z|eiθ with |z| large.

Making the change of variables q = log τ , integrating by parts, and making a change of variables τ = z +s
and s = zt, we obtain that:

z

∫ ∞

0

qα−1 z

eq − z
dq = z

∫ ∞

1

(log τ)α−1

τ − z

dτ

τ
=

z

α

∫ ∞

1

1

τ − z
d ((log τ)α)

=
z

α

∫ ∞

1

(log τ)α

(τ − z)2
dτ =

z

α

∫ ∞

1−z

(log(z + s))α

s2
ds

=
1

α

∫ ∞e−iθ

1/z−1

(log(z + zt))α

t2
dt =

1

α

∫ ∞e−iθ

1/z−1

(log z + log(t + 1))α

t2
dt.

Let us separate the domain of integration in two parts: |t| ≤ | log z| and | log z| ≤ |t|. The first integral gives:

1

α

∫ log z

1/z−1

(log z + log(t + 1))α

t2
dt =

(log z)α

α

∫ log z

1/z−1

(1 + log(t + 1)/ log z)α

t2
dt.

Note that the numerator of the integrand satisfies:

(

1 +
log(t + 1)

log z

)α

= 1 + O

(

log log z

log z

)

= 1 + o(1).

So, the first integral gives:

1

α

∫ log z

1/z−1

(log z + log(t + 1))α

t2
dt =

(log z)α

α
(1 + o(1))

For the second integral, use (A+B)α ≤ (2 max{A, B})α ≤ 2α(Aα +Bα) (valid for A, B ≥ 0 and Re(α) > 0).
It follows that we can estimate the second integral by:
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1

α

∫ ∞e−iθ

log z

∣

∣

∣

∣

(log z + log(t + 1))α

t2

∣

∣

∣

∣

dt ≤
2α

α

∫ ∞e−iθ

log z

| log z|α

t2
dt +

2α

α

∫ ∞e−iθ

log z

| log(t + 1)|α

t2
dt

= O
(

(log z)α−1
)

.

The result follows.

Remark 2.5. In fact, we can give a transseries expansion of Liα(z) for large z in terms of log z and log log z.
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