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Abstract. Rosso and Jones gave a formula for the colored Jones polynomial of a torus knot,
colored by an irreducible representation of a simple Lie algebra. The Rosso-Jones formula involves
a plethysm function, unknown in general. We provide an explicit formula for the second plethysm of
an arbitrary representation of sl3, which allows us to give an explicit formula for the colored Jones
polynomial of the trefoil, and more generally, for T (2, n) torus knots. We give two independent
proofs of our plethysm formula, one of which uses the work of Carini-Remmel. Our formula for the
sl3 colored Jones polynomial of T (2, n) torus knots allows us to verify the Degree Conjecture for
those knots, to efficiently the sl3 Witten-Reshetikhin-Turaev invariants of the Poincare sphere, and
to guess a Groebner basis for recursion ideal of the sl3 colored Jones polynomial of the trefoil.
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1. Introduction

The initial goal of this paper was to provide a supply of explicit quantum invariants so as to help
in formulating and testing a number of conjectures. The most readily approachable knots in this
context are the (m,n) torus knots, particularly when m = 2. The aim was to give explicit details
for the sl3 invariants, as these are potentially the simplest case after the more readily available
colored Jones (sl2) invariants.

There is a general method of Rosso and Jones to determine any quantum invariant of a torus
knot. For the invariant of the (m,n) torus knot with quantum group module V their calculations
require knowledge of the decomposition of the module ψm(V ) into irreducible representations. This
is a combinatorial problem depending on the quantum group and the choice of V , which does not
always have a readily available explicit formula.

We give here an explicit formula where m = 2 and V is a general irreducible sl3 module; from this
we are able to give a detailed estimate for the extreme degrees of the resulting Laurent polynomial
invariant.

Subsequently the second author reformulated some combinatorial work of Carini and Remmel
[CR98] describing ψ2(V ) for the irreducible slN modules which correspond to partitions with 2
parts. This recovers the explicit formulae for sl3, and also allows us to extend them to slN .

2. The colored sl3 Jones polynomial of the trefoil

In his seminal paper [Jon87], Jones introduced the Jones polynomial of a knot K in 3-space.
The Jones polynomial is a Laurent polynomial in a variable q with integer coefficients, which can
be generalized to an invariant JK,V (q) ∈ Z[q±1] of a (0-framed) knot K colored by a representation
V of a simple Lie algebra g, and normalized to be 1 at the unknot. The definition of JK,V (q) uses
the machinery of quantum groups and may be found in [Tur88, Tur94] and also in [Jan96].

Concrete formulas for the colored Jones polynomial JK,V (q) are hard to find in the case of higher
rank Lie algebras, and for good reasons. For torus knots T , Jones and Rosso gave a formula for
JT,V (q) which involves a plethysm map of V , unknown in general. Our goal is to give an explicit
formula for the second plethysm of representations of sl3 and consequently to give a formula for the
sl3 colored Jones polynomial of the trefoil. To state our results, let Vn1,n2 denote the irreducible
representation of sl3 with highest weight

(1) λ = n1ω1 + n2ω2

where n1, n2 are non-negative integers and ω1, ω2 are the fundamental weights of sl3 dual to the
simple roots α1, α2. In coordinates, we have

α1 = (1,−1, 0), α2 = (0, 1,−1), ω1 =
1

3
(2α1 + α2), ω2 =

1

3
(α1 + 2α2)

The quantum integer [n], the quantum dimension dn1,n2 and the twist parameter θn1,n2 of Vn1,n2 are
defined by

[n] =
q

n
2 − q−

n
2

q
1
2 − q−

1
2

(2)

dn1,n2 =
[n1 + 1][n2 + 1][n1 + n2 + 2]

[2]
(3)

θn1,n2 = q
1
3
(n2

1+n1n2+n2
2)+n1+n2(4)

Let T (m,n) denote the torus knot associated to a pair of coprime natural numbers m,n, and let
JT (m,n),n1,n2

(q) denote the sl3 colored Jones polynomial of the torus knot T (m,n) colored by Vn1,n2.
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Theorem 2.1. For all odd natural numbers n we have

JT (2,n),n1,n2
(q) =

θ−2n
n1,n2

dn1,n2





min{n1,n2}
∑

l=0

n1−l
∑

k=0

(−1)kd2n1−2k−2l,2n2+k−2lθ
n
2
2n1−2k−2l,2n2+k−2l

+

min{n1,n2}
∑

l=0

n2−l
∑

k=0

(−1)kd2n1+k−2l,2n2−2k−2lθ
n
2
2n1+k−2l,2n2−2k−2l

−
min{n1,n2}

∑

l=0

d2n1−2l,2n2−2lθ
n
2
2n1−2l,2n2−2l



 .

Theorem 2.1 can be used to answer for several problems.

• We can verify the sl3-Degree Conjecture of the colored Jones polynomial for the trefoil;
see [GV]. Explicitly, we can compute the lowest degree δ∗

T (2,n),n1,n2
and the highest degree

δT (2,n),n1,n2
of the Laurent polynomial JT (2,n),n1,n2

(q) as follows

(5) δ∗T (2,n),n1,n2
=

{

−n
2n

2
1 − n

2n
2
2 − nn1n2 − 3n

2 n1 − (5n
2 − 2)n2 if n1 ≥ n2

−n
2n

2
1 − n

2n
2
2 − nn1n2 − 3n

2 n2 − (5n
2 − 2)n1 if n1 < n2

(6) δT (2,n),n1,n2
= −(n− 1)(n1 + n2)

The above formula verifies that the degree, restricted to each Kostant chamber, is a qua-
dratic quasi-polynomial.

• We can efficiently compute the Witten-Reshetikhin-Turaev invariant of the Poincare sphere,
complementing calculations of Lawrence [Law03].

• We can guess an explicit Groebner basis for the ideal of recursion relations of the 2-variable
q-holonomic sequence JT (2,3),n1,n2

(q); see [GK10].

Remark 2.2. An alternative formula for the sl3 colored Jones polynomial of T (2, 3) is given by
Lawrence in [Law03]. Lawrence’s formula is derived from the theory of Quantum Groups, and
cannot generalize to the case of T (2, n) torus knots. In contrast, the plethysm formula of Theorem
2.4 below can be generalized to a formula for ψm(Vλ) which allows for an efficient formula of the sl3
colored Jones polynomial of all torus knots. Additional generalizations are possible for all simple
Lie algebras; see [GV].

Remark 2.3. Theorem 2.1 gives an efficient computation of the sl3 colored Jones polynomial of
the 31, 51, 71 and 91 knots in the Rolfsen notation. In low weights, our answer agrees with the
independent computation given by the entirely different methods of the KnotAtlas; see [BN05].
This is a consistency check which simultaneously validates the formulas of Theorem 2.1 and the
data of the KnotAtlas.

2.1. An sl3 plethysm formula. As mentioned above, Theorem 2.1 follows from the Rosso-Jones
formula for the colored Jones polynomial of torus knots and the following plethysm computation.
Let ψm denote the m-plethysm operation.
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Theorem 2.4. For λ as in Equation (1) we have

ψ2(Vλ) =

min{n1,n2}
∑

l=0

n1−l
∑

k=0

(−1)kV2λ−kα1−2l(α1+α2)

+

min{n1,n2}
∑

l=0

n2−l
∑

k=0

(−1)kV2λ−kα2−2l(α1+α2)

−
min{n1,n2}

∑

l=0

V2λ−2l(α1+α2)

3. The Rosso-Jones formula

The polynomial invariant JK,V (q) of a knot K colored by the representation V of a simple
Lie algebra is difficult to compute from its Quantum Group definition even when K = 41 and
g = sl3. Although it is a finite multi-dimensional sum, a practical computation seems out of reach.
Fortunately, there is a class of knots whose quantum group invariant has a simple enough formula
that allows us to extract its q-degree. This is the class of torus knots T (m,n) where m,n are
coprime natural numbers. The simple formula is due to Rosso and Jones, and also studied by the
second named author, [RJ93, Mor95]. Let dλ denote the quantum dimension of the representation
Vλ and θλ is the eigenvalue of the twist operator on the representation Vλ. dλ and θλ are given by

dλ =
∏

α>0

[(λ+ ρ, α)]

[(ρ, α)]
(7)

θλ = q
1
2
(λ,λ+2ρ)(8)

where α belongs to the set of positive roots, ρ = 1
2

∑

α>0 α is half the sum of positive roots and
(·, ·) denotes the g invariant inner product on the dual of the Cartan algebra (normalized so that
the longest root has length

√
2). When g = sl3 and λ is given by (1), then the quantum dimension

and the twist parameter coincide with (3) and (4). For a natural number m, consider the m-Adams

operation ψm on representations. It is given by (see [FH91, Mac95])

(9) ψm(Vλ) =
∑

µ∈Sλ,m

cµλ,mVµ

where cµλ,m are non-zero integers. The Rosso-Jones formula is the following (see [RJ93]):

(10) JT (m,n),λ(q) =
θ−mn
λ

dλ

∑

µ∈Sλ,m

cµλ,mdµθ
n
m
µ

For related discussion, see also [MM08].

4. Schur functions in sl3

4.1. A review of Schur functions. Let us recall some well-known properties of Schur functions
and their relation to the character of irreducible representations of slN , that can be found in
[Mac95, FH91]. For a partition λ with parts λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 0, let sλ1,...,λk

(x1, . . . , xN )
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denote the corresponding Schur function. A partition λ = (λ1, . . . , λk) will be depicted as an
arrangement of boxes as follows (for λ = (4, 2, 1)):

If ωi denote the fundamental weights of slN and ni are nonnegative integers for i = 1, . . . , N − 1,
and λ = (

∑N−1
i=1 ni,

∑N−1
i=2 ni, . . . ,

∑N−1
i=N−1 ni) then

(11) character(VPN−1
i=1 niωi

) = sλ(x1, . . . , xN )

For λ = (4, 2, 1) we then have (n1, n2, n3) = (2, 1, 1).
The plethysm operation ψm is defined by

ψm(sλ(x1, . . . , xN )) = sλ(xm
1 , . . . , x

m
N )

Note that s1 = x1 + · · · + xN and ψ2(s1) = s2 − s1,1.
In slN the irreducible modules correspond to partitions λ with at most N parts. The decom-

position of ψm(Vλ) into irreducibles needed for the invariant of the (m,n) torus knot is given by
the corresponding expansion of the symmetric function ψm(sλ) as a linear combination of Schur
functions.

When N = 3 the Schur function sλ vanishes where λ has more than 3 parts, and satisfies
sa,b,c = sa+1,b+1,c+1. Then sa,b,c = sa−c,b−c, so we need only consider partitions with at most 2
parts. All the same, it will be convenient to use 3 parts in what follows.

4.2. A reformulation of Theorem 2.4. The goal of this section is to give a formula for ψ2(sm1,m2)
as a linear combination of Schur functions, assuming that N = 3.

Definition 4.1. For m1 ≥ m2 ≥ 0, let D(m1,m2) ⊂ N
3 denote the set of tuples (a, b, c) that satisfy

• a+ b+ c = 2m1 + 2m2, 2m1 ≥ a ≥ b ≥ c ≥ 0, a ≥ 2m2 ≥ c
• if b ≥ 2m2 then c ≡ 0 mod 2
• if b ≤ 2m2 then a ≡ 0 mod 2

When m1 < m2, we define D(m1,m2) to be the empty set.

Theorem 4.2. In sl3 for all m1 ≥ m2 we have:

ψ2(sm1,m2) =
∑

(a,b,c)∈D(m1,m2)

(−1)bsa,b,c

It is interesting to note that the coefficient of every Schur function in the expansion of ψ2(sm1,m2)
is 0,±1. The same feature proves to be the case for ψ2(sm1,m2) in the general case of slN , noted in
Subsection 5.1.

4.3. Theorem 4.2 implies Theorem 2.4. Since V ∗
n1ω1+n2ω2

= Vn2ω1+n1ω2 , and JK,V ∗(q) =
JK,V (1/q), it suffices to prove Theorem 2.4 when n1 ≥ n2. Equation (11) for N = 3 implies
that

character(Vn1ω1+n2ω2) = sn1+n2,n2(x1, x2, x3)

Fix nonnegative integers n1 and n2 and set (m1,m2) = (n1 + n2, n2) in Theorem 4.2.
We can parametrise a tuple (a, b, c) ∈ D(m1,m2) that satisfies b ≥ 2m2 by setting b = 2m2 +

k, c = 2l, to get a = 2m1 − k − 2l, satisfying the inequalities k, l ≥ 0, k ≤ m1 − m2 − l,
l ≤ m2,m1 −m2. Likewise, we can parametrize a tuple (a, b, c) ∈ D(m1,m2) that satisfies b ≤ 2m2
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by setting b = 2m2−k, a = 2m1−2l to get c = 2l+k, satisfying k, l ≥ 0, k ≤ m2−l, l ≤ m2,m1−m2.
Thus Theorem 4.2 implies the formula of Theorem 2.4.

4.4. A reformulation of Theorem 4.2. To establish Theorem 4.2 we first prove Theorem 4.3.

Theorem 4.3. For m1 ≥ m2 we have




∑

(a,b,c)∈D(m1,m2)

(−1)bsa,b,c



ψ2(s1) =
∑

(a′,b′,c′)∈D(m1+1,m2)

(−1)b
′

sa′,b′,c′

+
∑

(a′,b′,c′)∈D(m1,m2+1)

(−1)b
′

sa′,b′,c′

+
∑

(a′,b′,c′)∈D(m1−1,m2−1)
m2>0

(−1)b
′

sa′,b′,c′ .

In the proof of Theorem 4.2 we will need the following special cases of the Littlewood-Richardson

rule adapted to sl3, bearing in mind that Schur functions for partitions with more than 3 parts
are 0 in this case; see [Mac95]. In the next lemma and below, we will use the convention that
sa1,a2,a3 = 0 unless a1 ≥ a2 ≥ a3. Furthermore, the notation sa,b,c|a>b (resp. sa,b,c|a=b) means sa,b,c

when a > b (resp. a = b) and zero otherwise.

Lemma 4.4. In sl3 we have

sa,b,cs2 = sa+2,b,c + sa,b+2,c + sa,b,c+2 + sa+1,b+1,c|a>b + sa+1,b,c+1 + sa,b+1,c+1|b>c

sa,b,cs1,1 = sa+1,b+1,c + sa+1,b,c+1 + sa,b+1,c+1

sm1,m2s1 = sm1+1,m2 + sm1,m2+1 + sm1,m2,1

Corollary 4.5. For a ≥ b ≥ c ≥ 0 we have

sa,b,c(s2 − s1,1) = sa+2,b,c + sa,b+2,c + sa,b,c+2 − sa+1,b+1,c|a=b − sa,b+1,c+1|b=c

Corollary 4.6. Since ψ2 is a ring homomorphism, and ψ2(s1) = s2 − s1,1, we have

ψ2(sm1,m2)(s2 − s1,1) = ψ2(sm1,m2)ψ2(s1) = ψ2(sm1,m2s1)

=

{

ψ2(sm1+1,m2) + ψ2(sm1,m2+1) + ψ2(sm1,m2,1) if m1 > m2 > 0,
ψ2(sm1+1,m2) + ψ2(sm1,m2+1) if m1 > m2 = 0.

4.5. Theorem 4.3 implies Theorem 4.2. We deduce Theorem 4.2 from Theorem 4.3 by induc-
tion on m2.

When m2 = 0 we have (a, b, c) ∈ D(m1, 0) iff c = 0, a + b = 2m1, a ≥ b ≥ 0. It is known (for
example, [CGR84, Eqn.2.30]) that

ψ2(sm) =

m
∑

k=0

(−1)ks2m−k,k.

This establishes Theorem 4.2 for m2 = 0.
Theorem 4.3 gives

ψ2(sm1,m2)ψ2(s1) = ψ2(sm1+1,m2) +
∑

(a′,b′,c′)∈D(m1,m2+1)

(−1)b
′

sa′,b′,c′ + ψ2(sm1−1,m2−1)

by induction on m2
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Corollary 4.6 then shows that

ψ2(sm1,m2+1) =
∑

(a′,b′,c′)∈D(m1,m2+1)

(−1)b
′

sa′,b′,c′ ,

which completes the induction step.

4.6. Proof of Theorem 4.3. To prove theorem 4.3 we sum both sides of the equation in Corollary
4.5 over (a, b, c) ∈ D(m1,m2), using the following lemma.

Lemma 4.7. Suppose that m1 > m2 ≥ 0. Then
∑

(a,b,c)∈D(m1,m2)

(−1)bsa+2,b,c =
∑

(a′,b′,c′)∈D(m1+1,m2)
a′ 6=b′,a′ 6=2m2

(−1)b′sa′,b′,c′(12)

∑

(a,b,c)∈D(m1,m2)

(−1)bsa,b+2,c =
∑

(a′,b′,c′)∈D(m1,m2+1)
b′ 6=c′,c′ 6=2m2+2

(−1)b′sa′,b′,c′ +
∑

(a′,b′,c′)∈D(m1+1,m2)
a′=2m2,b′ 6=c′

(−1)b′sa′,b′,c′(13)

∑

(a,b,c)∈D(m1,m2)

(−1)bsa,b,c+2 =
∑

(a′,b′,c′)∈D(m1−1,m2−1)
m2>0

(−1)b′sa′,b′,c′ +
∑

(a′,b′,c′)∈D(m1,m2+1)
c′=2m2+2

(−1)b′sa′,b′,c′(14)

∑

(a,b,c)∈D(m1,m2)
a=b

(−1)b+1sa+1,b+1,c =
∑

(a′,b′,c′)∈D(m1+1,m2)
a′=b′,a′ 6=2m2,b′ 6=c′

(−1)b′sa′,b′,c′(15)

∑

(a,b,c)∈D(m1,m2)
b=c

(−1)b+1sa,b+1,c+1 =
∑

(a′,b′,c′)∈D(m1,m2+1)
b′=c′,c′ 6=2m2+2

(−1)b′sa′,b′,c′ +
∑

(a′,b′,c′)∈D(m1+1,m2)
a′=2m2,b′=c′

(−1)b′sa′,b′,c′(16)

The total sum of the left hand sides of the equations in Lemma 4.7 is then the left hand side of
the equation in theorem 4.3, while the terms on the right hand sides make up the right hand side
of Theorem 4.3.

4.7. Proof of Lemma 4.7. For each of the five equations we provide a bijective transformation
carrying (a, b, c) ∈ D(m1,m2) with the restrictions shown to (a′, b′, c′) satisfying the conditions on
the right hand sides.

We make repeated use of the parity rules to ensure that inequalities force a difference of at least
2. With the exception of a couple of less obvious cases we omit proofs that the individual parity
rules for (a′, b′, c′) are satisfied, as they generally follow readily from those for (a, b, c) and vice
versa. Equally the sum a′ + b′ + c′ is always obviously correct.

Proof. For Equation (12), put a′ = a+ 2, b′ = b, c′ = c. Let (a, b, c) ∈ D(m1,m2). Then 2m2 + 2 ≥
a′ > b′ ≥ c′ ≥ 0, and a′ > 2m2 ≥ c′. Then (a′, b′, c′) ∈ D(m1 + 1,m2), with a′ 6= b′ and a′ 6= 2m2.

Conversely suppose that (a′, b′, c′) ∈ D(m1 + 1,m2), with a′ > b′ and a′ > 2m2. By the parity
rules, if b′ ≤ 2m2 then a′ ≡ 0 mod 2, so a′ ≥ 2m2 + 2 ≥ b′ + 2. If b′ > 2m2 then a′ ≡ b′ mod 2,
so a′ ≥ b′ + 2 > 2m2 + 2. In any case 2m1 ≥ a′ − 2 ≥ b′ ≥ c′ ≥ 0, and a′ − 2 ≥ 2m2 ≥ c′. Then
(a, b, c) ∈ D(m1,m2). This proves Equation (12).

For Equation (13), put a′ = a, b′ = b + 2, c′ = c. Let (a, b, c) ∈ D(m1,m2) with a ≥ b + 2. If
a = 2m2 then 2m1 + 2 ≥ a′ ≥ b′ > c′ ≥ 0 and a′ ≥ 2m2 ≥ c′, Then (a′, b′, c′) ∈ D(m1 + 1,m2),
with a′ = 2m2, b

′ > c′. Otherwise a > 2m2. If b ≥ 2m2 then a ≥ b+ 2 ≥ 2m2 + 2, while if b < 2m2
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then a ≡ 0 mod 2 by the parity rules, so that a ≥ 2m2 + 2. Hence 2m1 ≥ a′ ≥ b′ > c′ ≥ 0 and
a′ ≥ 2m2 + 2 ≥ c′. In this case we check the parity rules explicitly. Here b′ ≥ 2m2 + 2 =⇒
b ≥ 2m2 =⇒ c′ ≡ c ≡ 0 mod 2 and b′ ≤ 2m2 + 2 =⇒ b ≤ 2m2 =⇒ a′ ≡ a ≡ 0 mod 2. So
(a′, b′, c′) ∈ D(m1,m2 + 1) with b′ > c′ and c′ < 2m2 + 2.

Conversely suppose that (a′, b′, c′) ∈ D(m1,m2 +1) with b′ > c′ and c′ < 2m2 +2. If b′ ≥ 2m2 +2
then c′ ≡ 0 mod 2 so c′ ≤ 2m2 ≤ b′−2 and if b′ < 2m2 +2 then b′ ≡ c′ mod 2 and c′ ≤ b′−2 < 2m2.
Hence 2m1 ≥ a′ ≥ b′ − 2 ≥ c′ ≥ 0 and a′ > 2m2. A parity check as above shows that then
(a, b, c) ∈ D(m1,m2) with a = a′ ≥ b′ = b+ 2 and a > 2m2.

Finally suppose that (a′, b′, c′) ∈ D(m1 + 1,m2), with a′ = 2m2, b
′ > c′. Then b′ ≡ c′ mod 2 so

b′− 2 ≥ c′, and a′ = 2m2 ≥ c′ again giving (a, b, c) ∈ D(m1,m2) with a = 2m2 ≥ b+2. This proves
Equation (13).

For Equation (14), put a′ = a, b′ = b, c′ = c+ 2 when c = 2m2, and a′ = a− 2, b′ = b− 2, c′ = c
otherwise. In either case sa,b,c+2 = sa′,b′,c′ since we are working in sl3. Let (a, b, c) ∈ D(m1,m2)
with b ≥ c+ 2. If c = 2m2 then 2m1 ≥ a′ ≥ b′ ≥ 2m2 + 2 = c′ ≥ 0, and (a′, b′, c′) ∈ D(m1,m2 + 1)
with c′ = 2m2 + 2. Otherwise c < 2m2 6= 0. If b ≤ 2m2 then c ≤ 2m2 − 2. If b > 2m2 then
c ≡ 0 mod 2 by the parity rules, giving again c ≤ 2m2 − 2. Then 2m1 − 2 ≥ a− 2 ≥ b− 2 ≥ c ≥ 0
and a− 2 ≥ 2m2 − 2 ≥ c. So (a′, b′, c′) ∈ D(m1 − 1,m2 − 1).

Conversely let (a′, b′, c′) ∈ D(m1 − 1,m2 − 1), with m2 6= 0. Then 2m1 ≥ a′ + 2 ≥ b′ + 2 ≥ c′ ≥ 0
and a′ ≥ 2m2 − 2 ≥ c′, so a′ + 2 ≥ 2m2 > c′. Hence (a, b, c) ∈ D(m1,m2) with c 6= 2m2.

Finally, suppose that (a′, b′, c′) ∈ D(m1,m2 +1) with c′ = 2m2 +2. Then 2m1 ≥ a′ ≥ b′ ≥ 2m2 =
c′ − 2 ≥ 0 so that (a′, b′, c′ − 2) = (a, b, c) ∈ D(m1,m2) with c = 2m2. This proves Equation (14).

For Equation (15), put a′ = a+ 1, b′ = b+ 1, c′ = c. Let (a, b, c) ∈ D(m1,m2) with a = b. Then
2m1 + 2 ≥ a′ ≥ b′ ≥ c′ ≥ 0 and a′ > a ≥ 2m2 ≥ c′ ≥ 0. Since b′ = a′ > 2m2 and c′ ≡ 0 mod 2 the
parity rules are satisfied, and (a′, b′, c′) ∈ D(m1 + 1,m2) with a′ = b′, a′ > 2m2, b

′ 6= c′.
Conversely let (a′, b′, c′) ∈ D(m1 + 1,m2) with a′ = b′, a′ > 2m2, b

′ 6= c′. Now 2a′ ≤ a′ + b′ + c′ =
2m1 + 2m2 + 2 ≤ 4m1, since m2 < m1. Then 2m1 > a′ − 1 ≥ b′ − 1 ≥ c′ ≥ 0 and a′ − 1 ≥ 2m2 ≥ c′.
Hence (a, b, c) ∈ D(m1,m2) with a = b. This proves Equation (14).

For Equation (16), put a′ = a, b′ = b+ 1, c′ = c+ 1. Let (a, b, c) ∈ D(m1,m2) with a > b = c. If
a = 2m2 then 2m1 +2 > a′ ≥ b′ ≥ c′ ≥ 0 and a′ = 2m2 ≥ c′. Hence (a′, b′, c′) ∈ D(m1 +1,m2) with
a′ = 2m2, b

′ = c′. Otherwise a > 2m2, and a′ = a ≥ 2m2+2, since b = c, while 2m2 +2 ≥ c+2 > c′.
We have also 2m1 ≥ a′ ≥ b′ ≥ c′ ≥ 0. Hence (a′, b′, c′) ∈ D(m1,m2 + 1) with b′ = c′, c′ 6= 2m2 + 2.

Conversely suppose that (a′, b′, c′) ∈ D(m1,m2 + 1) with b′ = c′, c′ < 2m2 + 2. Now a′ + 2c′ =
2m1 +2m2 +2 and a′ ≤ 2m1, so c′ > 0. Hence 2m1 ≥ a′ > b′−1 ≥ c′−1 ≥ 0 and a′ > 2m2 ≥ c′−1.
Then (a, b, c) ∈ D(m1,m2) with a > b = c and a > 2m2.

Finally if (a′, b′, c′) ∈ D(m1 + 1,m2) with a′ = 2m2, b
′ = c′ then b′ = c′ = m1 + 1 > 0 and

(a, b, c) ∈ D(m1,m2) with a = 2m2 > b = c. �

5. A proof of Theorem 4.2 using Carini-Remmel’s work

5.1. A review of Theorem 5 of [CR98]. In this section we give an alternative proof of Theorem
4.2 using the work [CR98] of Carini and Remmel. In Theorem 5 of loc.cit., Carini and Remmel
give the expansion of the plethysm ψ2(sa,b) for the Schur function of a 2-row partition of n = a+ b
in terms of Schur functions sλ, where λ runs through partitions of 2n with at most 4 parts. In this
expansion each sλ has coefficient 0,±1, depending on the parities of the parts of λ and some linear
inequalities.
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In their paper they use the opposite convention to Macdonald, so that they take 0 ≤ a ≤ b for
the given partition of n = a+ b and 0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ λ4 for the parts of the partition λ of 2n.
They also use the more common combinatorial notation p2 rather than ψ2.

Theorem 5 of [CR98] can be readily restated as follows, by grouping separately the partitions λ
of 2a+ 2b with λ1 + λ3 ≥ 2a and those with λ1 + λ3 < 2a in the expansion of ψ2(sa,b):

• When λ1 + λ3 ≥ 2a, λ1 + λ2 is even and λ1 + λ2 ≤ 2a, the Schur function sλ has coefficient
(−1)λ2+λ3 .

• When λ1 + λ3 < 2a, λ2 + λ3 is even, 2a ≤ λ2 + λ3 and 2a ≤ λ1 + λ4, the Schur function sλ

has coefficient (−1)λ1+λ2 .
• All other sλ have coefficient 0.

The first of these cases corresponds to the partitions in (ii) and some of (i) in [CR98, Thm.5],
while the second corresponds to the partitions in (iii) and the remaining partitions in (i).

5.2. Reformulation of Carini and Remmel’s expansion of ψ2(sm1,m2). Theorem 5 of [CR98]
gives rise to an expansion of ψ2(sm1,m2),m1 ≥ m2, in Schur functions of x1, . . . , xN which is valid
for all N .

We can reformulate this further by specifying the support set for the partitions which appear in
the expansion in terms of linear inequalities and some parity rules, so that Theorem 4.2, the case
where N = 3, is an immediate corollary.

Using Macdonald’s ordering, we take m1 in place of b and m2 in place of a from [CR98], and
write (λ4, λ3, λ2, λ1) = (a, b, c, d) = λ.

Definition 5.1. For m1, m2 ∈ N, let A(m1,m2) ⊂ N
4 denote the set of tuples (a, b, c, d) that

satisfy

• a+ b+ c+ d = 2m1 + 2m2, a ≥ b ≥ c ≥ d ≥ 0, 2m1 ≥ a+ d ≥ 2m2 ≥ c+ d
• if b+ d ≥ 2m2 then c ≡ d mod 2
• if b+ d ≤ 2m2 then a ≡ d mod 2

Theorem 5.2. Let m1 ≥ m2 ≥ 0. Then

ψ2(sm1,m2) =
∑

(a,b,c,d)∈A(m1,m2)

(−1)b+dsa,b,c,d.

Theorem 4.2 is an immediate corollary, since Schur functions for partitions with more than 3
rows are 0 in sl3, and the support set A(m1,m2) becomes D(m1,m2) when d = 0.

We can see readily that theorem 5.2 follows from Theorem 5 of [CR98] as rearranged above.
Firstly, for λ ∈ A(m1,m2) with b + d ≥ 2m2 we have c + d even, by the parity rule, and

c + d ≤ 2m2, while the coefficient of sλ is (−1)b+d = (−1)b+c. This agrees with the first group of
partitions above. The condition 2m1 ≥ a+ d does not impose any extra restriction on this group,
since it is equivalent to b+ c ≥ 2m2.

For λ ∈ A(m1,m2) with b+d ≤ 2m2 we have a+d even, and hence b+c even, by the parity rule.
In addition we have 2m2 ≤ b+ c since 2m1 ≥ a+ d, and 2m2 ≤ a+ d. Again this agrees with the
second group of partitions above, and the coefficient of sλ is (−1)b+d = (−1)c+d as required there.

5.3. Parametrisation. Theorem 5.2 can be used to give a parametrisation of these two sets of
Schur functions with non-zero coefficient, each in terms of 3 integer parameters satisfying some
linear inequalities. These in turn give a parametric formula for ψ2(sm1,m2), with a reduction in the
case of sl3 to the formulae of Theorem 2.4.
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5.3.1. The first group of Schur functions. Parametrise {A(m1,m2) : b + d ≥ 2m2} by setting
b + d = 2m2 + k, k ≥ 0. Write c = d + 2l, l ≥ 0 to get c ≡ d mod 2. The condition c + d ≤ 2m2

is equivalent to d + l ≤ m2. This ensures that c ≤ b. Then a = 2m1 − k − 2l − d, which satisfies
2m1 ≥ a+d. To ensure that a ≥ b we impose the condition a+d = 2m1 −k−2l ≥ b+d = 2m2 +k
to finish with parameters k, l, d ≥ 0, d + l ≤ m2, k + l ≤ m1 −m2.

The contribution of the partitions λ with b+ d ≥ 2m2 is then
∑

(−1)ksλ, where λ = (2m1 − k − 2l − d, 2m2 + k − d, 2l + d, d)

and k, l, d are integer parameters with k, l, d ≥ 0, d+ l ≤ m2, k + l ≤ m1 −m2.

5.3.2. The second group of Schur functions. Parametrise {A(m1,m2) : b + d ≤ 2m2} by setting
b+ d = 2m2 − k, k ≥ 0. Write a+ d = 2m1 − 2l, l ≥ 0 to get a ≡ d mod 2 and 2m1 ≥ a+ d. Then
b+ c = 2m2 + 2l, so c ≥ d. The condition 2m2 ≤ a+ d is equivalent to l ≤ m1 −m2. This ensures
that b ≤ a.

Now b = 2m2 − k − d so c = 2l + k + d so c ≤ b is equivalent to l + k + d ≤ m2.
The contribution of the partitions λ with b+ d ≤ 2m2 is

∑

(−1)ksλ, where λ = (2m1 − 2l − d, 2m2 − k − d, 2l + k + d, d)

and k, l, d are integer parameters with k, l, d ≥ 0, l + k + d ≤ m2, l ≤ m1 −m2.

5.4. Reduction to the case of sl3. In the special case of sl3 we have d = 0, and we get two
double sums of 3-row Schur functions, one for partitions with b ≥ 2m2, and one for those with
b < 2m2, to avoid double counting those with b = 2m2. Since we are working in sl3 this can be
reduced further to sums over 2-row partitions, since sa,b,c = sa−c,b−c

Explicitly we have from the first group of partitions the sum
∑

(−1)ks2m1−4l−k,2m2−2l+k

taken over k, l ≥ 0, l ≤ m2, k + l ≤ m1 −m2. The second group yields
∑

(−1)ks2m1−4l−k,2m2−2l−2k

taken over l ≥ 0, k > 0, k+ l ≤ m2, l ≤ m1 −m2. This gives a second proof of Theorem 2.4. It may
be preferable all the same to retain the 3-row format when estimating the effects of twists in sl3 as
then all the partitions have 2m1 + 2m2 cells and thus their twist factors depend only on the total
content of the partition.

6. Sample computations

In this section we give some sample computations of Theorems 2.1 and 2.4. Theorem 2.1 implies
that:
JT (2,3),5,7(1/q) = q24 + q30 + q32 − q35 + q36 +2q38 − q39 − q41 + q42 − q43 + 2q44 − q45 − 2q47 + q48 − q49 +

2q50 − 2q51 + q52 − 2q53 − 2q55 + 3q56 − 2q57 + 2q58 − 2q59 − q60 − q61 +2q62 − 4q63 + 3q64 + q66 − q67 + q68 −
3q69+3q70−2q71+3q72+q73−q74−q75−2q77 +2q78+q79 +2q80−2q82−q83 +q85 +2q86−3q88+q89−2q90−
q92 + 2q93 + q94 + 2q95 − 3q96 + q97 − 2q98 + q99 + q100 + 2q101 − 2q102 + 3q103 − 5q104 − q106 + 3q107 + 2q108 +

4q109−4q110 +3q111−3q112−2q113+q114 +q115−q116 +5q117−5q118−2q119−2q121 +2q122 +5q123−2q124 +

q125 − q126 − 4q127 − q129 − q130 + 4q131 − q132 − 2q133 + 2q134 − q135 + q136 + q137 − 2q138 + 2q139 + 3q140 −
3q141 + 2q142 − 2q143 − 4q144 + 2q145 + 6q148 − 2q149 − q151 − 6q152 + 3q153 + 4q154 − q155 + 3q156 − 4q157 −
4q158 + 3q159 − 3q160 + 2q161 + 4q162 − 3q163 + 4q164 − 2q165 − 4q166 + 5q167 + 2q170 − 6q171 + 2q172 + 3q173 −
4q174 + q175 + q176 −3q177 +5q178−2q179−2q180 +4q181−2q183− q184−6q185 +3q186 +2q187 +2q189 + q190−
5q191 + 2q192 − q193 − q194 +5q195 + 2q196 − q197 − q198 − 5q199 + 3q201 − 2q202 + q203 + 3q204 − 2q205 + q206 −
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5q208 + 4q209 + 2q210 − 3q213 − 3q214 + 4q215 − 2q216 + 2q217 + 3q218 − 2q219 − 4q222 + 5q223 + 2q224 − 2q225 −
3q227 − 3q228 +3q229 − q230 + 3q232 − 2q233 + q234 + 2q235 − 3q236 + q237 + q238 − 2q239 +3q240 − q241 − q242 +

2q243 − 4q244 − 2q245 + 2q246 + 4q248 + 2q249 − 3q250 − 2q252 − 2q253 + 3q254 + 2q256 + 2q257 − 3q258 − 3q259 −
2q260 + q261 +4q262 + q263 + q264 − q265 − 3q266 − 2q267 + q268 + q269 +2q270 + q271 − q272 − q273 − q274 + q275

Theorem 2.4 implies that:
ψ2(V5,7) = V0,4−V0,7+V0,10−V0,13+V0,16−V0,19−V1,2+V2,0+V2,6−V2,9+V2,12−V2,15+V2,18−V3,4+V4,2+

V4,8−V4,11+V4,14−V4,17−V5,0−V5,6+V6,4+V6,10−V6,13+V6,16−V7,2−V7,8+V8,0+V8,6+V8,12−V8,15−V9,4−
V9,10+V10,2+V10,8+V10,14−V11,0−V11,6−V11,12+V12,4+V12,10−V13,2−V13,8+V14,0+V14,6−V15,4+V16,2−V17,0

where Vn1,n2 = Vn1ω1+n2ω2 .
For future checks with other formulas, Theorem 2.1 implies that J2,3,70,70(1/q) is a polynomial of

q with exponents with respect to q in the interval [280, 30100] (where the end points are attained),
leading and trailing coefficients 1 and coefficients in the interval [−55196, 65594], where the coef-
ficient −55196 is attained at precisely at q18854 and q18925 and the coefficient 65594 is attained
precisely at q18165. In other words, we have

J2,3,70,70(1/q) = q280 + · · · + 65594q18165 + · · · − 55196q18854 + · · · − 55196q18925 + · · · + q30100

Using Theorem 2.1 it is possible to compute the colored Jones polynomials JT (2,3),n1,n2
(q) for

n1, n2 = 0, . . . , 100.

6.1. Acknowledgment. The paper came into maturity following requests for explicit formulas for
the colored Jones polynomial of a knot, during visits of the first author in the Max-Planck-Institut
für Mathematik in 2009-2010, and during an Oberwolfach workshop in August 2010. The first
author wishes to thank R. Lawrence and D. Zagier for their interest, J. Stembridge for enlight-
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