
FROM STATE INTEGRALS TO q-SERIES
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Abstract. It is well-known to the experts that multi-dimensional state integrals of prod-
ucts of Faddeev’s quantum dilogarithm which arise in Quantum Topology can be written
as finite sums of products of basic hypergeometric series in q = e2πiτ and q̃ = e−2πi/τ . We
illustrate this fact by giving a detailed proof for a family of one-dimensional integrals which
includes state-integral invariants of 41 and 52 knots.
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1.1. State-integrals and their q-series. Multi-dimensional state integrals of products of
Faddeev’s quantum dilogarithm appear in abundance in Quantum Topology, and were stud-
ied among others by Hikami [Hik01], Dimofte–Gukov–Lennels–Zagier [DGLZ09], Andersen–
Kashaev [AK], and Kashaev–Luo–Vartanov [KLV16]. It is well-known to the experts that
such state-integrals can be written as finite sums of products of pairs of q-series and q̃-series.
The reason for this is a factorized structure of Faddeev’s quantum dilogarithm, the struc-
ture of the set of its poles, and the specific form of exponential factors of the integrand of
the state-integrals, while its derivation is based on an application of the residue theorem.
Instead of formulating a general theorem for multi-dimensional integrals which obscures the
principle, we will give a detailed proof for the case of a family of 1-dimensional integrals and
illustrate it with some concrete examples taken from [AK, KLV16]. Similar computations
appear in mathematical physics [BDP14].

To state our results, recall that Faddeev’s quantum dilogarithm function Φb(x) is given by
[Fad95]

(1) Φb(x) =
(e2πb(x+cb); q)∞

(e2πb−1(x−cb); q̃)∞
,

where

q = e2πib
2

, q̃ = e−2πib−2

, cb =
i

2
(b+ b−1), =(b2) > 0.

Remarkably, this function admits an extension to all values of b with b2 6∈ R≤0. Φb(x) is a
meromorphic function of x with

poles: cb + iNb+ iNb−1, zeros: − cb − iNb− iNb−1 .

The functional equation

Φb(x)Φb(−x) = eπix
2

Φb(0)2, Φb(0) = q
1
24 q̃−

1
24

allows us to move Φb(x) from the denominator to the numerator of the integrand of a state-
integral.

For natural numbers A,B with B > A > 0, we consider the absolutely convergent integral

IA,B(b) =

∫
R+iε

Φb(x)Be−Aπix
2

dx

with small positive ε. The condition B > A > 0 ensures not only the convergence of IA,B(b)
for =(b2) > 0, but also the convergence of the q-series and the q̃-series (for |q|, |q̃| < 1) that
appear in Theorem 1.1 below.

To express the above state-integral in terms of series, consider the generating series

(2) FA,B(q, x) =
∞∑
m=0

(−1)AmqA
m(m+1)

2

(q)Bm
xm, F̃A,B(q, x) = FB−A,B(q, x) .

Consider the operators δ and δk (for k a positive natural number) which act on the space of
functions of x as follows

(3) (δF )(x) = x∂xF (x), (δkF )(x) =
∞∑
s=1

sk−1qs

1− qs
F (qsx) .
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Likewise, there are operators δ̃ and δ̃k which act on the space of functions of x̃ and with q

replaced by q̃. It is easy to see that any two of the operators δ, δk, δ̃, δ̃k commute and they

freely generate over Q a commutative ring D ⊗ D̃, where

D = Q[δ, δ1, δ2, . . . ], D̃ = Q[δ̃, δ̃1, δ̃2, . . . ] .

Let

Db = D[(2πi)−1, b±1, e2, e4, e6, . . . ], D̃b = D̃[(2πi)−1, b±1, e2, e4, e6, . . . ] ,

where el = el(q̃) = δ̃l(1) ∈ Z[[q̃]]. Consider the following operator valued polynomial:

(4) PA,B = Resw=0

(
e

1
4πi

w2+Aw(b(δ+ 1
2
)+b−1(eδ+ 1

2
))
)A(φ(bw, δ•)φ̃(b−1w, δ̃•)

b(1− eb−1w)

)B

∈ Db ⊗ D̃b ,

where

φ(w, δ•) = exp

(
−
∞∑
l=1

δl
l!
wl

)
(5a)

φ̃(w, δ̃•) = exp(−δ̃w) exp

(
2
∑

l=even>0

el(q̃)
wl

l!

)
exp

(
−
∞∑
l=1

δ̃l
l!

(−w)l

)
.(5b)

For a series F (x, x̃), we define:

(6) 〈F (x, x̃)〉 = F (1, 1) .

Theorem 1.1. We have:

(7) IA,B(b) =

(
q̃

q

)B−3A
24

eπi
B+2(A+1)

4

〈
PA,B

(
FA,B(q, x)F̃A,B(q̃, x̃)

)〉
.

Corollary 1.2. Writing PA,B =
∑

k pkPk (a finite sum), for pk ∈ Db and Pk ∈ D̃b, it follows
that

(8) IA,B(b) =

(
q̃

q

)B−3A
24

eπi
B+2(A+1)

4

∑
k

gk(q)Gk(q̃)

where

(9) gk(q) = 〈pkFA,B〉, Gk(q̃) = 〈PkF̃A,B〉 .

Remark 1.3. The left hand side of Equation (8) has analytic continuation to the cut plane
C \ {b2 | b2 < 0} whereas each of the series gk and Gk is only well-defined in the upper-half
plane {b2 |=(b2) > 0}.

Remark 1.4. PA,B, as a polynomial in the variables e2, e4, . . . has degree B − 1, where
the degree of el is l. PA,B as a Laurent polynomial in b has b-monomials of degrees in
{−B + 1,−B + 3, . . . , B − 3, B − 1}.
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1.2. q-difference equations. Next we describe a linear q-difference equation of FA,B(q, x).

Consider the operators x̂ and Ê which act on f(x) ∈ Q(q)[[x]] by:

(Êf)(x) = f(qx), (x̂f)(x) = xf(x) .

Observe that Êx̂ = qx̂Ê.

Lemma 1.5. (a) We have:

(10) FA,B(q−1, x) = F̃A,B(q, x) .

(b) FA,B satisfies the linear q-difference equation

(11)
(

(1− Ê)B − (−1)AqAxÊA
)
FA,B(q, x) = 0 .

Corollary 1.6. (a) If we define ω(q, x) = FA,B(q, qx)/FA,B(q, x) and ω(q, x)n =
∏n

j=1 ω(q, qjx),
then ω satisfies the nonlinear equation

B∑
j=0

(−1)j
(
B

j

)
ω(q, x)j − (−1)AqAxω(q, x)A = 0 .

(b) F is an admissible power series in the sense of Kontsevich-Soibelman [KS11, Sec.6], the
limit limq→1 ω(q, x) = ω(x) ∈ Q[[x]] exists and satisfies the algebraic equation (also known
as the Nahm equation or the gluing equation)

(12) (1− ω(x))B = (−1)Axω(x)A .

The Nahm equation has been studied by several authors including [Zag07, Sec.3], [Vla,
VZ11], [RV, Sec.4].

1.3. The case of the 41 knot. We now specialize Corollary 1.2 to the invariant of the 41

and 52 knots is given by [KLV16, AK]

I1,2 = I41 I2,3 = I52 .

In this section, let

(13) F (q, x) = F1,2(q, x) =
∞∑
n=0

(−1)n
q

1
2
n(n+1)

(q)2
n

xn .

Corollary 1.7. (a) We have:

(14) I41(b) = − i
2

(
q

q̃

) 1
24 (

bG(q)g(q̃)− b−1G(q̃)g(q)
)

where

g(q) =
∞∑
n=0

(−1)n
q

1
2
n(n+1)

(q)2
n

(15a)

G(q) =
∞∑
m=0

(
1 + 2m− 4

∞∑
s=1

qs(m+1)

1− qs

)
(−1)m

q
1
2
m(m+1)

(q)2
m

(15b)
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(b) The series g(q) and G(q) are given in terms of F (q, x) by:

g(q) = 〈F 〉(16a)

G(q) = 〈(2 + 2δ − 4δ1)F 〉(16b)

(c) F satisfies the linear q-difference equation

(17) F (q, q−1x) + F (q, qx) = (2− x)F (q, x)

The series g(q) that appears in Theorem 1.7 was known to the first author and Zagier to
be closely related to the 41 knot. For a detailed discussion of experimental facts below, see
[GZ]. Empirically, it appears that

• the pair (g(q), G(q)) is related to the 3D index of the 41 knot,
• the radial asymptotics of the pair (g(q), G(q)) are related to the asymptotics of the

Kashaev invariant of the 41 knot,
• the above observations for 41 also hold for the case of 52 knot discussed below.

Recall that the index of an ideal triangulation was introduced in [DGG14, DGG13], necessary
and sufficient conditions for its convergence was established in [Gar16] and its topological
invariance was proven in [GHRS15]. For a detailed discussion of the above experimental
facts, see [GZ].

1.4. The case of the 52 knot. In this section, let

F (q, x) = F2,3(q, x) =
∞∑
m=0

tm(q)xm, F̃ (q, x̃) = F1,3(q, x̃) =
∞∑
m=0

Tm(q)x̃m

where

tm(q) =
qm(m+1)

(q)3
m

, Tn(q) = (−1)n
q

1
2
n(n+1)

(q)3
n

= tn(q−1) .

Let

Rm,n(q, q̃) = −b
2

2

(
1 + 4m+ 4m2 − 6E(m)

1 (q)− 12mE(m)
1 (q) + 9E(m)2

1 (q)− 3E(m)
2 (q)

)
− 1

2πi
+

1
2

(
1 + 2m− 3E(m)

1 (q)
)(

1 + 2n− 6E(n)
1 (q̃)

)
+
b−2

2

(
−n− n2 − 6E(0)

2 (q̃) + 3E(n)
1 (q̃) + 6nE(n)

1 (q̃)− 9E(n)2
1 (q̃) + 3E(n)

2 (q̃)
)
,

where E
(m)
l (q) are defined in Equation (29a). For k = 1, . . . , 4 let

(18) gk(q) =
∞∑
m=0

pk(m)tm(q), Gk(q̃) =
∞∑
n=0

Pk(n)Tn(q̃) ,

where

p1,m(q) = 1 + 4m+ 4m2 − 6E(m)
1 (q)− 12mE(m)

1 (q) + 9E(m)2
1 (q)− 3E(m)

2 (q)(19a)

p2,m(q) = 1 + 2m− 3E(m)
1 (q)(19b)

p3,m(q) = 1(19c)
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and

P1,m(q) = 1(20a)

P2,m(q) = 1 + 2n− 6E(n)
1 (q̃)(20b)

P3,m(q) = −n− n2 − 6E(0)
2 (q̃) + 3E(n)

1 (q̃) + 6nE(n)
1 (q̃)− 9E(n)2

1 (q̃) + 3E(n)
2 (q̃) .(20c)

Corollary 1.8. (a) We have:

I2,3(q) = −e
3πi
4

(
q

q̃

) 1
8
∞∑

m,n=0

Rm,n(q, q̃)tm(q)Tn(q̃)

(21)

= −e
3πi
4

(
q

q̃

) 1
8
(
−b

2

2
g1(q)G1(q̃)−

1

2πi
g3(q)G1(q̃) +

1

2
g2(q)G2(q̃) +

b−2

2
g3(q)G3(q̃)

)
(b) F and F̃ satisfy the linear q-difference equations

F (q, q3x)− (3− q2x)F (q, q2x) + 3F (q, qx)− F (q, x) = 0

F̃ (q, q3x)− 3F̃ (q, q2x) + (3− q2x)F̃ (q, qx)− F̃ (q, x) = 0 .

Remark 1.9. A computation gives that P (A,B) = P (B − A,B) for (A,B) = (1, 2) and
(A,B) = (2, 3) corresponding to the invariants of the 41 and 52 knots. In all other cases that
we tried, we found that P (A,B) is not equal to P (B − A,B).

2. Proofs

2.1. A residue computation. To relate the state-integral IA,B to a sum, we will apply the
residue theorem on a semicircle γR with center 0 and radius R, oriented counterclockwise in
the upper half-plane:

Then, we will take the limit R → ∞. To compute the residue of the integrand, we need to
expand Φb(x) near the pole

xm,n = cb + ibm+ ib−1n

for natural numbers m and n. Let

φm(x) =
(qm+1ex; q)∞
(qm+1; q)∞

(23)

φ̃n(x) =
(q̃; q̃)∞

(q̃ex; q̃)∞

(q̃−1; q̃−1)n
(q̃−1ex; q̃−1)n

(24)

Lemma 2.1. We have:

(25) Φb(x+ xm,n) =
(q; q)∞
(q̃; q̃)∞

1

(q; q)m

1

(q̃−1; q̃−1)n

φm(2πbx) φ̃n(2πb−1x)

1− e2πb−1x
.
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Proof. Equation (1) implies the functional equations

Φb(x+ cb + ib)

Φb(x+ cb)
=

1

1− qe2πbx
Φb(x+ cb + ib−1)

Φb(x+ cb)
=

1

1− q̃−1e2πb−1x

which give

Φb(x+ xm,n) = Φb(x+ cb)
1

(qe2πbx; q)m

1

(q̃−1e2πb−1x; q̃−1)n

Φb(x+ cb) =
1

1− e2πb−1x

(qe2πbx; q)∞
(q̃e2πb−1x; q̃)∞

.

Thus,

Φb(x+ xm,n) =
(q; q)∞
(q̃; q̃)∞

1

(q; q)m

1

(q̃−1; q̃−1)n
·

1

1− e2πb−1x

(qe2πbx; q)∞
(q; q)∞

(q̃; q̃)∞
(q̃e2πb−1x; q̃)∞

(q; q)m
(qe2πbx; q)m

(q̃−1; q̃−1)n
(q̃−1e2πb−1x; q̃−1)n

=
(q; q)∞
(q̃; q̃)∞

1

(q; q)m

1

(q̃−1; q̃−1)n
·

1

1− e2πb−1x

(qm+1e2πbx; q)∞
(qm+1; q)∞

(q̃; q̃)∞
(q̃e2πb−1x; q̃)∞

(q̃−1; q̃−1)n
(q̃−1e2πb−1x; q̃−1)n

The result follows. �

The decoupling of (m,n) in the quadratic form comes as follows: since A,m, n are integers,
eAπimn = 1 and a computation gives

e−Aπi(x+xn,m)2 = iA
(
q

q̃

)A
8

tAm(q) t̃An (q̃)e−Aπix
2+2Aπx(b(m+ 1

2
)+b−1(n+ 1

2
))

where

tAm(q) = (−1)AmqA
m(m+1)

2 , t̃An (q̃) = (−1)Anq̃−A
n(n+1)

2 .

The Dedekind function η(τ) = q1/24(q; q)∞ (with q = e2πiτ ) satisfies the modular equation
η(−τ−1) =

√
−iτη(τ) [And76]. It follows that

(26)
(q; q)∞
(q̃; q̃)∞

= e
πi
4

(
q̃

q

) 1
24

b−1 .

After we set w = x/(2π), the above discussion implies that

(27) IA,B(b) =

(
q̃

q

)B−3A
24

eπi
B+2(A+1)

4

∞∑
m,n=0

(Resw=0FA,B,m,n(w))
tAm(q)

(q; q)Bm

t̃An (q̃)

(q̃−1; q̃−1)Bn
,
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where

(28) FA,B,m,n(w) = e
A

4πi
w2+Aw(b(m+ 1

2
)+b−1(n+ 1

2
))

(
φm(bw) φ̃n(b−1w)

b(1− eb−1w)

)B

.

2.2. The Taylor series of φm(x) and φ̃n(x). In this section we express the Taylor series

of φm(x) and φ̃n(x) in terms of the q-series E
(m)
l (q) and Ẽ

(m)
l (q̃) defined by:

E
(m)
l (q) =

∞∑
s=1

sl−1qs(m+1)

1− qs
= 〈δl(xm)〉(29a)

Ẽ
(n)
l (q̃) =


−n+ E

(n)
1 (q̃) if l = 1

E
(n)
l (q̃) if l > 1 is odd

2E
(0)
l (q̃)− E(n)

l (q̃) if l > 1 is even

(29b)

Proposition 2.2. We have:

φm(x) = exp

(
−
∞∑
l=1

1

l!
E

(m)
l (q)xl

)
(30a)

φ̃n(x) = exp

(
∞∑
l=1

1

l!
Ẽ

(m)
l (q̃)xl

)
.(30b)

The proof of this proposition is given in Section 2.6. The first few terms in Equations
(30a)-(30a) are given by:

φm(x) = exp

„
−E(m)

1 x−
1

2
E

(m)
2 x2 −

1

6
E

(m)
3 x3 −

1

24
E

(m)
4 x4 − . . .

«
(31a)

= 1− E(m)
1 x+

1

2
(E

(m)2
1 − E(m)

2 )x2 +
1

6
(−E(m)3

1 + 3E
(m)
1 E

(m)
2 − E(m)

3 )x3+

1

24
(E

(m)4
1 − 6E

(m)2
1 E

(m)
2 + 3E

(m)2
2 + 4E

(m)
1 E

(m)
3 − E(m)

4 )x4 + . . .(31b)

eφn(x) = exp

„ eE(n)
1 x+

1

2
eE(n)
2 x2 +

1

6
eE(n)
3 x3 +

1

24
eE(n)
4 x4 − . . .

«
(31c)

= 1 + eE(n)
1 x+

1

2
( eE(n)2

1 + eE(n)
2 )x2 +

1

6
( eE(n)3

1 + 3 eE(n)
1
eE(n)
2 + eE(n)

3 )x3+

1

24
( eE(n)4

1 + 6 eE(n)2
1

eE(n)
2 + 3 eE(n)2

2 + 4 eE(n)
1
eE(n)
3 + eE(n)

4 )x4 + . . .(31d)

where E
(m)
l = E

(m)
l (q) and Ẽ

(m)
l = Ẽ

(m)
l (q̃).

2.3. The connection with the differential operators δl and δ̃l. In this section we

connect the series E
(m)
l (q) and Ẽ

(m)
l (q̃) with the action of the differential operators δl and δ̃l

on a series F (x) and F̃ (x̃) respectively. Consider formal power series

F (x) =
∞∑
m=0

t(m)xm F̃ (x̃) =
∞∑
m=0

t̃(m)x̃m .
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Lemma 2.3. We have:

∞∑
m=0

(
r∏
j=1

E
(m)
lj

(q)

)
t(m) = 〈

r∏
j=1

δljF 〉(32)

∞∑
m=0

mrt(m) = 〈δrF 〉(33)

and

∞∑
n=0

(
r∏
j=1

Ẽ
(n)
lj

(q̃)

)
t̃(n) = 〈

r∏
j=1

δ̃lj F̃ 〉(34)

∞∑
n=0

nr t̃(n) = 〈d̃rF̃ 〉 .(35)

Proof. For a positive natural number l we have:

∞∑
m=0

E
(m)
l (q)t(m) =

∞∑
m=0

〈δl(xm)〉t(m) =
〈
δl(

∞∑
m=0

t(m)xm)
〉

= 〈δlF 〉 .

Moreover, for positive natural numbers l, l′ we have:

∞∑
m=0

E
(m)
l (q)E

(m)
l′ (q)t(m) =

∞∑
m=0

〈δl(xm)〉〈δl′(xm)〉t(m)

=
〈
δl

(
∞∑
m=0

〈δl′(xm)〉t(m)xm

)〉
.

Now,

〈δl′(xm)〉t(m)xm =
∞∑
s=1

sl
′−1qs

1− qs
qsmt(m)xm = δl′(x

m)t(m)

and summing up over m, we obtain that

∞∑
m=0

〈δl′(xm)〉t(m)xm = δl′F (q, x) .

It follows that
∞∑
m=0

E
(m)
l (q)E

(m)
l′ (q)t(m) = 〈δlδl′F 〉 .

The general case of Equation (32) follows by induction on r. Equation (33) is obvious. �
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2.4. Proof of Theorem 1.1. Fix natural numbers A and B with B > A ≥ 1, and let

t(m) =
(−1)AmqA

m(m+1)
2

(q)Bm
, F (q, x) =

∞∑
m=0

t(m)xm

and

t̃(n) =
(−1)(B−A)nq̃(B−A)

n(n+1)
2

(q̃)Bn
, F̃ (q̃, x̃) =

∞∑
n=0

t̃(n)xn .

Use Equations (27) and (28) and Proposition 2.2 to expand FA,B,m,n(w) as a power series

with coefficients polynomials in the variables m,E
(m)
l (q) and n, Ẽ

(n)
l (q̃) and b±1 and (2πi)−1.

Now apply Lemma 2.3 to convert the variables m,E
(m)
l (q), n, Ẽ

(n)
l (q̃) in terms of the action

of the operators δ, δl, δ̃, δ̃l respectively. This concludes the proof of Theorem 1.1. �

2.5. Some auxiliary power series. Consider the auxiliary series

(36)
1

aex − 1
=
∞∑
n=0

pn(a)xn

where

pn(a) = − a

n!(1− a)n+1

n−1∑
m=0

An,ma
m p0(a) = − 1

1− a

and An,m are Euler triangular numbers (sequence A008292 in the online encyclopedia of
integer sequences [Slo]) that satisfy the recursion

An,m = (n−m)An−1,m−1 + (m+ 1)An−1,m

and also given by the sum

An,m =
m∑
k=0

(−1)k
(
n+ 1

k

)
(m+ 1− k)n .

For a detailed discussion on this subject, see [FS70]. A table of the first few numbers An,m
is given by

n \m 0 1 2 3 4 5 6 7 8
1 1
2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1
6 1 57 302 302 57 1
7 1 120 1191 2416 1191 120 1
8 1 247 4293 15619 15619 4293 247 1
9 1 502 14608 88234 156190 88234 14608 502 1
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Lemma 2.4. For l ≥ 1, we have:

(37)
dl

dxl
log(1− qkebx)|x=0 = blpl−1(q

k) + b δl,1

Proof. It follows from
d

dx
log(1− qkebx) = b

(
1 +

1

qkebx − 1

)
and Equation (36). �

For positive natural numbers l, r with l ≥ r and m consider the q-series E
(m)
l,r (q) defined

by

E
(m)
l,r (q) =

∞∑
k=m+1

qkr

(1− qk)l
(38)

Lemma 2.5. (a) We have

(39) E
(m)
l,r (q) =

∞∑
s=r

al,s
qs(m+1)

1− qs

where
xr

(1− x)l
=
∞∑
s=r

al,sx
s

(b) It follows that

(40)
l−1∑
r=0

Al−1,rE
(m)
l,r+1(q) = E

(m)
l (q)

Proof. For (a), interchange k and s summation:

E
(m)
l,r (q) =

∞∑
k=m+1

∞∑
s=r

al,sq
sk =

∞∑
s=r

∞∑
k=m+1

al,sq
sk =

∞∑
s=r

q(m+1)s

∞∑
k=0

al,sq
sk =

∞∑
s=r

al,s
q(m+1)s

1− qs

(b) follows from (a) and the fact that∑l−1
r=0Al−1,rx

r

(1− x)l
=
∞∑
s=1

sl−1xs .

�

Lemma 2.6. We have:

φm(x) = exp

(
−
∞∑
l=1

1

l!

l−1∑
r=0

Al−1,rE
(m)
l,r+1(q)x

l

)
(41)

Proof. It follows from Lemma 2.4 combined with

log(φm(x)) = log

(
(qm+1ex; q)∞
(qm+1; q)∞

)
=

∞∑
l=m+1

(
log(1− qlex)− log(1− ql)

)
�
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2.6. Proof of Proposition 2.2. Part (a) of Proposition 2.2 follows from Lemma 2.5 and
Lemma 2.6. For part (b), we will use the series

E
[m]
l (q) =

∞∑
s=1

sk−1qs(m+1)

1− qs

Using

log(φ̃n(x)) = log

(
(q̃; q̃)∞

(q̃ex; q̃)∞

)
+ log

(
(q̃−1; q̃−1)n

(q̃−1ex; q̃−1)n

)
and the proof of part (a) of Proposition 2.2, it follows that

log(φ̃n(x)) = log

(
(q̃; q̃)∞

(q̃ex; q̃)∞

)
+ log

(
(q̃−1; q̃−1)n

(q̃−1ex; q̃−1)n

)
=
∞∑
l=1

1

l!

l−1∑
r=0

Al−1,rE
(0)
l,r+1(q̃)x

l +
∞∑
l=1

1

l!

l−1∑
r=0

Al−1,rE
[n]
l,r+1(q̃

−1)xl

=
∞∑
l=1

1

l!

l−1∑
r=0

Al−1,r

(
E

(0)
l,r+1(q̃) + E

[n]
l,r+1(q̃

−1)
)
xl

where

(42) E
[n]
l,r (q) =

n∑
k=1

qkr

(1− qk)l
.

Let

(43) Ẽ
(n)
l,r (q̃) =


−n+ E

(n)
1,1 (q̃) if l = r = 1

E
(n)
l,r (q̃) if l > 1 is odd

2E
(0)
l,r (q̃)− E(n)

l,r (q̃) if l > 1 is even

We claim that

(44) E
(0)
l,r (q̃) + E

[n]
l,l−r(q̃

−1) = Ẽ
(n)
l,r (q̃)

for l > r ≥ 1 and

(45) E
(0)
1,1(q̃) + E

[n]
1,1(q̃

−1) = Ẽ
(n)
1,1 (q̃)

Assuming Equations (44) and (45), it follows that

log(φ̃n(x)) =
∞∑
l=1

1

l!

l−1∑
r=0

Al−1,rẼ
(n)
l,r+1(q̃)x

l

=
∞∑
l=1

1

l!
Ẽ

(n)
l (q̃)xl

where the last step follows from part (b) of Lemma 2.5.
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It remains to prove Equations (44) and (45). Equation (44) follows from the definition of

Ẽ
(n)
1,1 (q̃) and

E
(0)
l,r (q̃) + E

[n]
l,l−r(q̃

−1) =
∞∑
k=1

q̃kr

(1− q̃k)l
+

n∑
k=1

q̃−k(l−r)

(1− q̃−k)l

=
∞∑
k=1

q̃kr

(1− q̃k)l
+ (−1)l

n∑
k=1

q̃kr

(1− q̃k)l

= (1 + (−1)l)
n∑
k=1

q̃kr

(1− q̃k)l
+

∞∑
k=n+1

q̃kr

(1− q̃k)l

Equation (45) follows from

E
(0)
1,1(q̃) + E

[n]
1,1(q̃

−1) =
∞∑
k=1

q̃k

1− q̃k
+

n∑
k=1

q̃−k

1− q̃−k

=
∞∑
k=1

1− 1 + q̃k

1− q̃k
−

n∑
k=1

1

1− q̃k
= −n+

∞∑
k=n+1

q̃k

1− q̃k

This completes the proof of Proposition 2.2. �

2.7. Proof of Lemma 1.5. Part (a) of Lemma 1.5 follows from the definition of FA,B and

F̃A,B.
Part (b) follows from an application of Zeilberger’s creative telescoping [Zei91]. To apply

the method, define

t(m,x) =
(−1)AmqA

m(m+1)
2

(q)Bm
xm

Then, observe that t satisfies the recursions with respect to m and x:

(1− qm+1)Bt(m+ 1, x) = (−1)AqA(m+1)t(m,x) t(m, qx) = qmt(m,x) .

Now, we eliminate qm from the above equations as follows. The second equation implies that
t(m+ 1, qjx) = qj(m+1)t(m+ 1, x). Expanding the first equation, it follows that

B∑
j=0

(−1)j
(
B

j

)
t(m+ 1, qjx) = (−1)AqAxt(m, qAx)

Summing for m ≥ 0 implies (b). �

Proof. (of Corollary 1.6) The admissibility of F in the sense of Kontsevich-Soibelman, follows
from [KS11, Sec.6.1] and [KS11, Thm.9]. Given this, the Nahm Equation (12) for ω follows
easily from part (b) of Lemma 1.5. �
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3. An application: state-integrals of the 41 and 52 knots

3.1. Proof of Corollary 1.7. Assume now that (A,B) = (1, 2). Then,

1

(b(1− eb−1w))2
=

1

w2
− b−1

w
+O(1)

(φm(bw))2 = 1− 2E
(m)
1 (q)bw +O(w2)

(φ̃n(b−1w))2 = 1 + 2Ẽ
(n)
1 (q̃)b−1w +O(w2)

e
1

4πi
w2+w(b(m+1/2)+b−1(n+1/2)) = 1 +

(
1

2
+m

)
bw +

(
1

2
+ n

)
b−1w +O(w2)

Combined with Ẽ
(n)
1 (q̃) = −n+ E

(n)
1 (q̃), it follows that the residue R = Resw=0(F1,2,m,n(w))

is given by

R =

(
b

(
1

2
+m− 2E

(m)
1 (q)

)
− b−1

(
1

2
+ n− 2E

(n)
1 (q̃)

))
The above, together with the fact that tn(q) = (−1)n q

1
2n(n+1)

(q)2n
satisfies tn(q−1) = tn(q) implies

Equation (14). Equation (17) follows from Equation (11) for (A,B) = (1, 2).

3.2. Proof of Corollary 1.8. Assume now that (A,B) = (2, 3). Then,

1

(b(1− eb−1w))3
= − 1

w3
+

3b−1

2w2
− b−2

w
+O(1)

(φm(bw))3 = 1− 3E
(m)
1 (q) bw +

3

2

(
3E

(m)2
1 (q)− E(m)

2 (q)
)
b2w2 +O(w3)

(φ̃n(b−1w))3 = 1 + 3Ẽ
(n)
1 (q̃) b−1w +

3

2

(
3Ẽ

(n)2
1 (q̃) + Ẽ

(n)
2 (q̃)

)
b−2w2 +O(w3)

e
2

4πi
w2+2w(b(m+1/2)+b−1(n+1/2)) = 1 +

(
(1 + 2m)b+ (1 + 2n)b−1

)
w+(

1 +
b2 + b−2

2
+

1

2πi
+ 2b2m2 + 2b−2n2 + 4mn

+2(1 + b2)m+ 2(1 + b−2)n
)
w2 +O(w3)

If R = Resw=0(F2,3,m,n(w)), then

Rm,n = −b
2

2

(
1 + 4m+ 4m2 − 6E(m)

1 (q)− 12mE(m)
1 (q) + 9E(m)2

1 (q)− 3E(m)
2 (q)

)
− 1

2πi
+

1
2

(
1 + 2m− 3E(m)

1 (q)
)(

1 + 2n− 6E(n)
1 (q̃)

)
+
b−2

2

(
−n− n2 − 6E(0)

2 (q̃) + 3E(n)
1 (q̃) + 6nE(n)

1 (q̃)− 9E(n)2
1 (q̃) + 3E(n)

2 (q̃)
)
,

This proves part (a) of Corollary 1.8. Part (b) follows from Equation (11) for (A,B) = (2, 3)
and (A,B) = (1, 3). Note that Theorem 1.1 states that

I2,3(q) = −e
3πi
4 〈P2,3(FF̃ )〉(46)
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where

P2,3 = −b
2

2

(
1 + 4δ + 4δ2 − 6δ1 − 12δδ1 + 9δ2

1 − 3δ̃2

)
+

1

2

(
1 + 2δ +

i

π
+ 2δ̃ + 4δδ̃ − 3δ1 − 6δ̃δ1 − 6e2(q̃)− 6δ̃1 − 12δδ̃1 + 18δ1δ̃1

)
+
b−2

2

(
−δ̃ − δ̃2 + 3δ̃1 + 6δ̃δ̃1 − 9δ̃2

1 + 3δ̃2

)
.
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Lecture Notes in Mathematics, Vol. 138, Springer-Verlag, Berlin, 1970.

[Gar16] Stavros Garoufalidis, The 3D index of an ideal triangulation and angle structures, Ramanujan J.
40 (2016), no. 3, 573–604, With an appendix by Sander Zwegers.

[GHRS15] Stavros Garoufalidis, Craig D. Hodgson, J. Hyam Rubinstein, and Henry Segerman, 1-efficient
triangulations and the index of a cusped hyperbolic 3-manifold, Geom. Topol. 19 (2015), no. 5,
2619–2689.

[GZ] Stavros Garoufalidis and Don Zagier, Knots and their related q-series, Preprint 2017.
[Hik01] Kazuhiro Hikami, Hyperbolic structure arising from a knot invariant, Internat. J. Modern Phys.

A 16 (2001), no. 19, 3309–3333.
[KLV16] Rinat Kashaev, Feng Luo, and Grigory Vartanov, A TQFT of Turaev-Viro type on shaped trian-

gulations, Ann. Henri Poincaré 17 (2016), no. 5, 1109–1143.
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