
A SURVEY OF q-HOLONOMIC FUNCTIONS
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Abstract. We give a survey of basic facts of q-holonomic functions of one or several vari-
ables, following Zeilberger and Sabbah. We provide detailed proofs and examples.
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1. Introduction

In his seminal paper [Zei90] Zeilberger introduced the class of holonomic functions (in
several discrete or continuous variables), and proved that it is closed under several operations
(including sum and product). Zeilberger’s main theorem asserts that combinatorial identities
of multivariable binomial sums can be proven automatically, by exhibiting a certificate of
a recursion for such sums, and by checking a finite number of initial conditions. Such a
recursion is guaranteed within the class of holonomic functions, and an effective certificate
can be computed by Zeilberger’s telescoping methods [Zei90, WZ92]. Numerous examples
of this philosophy were given in the book [PWZ96].

Holonomic sequences of one variable are those that satisfy a linear recursion with poly-
nomial coefficients. Holonomic sequences of two (or more variables) also satisfy a linear
recursion with polynomial coefficients with respect to each variable, but they usually satisfy
additional linear recursions that form a maximally overdetermined system. The precise def-
inition of holonomic functions requires a theory of dimension (developed using homological
algebra) and a key Bernstein inequality.

Extending Wilf-Zeilberger’s class of holonomic functions to the class of q-holonomic func-
tions is by no means obvious, and was achieved by Sabbah [Sab93]. Sabbah’s article was
written using the language of homological algebra.

The distance between Zeilberger’s and Sabbah’s papers is rather large: the two papers
were written for different audiences and were read by largely disjoint audiences. The pur-
pose of our paper is to provide a bridge between Zeilberger’s and Sabbah’s paper, and in
particular to translate Sabbah’s article into the class of multivariate functions. En route, we
decided to give a self-contained survey (with detailed proofs and examples) of basic prop-
erties of q-holonomic functions of one or several variables. We claim no originality of the
results presented here, except perhaps of a proof that multisums of q-holonomic functions
are q-holonomic, in all remaining variables (Theorem 5.3). This last property is crucial for
q-holonomic functions that arise naturally in quantum topology. In fact, quantum knot
invariants, such as the colored Jones polynomial of a knot or link (colored by irreducible
representations of a simple Lie algebra), and the HOMFLY-PT polynomial of a link, col-
ored by partitions with a fixed number of rows are multisums of q-proper hypergeometric
functions [GL05, GLL17]. Therefore, they are q-holonomic functions.

We should point out a difference in how recurrence relations are viewed in quantum
topology versus in combinatorics. In the former, minimal order recurrence relations of-
ten have geometric meaning, and in the case of the Jones or HOMFLY-PT polynomial
of a knot, is conjectured to be a deformation of the character variety of the link comple-
ment [Gar04, Lê06, Lê, LT15, LZ]. In the latter, recurrence relations are used as a convenient
way to automatically prove combinatorial identities.

Aside from the geometric interpretation of a recurrence for the colored Jones polynomial
of a knot, and for the natural problem of computing or guessing such recursions, we should
point out that such recursions can also be used to numerically compute several terms of the
asymptotics of the colored Jones polynomial at complex roots of unity, a fascinating story
that connects quantum topology to hyperbolic geometry and number theory. For a sample
of computations, the reader may consult [Gar, GK12, GK13, GZ].
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2. q-holonomic functions of one variable

Throughout the paper Z, N and Q denotes the sets of integers, non-negative integers, and
rational numbers respectively. We will fix a field k of characteristic zero, and a variable q
transcendental over k. Let R = k(q) denote the field of rational functions on a variable q
with coefficients in k..

2.1. Recurrence relations. One of the best-known sequences of natural numbers is the
Fibonacci sequence F (n) for n ∈ N that satisfies the recurrence relation

F (n+ 2)− F (n+ 1)− F (n) = 0, F (0) = 0, F (1) = 1 .

Similarly, one can consider a q-version of the Fibonacci sequence f(n) for n ∈ N that satisfies
the recurrence relation

f(n+ 2)− f(n+ 1)− qf(n) = 0, f(0) = 1, f(1) = 2 .

In that case, f(n) ∈ Z[q] is a sequence of polynomials in q with integer coefficients.
A q-holonomic sequence is one that satisfies a nonzero linear recurrence with coefficients

that are polynomials in q and qn. More precisely, we say that a function f : N→ V , where V
is an R-vector space, is q-holonomic if there exists d ∈ N and aj(u, v) ∈ k[u, v] for j = 0, . . . , d
with ad 6= 0 such that for all natural numbers n we have

ad(q
n, q)f(n+ d) + · · ·+ a0(q

n, q)f(n) = 0 . (1)

2.2. Operator form of recurrence relations. We can convert the above definition in
operator form as follows. Let V an R-vector space. Let S1,+(V ) denote the set of functions
f : N→ V , and consider the operators L and M that act on S1,+(V ) by

(Lf)(n) = f(n+ 1), (Mf)(n) = qnf(n) . (2)

It is easy to see that L and M satisfy the q-commutation relation LM = qML. The algebra

W+ := R〈M, L〉/(LM− qML)

is called the quantum plane. Equation (1) can be written in the form

Pf = 0, P =
d∑
j=0

aj(M, q)L
j ∈W+ .

Given any f ∈ S1,+(V ), the set

Ann+(f) = {P ∈W+ |Pf = 0}

is a left ideal of W+, and the corresponding submodule Mf,+ = W+f of S1,+(V ) generated
by f is cyclic and isomorphic to W+/Ann+(f). In other words, Mf,+ ⊂ S1,+(V ) consists of
all functions obtained by applying a recurrence operator P ∈ W+ to f . Then, we have the
following.

Definition 2.1. f ∈ S1,+(V ) is q-holonomic if Ann+(f) 6= {0}.

Before we proceed further, let us give some elementary examples of q-holonomic functions.
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Example 2.2. (a) The function f(n) = (−1)n is q-holonomic since it satisfies the recurrence
relation

f(n+ 1) + f(n) = 0, n ∈ N .

(b) The functions f(n) = qn, g(n) = qn
2

and h(n) = qn(n−1)/2 are q-holonomic since they
satisfy the recurrence relations

f(n+ 1)− qf(n) = 0, g(n+ 1)− q2n+1g(n) = 0, h(n+ 1)− qnh(n) = 0, n ∈ N .

However, the function n 7→ qn
3

is not q-holonomic. Indeed, if it satisfied a recurrence relation,
divide it by h(n) and reach a contradiction.
(c) The delta function

δ(n) =

{
1 if n = 0

0 otherwise,

is q-holonomic since it satisfies the recurrence relation

(1− qn)δ(n) = 0, n ∈ N .

(d) The quantum factorial function given by (q; q)n =
∏n

k=1(1−qk) for n ∈ N is q-holonomic,
since it satisfies the recurrence relation

(q; q)n+1 − (1− qn+1)(q; q)n = 0, n ∈ N . (3)

(e) The inverse quantum factorial function given by n→ 1/(q; q)n for n ∈ N is q-holonomic,
since it satisfies the recurrence relation

(1− qn+1)
1

(q; q)n+1

− 1

(q; q)n
= 0 .

(f) Suppose k = Q(x). Define the q-Pochhammer symbol (x; q)n, for n ∈ N, by

(x; q)n :=
n∏
k=1

(1− xqk−1) .

Then the function n 7→ (x; q)n is q-holonomic over k, since it satisfies the recurrence relation

(x; q)n+1 + (xqn − 1)(x; q)n = 0 .

2.3. Extension to functions defined on the integers. For technical reasons that have
to do with specialization and linear substitution, it is useful to extend the definition of
q-holonomic functions to ones defined on the set of integers. Note that in the setting of
Section 2.2 where the domain of the function f is N, M is invertible, but L is not.

When the domain is Z, the definitions of the previous section extend almost naturally, but
with some important twists that we will highlight. Let S1(V ) denote the set of functions
f : Z → V . The operators L and M still act on S1(V ) via (2), only that now they are
invertible and generate the quantum Weyl algebra

W := R〈M±1, L±1〉/(LM− qML) .

Given f ∈ S1(V ), we can define

Ann(f) = {P ∈W |Pf = 0} (4)

and the corresponding cyclic module Mf := Wf ⊂ S1(V ).
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Definition 2.3. f ∈ S1(V ) is q-holonomic if Ann(f) 6= {0}.

Remark 2.4. An important property of q-holonomic functions is that a q-holonomic f (with
domain N or Z) is completely determined by a non-trivial recurrence relation and a finite set
of values: observe that the leading and trailing coefficients of the recurrence relation, being
polynomials in q and qn, are nonzero for all but finitely many n. For such n, we can compute
f(n± 1) from previous values. It follows that f is uniquely determined by its restriction on
a finite set.

It is natural to ask what happens to a q-holonomic function defined on N when we extend
it by zero to a function on Z. It is instructive to look at part (d) of Example 2.2. Consider
the extension of (q; q)n to the integers defined by (q; q)n = 0 for n < 0. The recurrence
relation (3) cannot be solved backwards when n = −1. Moreover, the recurrence relation
(3) does not hold for n = −1 for any value of (q; q)−1. On the other hand, if we multiply (3)
by 1− qn+1 (which vanishes exactly when n = −1), then we have a valid recurrence relation

(1− qn+1)(q; q)n+1 − (1− qn+1)2(q; q)n = 0, n ∈ Z .
This observation generalizes easily to a proof of the following.

Lemma 2.5. (a) If f ∈ S1(V ) is q-holonomic and g ∈ S1,+(V ) is its restriction to the natural
numbers, then g is q-holonomic.
(b) Conversely, if g ∈ S1,+(V ) is q-holonomic and f ∈ S1(V ) is the 0 extension of g (i.e.,
f(n) = g(n) for n ∈ N, f(n) = 0 for n < 0), then f is q-holonomic.

Proof. (a) Suppose Pf = 0, where P ∈ W. Then MaLbPf = 0 for all a, b ∈ Z. For big
enough integers a, b we have Q = MaLbP ∈W+ and Qg = 0. This shows g is q-holonomic.

(b) Suppose Qg = 0 where 0 6= Q ∈ W+ and Q has degree d in L. Then Pf = 0, where

P =
(∏d

j=1(1− qjM)
)
Q. Hence, f is q-holonomic. �

For stronger statements concerning more general types of extension, see Propositions 5.6
and 5.7.

Example 2.6. (a) The discrete Heaviside function

H(n) =

{
1 if n ≥ 0

0 otherwise
(5)

is q-holonomic since it is the 0 extension of a constant function on N. Alternatively, it
satisfies the recurrence relation

(1− qn+1)H(n+ 1)− (1− qn+1)H(n) = 0, n ∈ Z .

(b) The 0 extensions of all the functions in Example 2.2 are q-holonomic. In particular, the
delta function

δ : Z→ Z, δ(n) =

{
1 if n = 0

0 otherwise,

is q-holonomic.
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3. q-holonomic functions of several variables

3.1. Functions of several variables and the quantum Weyl algebra. In this section,
we extend our discussion to functions of r variables. One might think that a q-holonomic
function of several variables is one that satisfies a recurrence relation with respect to each
variable, when all others are fixed. Although this is not far from true, this is not always true.
Instead, a q-holonomic function needs to satisfy additional recurrence relations to create a
maximally overdetermined system of equations. Let us explain this now.

For a natural number r, let Sr(V ) be the set of all functions f : Zr → V and Sr,+(V ) the
subset of functions with domain Nr. For i = 1, . . . , r consider the operators Li and Mi which
act on functions f ∈ Sr(V ) by

(Lif)(n1, . . . , ni, . . . , nr) = f(n1, . . . , ni + 1, . . . , nr) (6)

(Mif)(n1, . . . , nr) = qnif(n1, . . . , nr). (7)

It is clear that Li, Mj are invertible operators that satisfy the q-commutation relations

MiMj = MjMi (8a)

LiLj = LjLi (8b)

LiMj = qδi,jMjLi (8c)

for all i, j = 1, . . . , r. Here δi,j = 1 when i = j and zero otherwise. The r-dimensional
quantum Weyl algebra Wr is the R-algebra generated by L±1

1 , . . . , L±1
r ,M±1

1 , . . . ,M±1
r subject

to the relations (8a)–(8c). Then Wr
∼= W⊗r and is a Noetherian domain.

Given f ∈ Sr(V ), the annihilator Ann(f), which is a left Wr-ideal, is defined as in Equa-
tion (4). The corresponding cyclic module Mf , defined by Mf = Wrf ⊂ Sr(V ), is isomorphic
to Wr/Ann(f).

Informally, f is q-holonomic if Mf ⊂ Sr(V ) is as small as possible, in a certain measure
of complexity. In particular, Ann(f) must contain recurrence relations with respect to each
variable ni (when all other variables are fixed), but this is not sufficient in general.

3.2. The case of Wr,+. In this and the remaining sections follow closely the work of Sab-
bah [Sab93]. Let Wr,+ be the subalgebra of Wr generated by non-negative powers of Mj, Lj.
Our aim is to define the dimension of a finitely generated Wr,+-module, to recall the Bern-
stein inequality (due to Sabbah), and to define q-holonomic Wr,+-modules.

For α = (α1, . . . , αr) ∈ Zr let |α| =
∑r

j=1 αj and

Mα =
r∏
j=1

M
αj

j , Lα =
r∏
j=1

L
αj

j .

Consider the increasing filtration F on Wr,+ given by

FkWr,+ = {R-span of all monomials MαLβ with α, β ∈ Nr and |α|+ |β| ≤ k} . (9)

Let M be a finitely generated Wr,+-module. The filtration F on Wr,+ induces an increasing
filtration on M , defined by FkM = FkWr,+ · J where J is a finite set of generators of M
as a Wr,+-module. It is easy to see that FkM is independent of J , and depends only on
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the Wr,+-module M . Note that FkWr,+, and consequently FkM , are finitely generated R-
modules for all k ∈ N. An analog of Hilbert’s theorem for this non-commutative setting
holds: the R-dimension of FkM is a polynomial in k, for big enough k. The degree of this
polynomial is called the dimension of M , and is denoted by d(M).

In [Sab93, Theorem 1.5.3] Sabbah proved that d(M) = 2r − codim(M), where

codim(M) = min{j ∈ N | ExtjWr,+
(M,Wr,+) 6= 0} . (10)

He also proved that d(M) ≥ r if M is non-zero and does not have monomial torsion. Here a
monomial torsion is a monomial P in Wr,+ such that Px = 0 for a certain non-zero x ∈M .
It is easy to see that M embeds in the Wr-module Wr ⊗Wr,+ M if and only if M has no
monomial torsion. Of course if M = 0 then d(M) = 0.

Definition 3.1. (a) A Wr,+-module M is q-holonomic if M is finitely generated, does not
have monomial torsion, and d(M) ≤ r.
(b) An element f ∈ M , where M is a Wr,+-module not necessarily finitely generated, is
q-holonomic over Wr,+ if Wr,+ · f is a q-holonomic Wr,+-module.

3.3. The case of Wr. Let M be a non-zero finitely generated left Wr-module. Following
[Sab93, Section 2.1], the codimension and dimension of M are defined in terms of homological
algebra by an analog of (10):

codim(M) := min{j ∈ N | ExtjWr
(M,Wr) 6= 0}, dim(M) := 2r − codim(M). (11)

The key Bernstein inequality (proved by Sabbah [Sab93, Thm.2.1.1] in the q-case) asserts
that if M 6= 0 is a finitely generated Wr-module, then dim(M) ≥ r. For M = 0 let
dim(M) = 0.

Definition 3.2. (a) A Wr-module M is q-holonomic if M is finitely generated and dim(M) ≤
r.
(b) An element f ∈ M , where M is a Wr-module not necessarily finitely generated, is
q-holonomic over Wr if Wr · f is a q-holonomic Wr-module.

Thus a non-zero finitely generated Wr-module is q-holonomic if and only if it is minimal
in the complexity measured by the dimension.

Next we compare q-holonomic modules over Wr versus over Wr,+. To do so, we use the
following proposition of Sabbah [Sab93, Cor.2.1.5].

Proposition 3.3. Suppose N is a Wr,+-module and M = Wr ⊗Wr,+ N .

(a) If N is q-holonomic over Wr,+ then M is q-holonomic over Wr.
(b) Suppose M is q-holonomic over Wr then there is a Wr,+-submodule N ′ ⊂ N such

that N ′ is q-holonomic over Wr,+ and M = Wr ⊗Wr,+ N
′.

Actually, part (b) of the above proposition is contained in the proof of [Sab93, Cor.2.1.5].

Proposition 3.4. Suppose f ∈ M , where M is a Wr-module. Then f is q-holonomic over
Wr if and only if it is q-holonomic over Wr,+.

Proof. We can assume that f 6= 0 and that M = Wr · f . Let N = Wr,+ · f ⊂M . Then N is
a Wr,+-submodule of M without monomial torsion and M = Wr ⊗Wr,+ N . Proposition 3.3
implies that if f is q-holonomic over Wr,+, then f is q-holonomic over Wr.
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We now prove the converse. Assume that M is q-holonomic over Wr. By Proposition 3.3,
there is a Wr,+-submodule N ′ ⊂ N such that d(N ′) = r and M = Wr ⊗Wr,+ N

′. Since Wr,+

is Noetherian, we can assume N ′ is Wr,+-spanned by p1f, . . . , pkf , where pi ∈Wr,+.
Claim 1. Suppose a, b are elements of a Wr,+-module and a, b are q-holonomic over Wr,+.

Then a+ b is q-holonomic over Wr,+.
Proof of claim 1. Since Fk(a+ b) ⊂ Fk(a) + Fk(b), we have

dimR(Fk(a+ b)) ≤ dimR(Fk(a)) + dimR(Fk(b)) = O(nr) ,

which shows that d(Wr,+(a+ b)) ≤ r, and hence a+ b is q-holonomic over Wr,+.
Claim 2. Suppose a ∈M is q-holonomic over Wr,+, then pa is q-holonomic over Wr,+ for

any p ∈Wr.
Proof of claim 2. Let Ml ⊂ Wr,+ be the set of all monomials MαLβ with total degree ≤ l.
There is a monomial m such that mp ∈ Wr,+. Choose l such that m ∈ Ml and mp ∈ Fl.
Then for all positive integers N , FNp ⊂

∑
m∈Ml

m−1FN+l. Hence

dimR(FN(pa)) ≤
∑

m∈Ml

O((N + l)r) = O(nr) ,

which proves that pa is q-holonomic over Wr,+.
Let us return to the proof of the proposition. Since d(N ′) = r, each of p1f, . . . , pkf is

q-holonomic over Wr,+. Because M = Wr ⊗Wr,+ N
′, there are s1, . . . , sk ∈ Wr such that

f =
∑k

i=1 sipif . Claims 1 and 2 show that f is q-holonomic over Wr,+. �

Remark 3.5. When r = 1, the above definition of q-holonomicity is equivalent to the one
given in Section 2.3.

4. Properties of q-holonomic modules

The class of q-holonomic Wr-modules is closed under several natural operations. We
will collect these operations here, and refer to Sabbah’s paper for complete proofs. Below
q-holonomic means q-holonomic over Wr.

4.1. Sub-quotients and extensions. By [Sab93, Cor 2.1.6], we have the following.

Proposition 4.1. (a) Submodules and quotient modules of q-holonomic modules are q-
holonomic.
(b) Extensions of q-holonomic modules by q-holonomic modules are q-holonomic.

4.2. Push-forward. Recall that Mα = Mα1
1 . . .Mαr

r for α = (α1, . . . , αr) ∈ Zr. Suppose A is
an r × s matrix with integer entries. Let M = (M1, . . . ,Mr) and M′ = (M′1, . . . ,M

′
s). There

is an R-linear map

R[M±1]→ R[M′±1], Mα 7→ (M′)A
Tα

where AT is the transpose of A. If M is a Wr-module, define

(TA)∗(M) = R[M′±1]⊗R[M±1] M ,

which is a Ws-module via the following action:

M′i(P ⊗m) = (M′iP )⊗m, L′i(P ⊗m) = τi(P )⊗ L
A1,i

1 . . . LAr,i
r m,



A SURVEY OF q-HOLONOMIC FUNCTIONS 9

where τi : R[M′±1] → R[M′±1] is the R-algebra map given by τi(M
′
j) = qδi,jM′j. In [Sab93,

Prop.2.3.3] Sabbah proves:

Proposition 4.2. If M is a q-holonomic Wr-module and A is an s× r matrix with integer
entries, then (TA)∗(M) is a q-holonomic Ws-module.

4.3. Symplectic automorphism. Next we discuss a symplectic automorphism group of
the quantum Weyl algebra. Suppose A,B,C,D are r × r matrices with integer entries and

X =

(
A B
C D

)
.

Define an R-linear map φX : Wr →Wr by

φX(MαLβ) = MAαLBβMCαLDβ .

Then φX is an R-algebra automorphism if and only if X is a symplectic matrix.
Suppose X is symplectic and M is a Wr-module. Then φX induces another Wr-module

structure on M , where the new action u ·φX
x ∈M for u ∈Wr and x ∈M is defined by

u ·φX
x = φX(u) · x .

This new Wr-module is denoted by (φX)∗(M).

Proposition 4.3. M is q-holonomic if and only if (φX)∗(M) is q-holonomic.

Proof. This follows easily from the fact that the ext groups of (φX)∗(M) are isomorphic to
those of M , and the fact that codimension and dimension can be defined using the ext groups
alone; see Equation (11). �

In particular, when

X =

(
0 I
−I 0

)
(12)

then (φX)∗(M) is called the Mellin transform of M , and is denoted by M(M), follow-
ing [Sab93, Sec.2.3]. In particular,

Corollary 4.4. If M is a q-holonomic Wr-module, so is M(M).

Another interesting case is when

X =

(
A 0
0 (AT )−1

)
where A ∈ GL(r,Z).

4.4. Tensor product. Suppose M,M ′ are Wr-modules. One defines their box product
M �M ′ and their convoluted box product M�̂M ′, which are Wr-modules, as follows. As
an R[M±1

1 , . . . ,M±1
r ]-module,

M �M ′ = M ⊗R[M±1
1 ,...,M±1

r ] M
′ ,

and the Wr-module structure is given by

Mi(x⊗ x′) = Mi(x)⊗ x′ = x⊗Mi(x
′), Li(x⊗ x′) = Li(x)⊗ Li(x

′) . (13)
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Similarly, as R[L±1
1 , . . . , L±1

r ]-module,

M�̂M ′ = M ⊗R[L±1
1 ,...,L±1

r ] M
′ ,

and the Wr-module structure is given by

Li(x⊗ x′) = Li(x)⊗ x′ = x⊗ Li(x
′), Mi(x⊗ x′) = Mi(x)⊗Mi(x

′) . (14)

Proposition 4.5. Suppose M,M ′ are q-holonomic Wr-modules. Then both M �M ′ and
M�̂M ′ are q-holonomic.

Proof. The case of M �M ′ is a special case of [Sab93, Proposition 2.4.1], while the case of

M�̂M ′ follows from the case of the box product via the Mellin transform, since

M�̂M ′ = M−1(M(M)�M(M ′)) .

�

4.5. q-holonomic modules are cyclic. An interesting property of q-holonomic Wr-modules
M is that they are cyclic, i.e., are isomorphic to Wr/I for some left ideal I of Wr. This is
proven in [Sab93, Cor.2.1.6].

5. Properties of q-holonomic functions

5.1. Fourier transform. The idea of the Fourier transform F(f) of a function f ∈ Sr(V )
is the following: the Fourier transform is simply the generating series

(Ff)(z) =
∑
n∈Zr

f(n)zn, (15)

where n = (n1, . . . , nr) and zn =
∏r

j=1 z
nj

j . More formally, let Šr(V ) denote the set whose

elements are the expressions of the right hand side of (15). Then Šr(V ) is an R-module
equipped with an action of Wr defined by

(Mig)(z) = g(z1, . . . , zi−1, qzi, zi+1, . . . , zr), (Lig)(z) = z−1
i g(z)

for g(z) ∈ Šr(V ). The Wr-module structure on Sr(V ) and Šr(V ) is chosen so that the
following holds.

Lemma 5.1. (a) The map F : Sr(V )→ Šr(V ) given by Equation (15) is an isomorphism of
Wr-modules.
(b) f ∈ Sr(V ) is q-holonomic if and only if its Fourier transform F(f) is.
(c) The relation of the Fourier and Mellin transform are as follows. If f ∈ Sr(V ), then

MF(f) = M(Mf ) .

Now, suppose that V is a commutative R-algebra. Then Sr(V ) is a Wr-algebra. Hence
Šr(V ), via F, inherits a product, known as the Hadamard product ~, given by

f(z) =
∑
n∈Zr

f(n)zn, g(z) =
∑
n∈Zr

g(n)zn, f(z)~ g(z) =
∑
n∈Zr

f(n)g(n)zn
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Of course F is an isomorphism of algebras. Note that the action of Wr on the product of
two functions are given by

Mj(fg) = Mj(f)g = fMj(g), Lj(fg) = Lj(f)Lj(g). (16)

The R-subspace of Šr(V ) consisting of all power series with finite support is isomorphic to
the group ring R[Zr] and has a natural product defined by multiplication of power series in
z, that corresponds to a convolution product on the subset of Sr(V ) consisting of functions
with finite support. Unfortunately, multiplication of power series in z cannot be extended
to the whole Šr(V ). However, this convolution product can be extended to bigger subspaces
as follows. For an integer k with 0 ≤ k ≤ r, let Sr,k(V ) denote the set of functions f : Zr =
Zk × Zr−k → V such that for each n ∈ Zk, the support of f(n, ·) : Zr−k → V is a finite
subset of Zr−k. Let Sstr

r,k(V ) denote the set of functions f : Zr = Zk × Zr−k → V that vanish

outside J × Zr−k for some finite subset J ⊂ Zk (J in general depends on f).
For f ∈ Sr,k(V ) and g ∈ Sstr

r,k(V ) one can define the convolution f ∗ g ∈ Sr(V ) by

(f ∗ g)(n) =
∑
m∈Zr

g(m)f(n−m) .

The right hand side is well-defined since there are only a finite number of non-zero terms.
The convolution is transformed into the product of power series by the Fourier transform:
for f ∈ Sstr

r,k(V ) and g ∈ Sstr
r,k(V ) we have:

F(f ∗ g) = F(f)F(g) . (17)

Note that

Mj(f ∗ g) = Mj(f) ∗Mj(g), Lj(f ∗ g) = Lj(f) ∗ g = f ∗ Lj(g) . (18)

5.2. Closure properties. In this section we summarize the closure properties of the class
of q-holonomic functions. These closure properties were known in the classical case (non
q-case, see [Zei90]) and we are treating the q-case. Theorem 5.2 below and Theorem 5.3
in the next section were known as folklore, but to the best of our knowledge, there were
no proofs given in the literature. The main goal of this survey is to give proofs to these
fundamental results.

Theorem 5.2. The class of q-holonomic functions are closed under the following operations.

(a) Addition: Suppose f, g ∈ Sr(V ) are q-holonomic. Then f + g is q-holonomic.
(b) Multiplication: Suppose f, g ∈ Sr(V ) are q-holonomic. Then fg is q-holonomic.

(b’) Convolution: Suppose f ∈ Sr,k(V ) and g ∈ Sstr
r,k(V ) are q-holonomic. Then f ∗ g is

q-holonomic.
(c) Affine substitution: Suppose f ∈ Sr(V ) is q-holonomic, A is an r × s matrix with

integer entries, and b ∈ Zs. Then g ∈ Ss(V ) defined by

g(n) := f(An+ b)

is q-holonomic.
(d) Restriction: Suppose f ∈ Sr(V ) is q-holonomic and a ∈ Z. Then g ∈ Sr−1(V ) defined

by
g(n1, . . . , nr−1) = f(n1, . . . , nr−1, a)
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is q-holonomic.
(e) Extension: Suppose f ∈ Sr(V ) is q-holonomic. Then h ∈ Sr+1(V ) defined by

h(n1, . . . , nr+1) = f(n1, . . . , nr)

is q-holonomic.
(f) Rescaling q: Suppose f ∈ Sr(V ) is q-holonomic where V = k(q)⊗kV0 is a k(q)-vector

space. Fix a nonzero integer c and let σ : k(q)→ k(qc) be the field isomorphism given
by σ(q) = qc, W = k(qc)⊗k V0 and g = σ ◦ f ∈ Sr(W ). If f is q-holonomic, then g
is q-holonomic.

Proof. (a) Recall that Mf = Wrf , which is a Wr-module. The map

Mf ⊕Mg → Sr(V ) ,

given by x⊕y 7→ x+y is Wr-linear and its image contains Mf+g. Thus, Mf+g is a subquotient
of Mf ⊕Mg. By Proposition 4.1, Mf+g is q-holonomic.

(b) From (13) and (16) one sees that the map

Mf �Mg → Sr(V ) ,

given by x ⊗ y 7→ xy is Wr-linear and its image contains Mfg. Thus, Mfg is a subquotient
of Mf �Mg. By Proposition 4.1, Mfg is q-holonomic.

(b’) From (14) and (18) one sees that the map

Mf�̂Mg → Sr(V ) ,

given by x⊗ y 7→ x ∗ y is Wr-linear and its image contains Mf∗g. By Proposition 4.1, Mf∗g
is q-holonomic.

(c) For b ∈ Zs and h ∈ Ss(V ) let h′ := Lbh. We have h′(n) = h(n+ b). Then

Mh′ = Wsh
′ = (WsL

b)h = Wsh = Mh .

Thus, h is q-holonomic if and only if h′ is. Hence, we can assume that b = 0 in proving (c).
Consider the linear map Zs → Zr, n = (n1, . . . , ns) → An = n′ = (n′1, . . . , n

′
r). Then

g(n) = f(An). Observe that qn
′
i = qAi1n1+...Aisns , i.e., M′i = MAi1

1 . . .MAis
s . Moreover,

(Lβg)(n) = g(n+ β) = f(An+ Aβ) = ((L′)Aβf)(An) .

It follows that the R-linear map ψ : (TA)∗(Sr(V )) → Ss(V ), where (TA)∗(Sr(V )) is the
push-forward of Sr(V ) (see Section 4.2), given by

ψ(Mα ⊗ h) = Mα(h ◦ A) (19)

is a Ws-module homomorphism. Since

MαLβg = ψ(Mα ⊗ (L′)Aβf), (20)

and the set of all MαLβg R-spans Ws ·g, it follows that Wsg is a submodule of ψ(Wrf). Since
f is q-holonomic, Propositions 4.2 and 4.1 imply that Wsg is a submodule of the q-holonomic
module ψ(Wrf), hence is q-holonomic.

(d) and (e) are a special cases of (c).
(f) Observe that

σ(a(q)LαMβf) = σ(a(q)LαMβ)g
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where

σ(a(q)LαMβ) = a(qc)LαMcβ .

Assume that f is q-holonomic with respect to Wr. Using Proposition 3.4, it follows that
that f is q-holonomic with respect to Wr,+, and it suffices to show that g is q-holonomic
with respect to Wr,+. Recall the good filtration Fk on Wr,+f from Equation (9). It follows
that Fkg is the span of LαMβσf for |α|+ |β| ≤ k. Equivalently, it is the span of MγLαMcβσf
where γi ∈ {0, 1, . . . , |c| − 1} for i = 1, . . . , r and |γ| + |α| + c|β| ≤ k. Since MγLαMcβσf
= Mγσ(LαMβf), and |α| + |β| ≤ k and the number of γ is O(1), and the dimension of the
extension k(q)/k(qc) is finite, it follows that the dimension of the span of Fkg is at most
the dimension of the span of Fkf , times a constant which is independent of k. Hence, g is
q-holonomic with respect to Wr,+. �

5.3. Multisums. In this section we prove that multisums of q-holonomic functions are q-
holonomic. This important closure property of q-holonomic functions (even in the case of
multisums of q-proper hypergeometric functions) is not proven in the literature, since the
paper of Wilf-Zeilberger [WZ92] predated Sabbah’s paper [Sab93] that provided the definition
of q-holonomic functions. On the other hand, quantum knot invariants (such as the colored
Jones and the colored HOMLFY polynomials) are multisums of q-proper hypergeometric
functions [GL05, GLL17], and hence q-holonomic. It is understood that a modification of
the proof in the classical (i.e., q = 1) case ought to work in the q-holonomic case. At any
rate, we give a detailed proof, which was a main motivation to write this survey article on
q-holonomic functions.

Recall that Sr,1(V ) the set of all functions f : Zr → V such that for every (n1, . . . , nr−1) ∈
Zr−1, f(n1, . . . , nr) = 0 for all but a finite number of nr.

Theorem 5.3. (a) Suppose f ∈ Sr,1(V ) is q-holonomic. Then, g ∈ Sr−1(V ), defined by

g(n1, . . . , nr−1) =
∑
nr∈Z

f(n1, . . . , nr) ,

is q-holonomic.
(b) Suppose f ∈ Sr(V ) is q-holonomic. Then h ∈ Sr+1(V ) defined by

h(n1, . . . , nr−1, a, b) =
b∑

nr=a

f(n1, n2, . . . , nr) (21)

is q-holonomic.

Proof. (a) Let ν ∈ Sstr
r,1(V ) be defined by

ν(n1, . . . , nr) = δn1,0 . . . δnr−1,0.

Lemma 6.1 and Theorem 5.2 show that ν is q-holonomic. Hence g′ = f ∗ ν is q-holonomic.
Note that g′ is constant on the last variable, and

g′(n1, . . . , nr) = g(n1, . . . , nr−1) .

In particular, g(n1, . . . , nr−1) = g(n1, . . . , nr−1, 0). By Theorem 5.2(d), g is q-holonomic.
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(b) follows from (a) using the identity

h(n1, . . . , nr−1, a, b) = g(n1, . . . , nr)H(nr − a)H(b− nr)

where H(n) is the Heaviside function (5). �

5.4. Extending from Nr to Zr. Here is an extension of Lemma 2.5 to several variables.

Proposition 5.4. (a) If f ∈ Sr(V ) is q-holonomic and g ∈ Sr,+(V ) is its restriction to Nr,
then g is q-holonomic.
(b) Conversely, if g ∈ Sr,+(V ) is q-holonomic and f ∈ Sr(V ) is the extension of g to Zr by
zero (i.e., f(n) = g(n) for n ∈ Nr, f(n) = 0 otherwise), then g is q-holonomic.

Proof. (a) For h ∈ Sr(V ), let Res(h) ∈ Sr,+(V ) denote the restriction of h to Nr ⊂ Zr. If
P ∈ Wr,+, observe that Res(Pf) = Pg, and consequently, Res(Fkf) = Fkg. It follows that
if f ∈ Sr(V ) is q-holonomic and g = Res(f), then g is q-holonomic.

(b) Let I = Ann(g) ⊂ Wr,+ and Ĩ = WrI be its extension in Wr. We have the following
short exact sequence of Wr-modules

0→ Ĩ · f →Wr · f → (Wr · f)/(Ĩ · f)→ 0 . (22)

We claim that:

(1) (Wr · f)/(Ĩ · f) is q-holonomic over Wr.
(2) Ĩ · f is q-holonomic over Wr.

If that holds, Proposition 4.1 concludes the proof.
To prove (1), note that (Wr · f)/(Ĩ · f) is a quotient of Wr/Ĩ = Wr ⊗Wr,+ (Wr,+/I). By

Propositions 3.3 and 4.1, (Wr · f)/(Ĩ · f) is q-holonomic over Wr.
To prove (2), suppose I is generated by p1, . . . , pk. It suffices to prove that each pjf is

q-holonomic over Wr. We prove this by induction on r. For r = 1, it is clear. Suppose it
holds for r− 1. There is a finite set J ⊂ Z such that the support of pjf is in ∪0≤k≤r−1(Zk ×
J × Zr−1−k). Without loss of generality we can assume that J consists of one element. In
that case, the induction hypothesis concludes that pjf is q-holonomic. �

Corollary 5.5. Theorems 5.2 (where in part (c) we assume A : Ns → Nr and b ∈ Ns)
and 5.3 hold for q-holonomic functions over Wr,+.

5.5. Modifying and patching q-holonomic functions. In this section we discuss how a
modification of a q-holonomic function by another one is q-holonomic, and that the patching
of q-holonomic functions on orthants is a q-holonomic function.

Proposition 5.6. Suppose V is an R-vector space and f ∈ Sr(V ), g ∈ Sr−1(V ) are q-
holonomic.

(a) If f ′ ∈ Sr(V ) differs from f on a finite set, then f ′ is q-holonomic.
(b) Suppose a ∈ Z. If f ′ = f except on the hyperplane Zr−1×{a}, where f ′(n, a) = g(n),

then f ′ is q-holonomic.

Similar statements holds for the case when the domains of f, g are respectively Nr,Nr−1.
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Proof. (a) In this case, f − f ′ is a finite linear combination of delta functions, which is q-
holonomic by Theorem 5.2 and the q-holonomicity of the one-variable delta function. By
Theorem 5.2, f ′ is q-holonomic.

(b) The function g̃ ∈ Sr(V ), defined by g̃(n1, . . . , nr) = g(n1, . . . , nr−1) is q-holonomic by
Theorem 5.2. We have

f ′ = (1− δ(nr − a))f + δ(nr − a)g̃ .

By Theorem 5.2, f ′ is q-holonomic. �

Let N+ = N and N− = {−n | n ∈ N} ⊂ Z. There is a canonical isomorphism N− → N+

given by n 7→ −n. We have Z = N+ ∪ N−.
For ε = (ε1, . . . , εr) ∈ {+,−}r define the ε-orthant of Zr by

Nε = Nε1 × Nε2 × · · · × Nεr ⊂ Zr .

The canonical isomorphism N− → N induces a canonical isomorphism Nε
∼= Nr, and a

function f : Nε → V is called q-holonomic if its pull-back as a function on Nr is q-holonomic.

Proposition 5.7. A function f ∈ Sr(V ) is q-holonomic if and only if its restriction on each
orthant is q-holonomic.

Proof. If f ∈ Sr(V ) is q-holonomic, then its restriction to an orthant is the restriction to Nr

of A ◦ f where A ∈ GL(r,Z) is a linear transformation. Part (c) of Theorem 5.2 together
with Proposition 5.4 conclude that the restriction of f to each orthant is q-holonomic.

Conversely, consider a function f and its restriction fε to the orthant Nε. Proposition 5.4
implies that the extension gε of fε by zero is q-holonomic for all ε. Moreover, f −

∑
ε gε is

a function supported on a finite union of coordinate hyperplanes. By induction on r, (the
case r = 1 follows from Proposition 5.6) we may assume that this function is q-holonomic.
Part (b) of Proposition 5.6 concludes the proof. �

6. Examples of q-holonomic functions

Besides the q-holonomic functions of one variable given in Example 2.2 (with domain
extended to Z via Lemma 2.5), we give here some basic examples of q-holonomic functions.
These examples can be used as building blocks in the assembly of more q-holonomic functions
using the closure properties of Section 5.2.

Recall that for n ∈ N,

(x; q)n =
n∏
j=1

(1− xqj−1). (23)

Lemma 6.1. The delta function Z2 → Q(q), given by (n, k)→ δn,k, is q-holonomic.

Proof. We have δn,k = δ(n− k). By Example 2.6 and Theorem 5.2, δn,k is q-holonomic. �

For n, k ∈ Z, let

F (n, k) =

{
(qn; q−1)k, if k ≥ 0

0 if k < 0
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G(n, k) =
F (n, k)

(qk; q−1)k
=

{
(qn;q−1)k

(qk;q−1)k
if k ≥ 0

0 if k < 0
.

Note that

G(n, k) =

(
n

k

)
q

=
(q; q)n

(q; q)k(q; q)n−k

is the q-binomial coefficient [Lus93] if n ≥ k ≥ 0. In quantum topology (related to the colored
HOMFLYPT polynomial [GLL17]) we will also use the following extended q-binomial defined
for n, k ∈ Z by

H(n, k) =

[
x;n

k

]
=

{
0 if k < 0∏k

j=1
xqn−j+1−x−1q−n+j−1

qj−q−j if k ≥ 0.
(24)

Let

K(n, k, `) =

[
q`;n

k

]
(25)

Lemma 6.2. (a) Suppose k = Q. Then, the functions F and G are q-holonomic.
(b) Suppose k = Q(x). Then, the function H is q-holonomic.
(c) The function K is q-holonomic.

Proof. (a) There are 4 orthants (i.e. quadrants) of Z2: N+,+,N−,+,N+,−,N−,−. On the last
two quadrants, F = 0 and hence are q-holonomic.

On the quadrant N+,+ (corresponding to n, k ≥ 0), F (n, k) is the product of 2 functions

F (n, k) = (qn; q−1)n ×
1

(qn−k, q−1)n−k
.

Both factors, considered as a function on Z2, are q-holonomic by Example 2.2 (with extension
to Z by Lemma 2.5) and Theorem 5.2. Hence, by Theorem 5.2 and Proposition 5.4, F (n, k)
is q-holonomic on N+,+.

Let us consider the quadrant N−,+. Denote m = −n. Then (m, k) ∈ N2, and

F (n, k) = (−1)kq−kmq−k(k−1)/2(qm+k−1; q−1)m+k−1
1

(qk; q−1)k
.

All factors, considered as a function on Z2, are q-holonomic by Example 2.2 (with extension
to Z by Lemma 2.5) and Theorem 5.2. Hence, by Theorem 5.2 and Proposition 5.4, F (n, k)
is q-holonomic on N−,+.

Proposition 5.7 shows that F (n, k) is q-holonomic on Z2.
Since

G(n, k) = F (n, k)× 1

(qk; q−1)k
,

where the second factor, considered as a function on Z, is q-holonomic, G(n, k) is q-holonomic.
(b) For the q-hypergeometric function H, we can give a proof as in the case of F and G.

Alternatively, we can also deduce it using the closure properties of q-holonomic functions as
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follows. We have
k∏
j=1

(xqn−j+1 − x−1q−n+j−1) = (−1)kq−kn+(k
2)x−k(x2q2(n−k+1); q2)k

Using the Gauss binomial formula [KC02, Chpt.5],

(x; q2)k =
k∑
j=0

(−1)jq−kj−j
(
k

j

)
q2
xj,

we have [
x;n

k

]
= (−1)k(q − q−1)kqk(k−1) 1

(q; q)k

k∑
j=0

(−1)jq2nj−3kj+j

(
k

j

)
q2
x2j (26)

The right hand side is a terminating sum of known q-holonomic functions. Hence the ex-
tended q-binomial coefficient is q-holonomic.

(c) Let x = q` in Equation (26). The right hand side is a terminating sum of known
q-holonomic functions, hence K is q-holonomic. �

Remark 6.3. The above proof uses the closure properties of the class of q-holonomic func-
tions. It is possible to give a proof using the very definition of q-holonomic functions via the
Hilbert dimension.

7. Finiteness properties of q-holonomic functions

In this section we discuss finiteness properties of q-holonomic functions.
For any subset L ⊂ {L1, . . . , Lr,M1, . . . ,Mr} let Wr,L be the R-subalgebra of Wr generated

by elements in L. For i = 1, . . . , r let Li = {Li,M1, . . . ,Mr}. Any non-zero element P ∈Wr,Li

has the form

P =
k∑
j=0

(Li)
j aj ,

where aj ∈ R[M] := R[M1, . . . ,Mr] and ak 6= 0. We call k the Li-degree of P and ak the
Li-leading coefficient of P .

Consider the following finiteness properties for a function f ∈ Sr(V ).

Definition 7.1. Suppose f ∈ Sr(V ).
(a) We say that f is strongly Wr-finite (or that f satisfies the elimination property) if for
every subset L of {M1, . . . ,Mr, L1, . . . , Lr} with r + 1 elements, Ann(f) ∩Wr,L 6= {0}.
(b) We say that f is Wr-finite if Ann(f) ∩Wr,Li

6= {0} for every i = 1, . . . , r.
(c) We say that f is integrally Wr-finite if Ann(f)∩Wr,Li

contains a non-zero element whose
Li-leading coefficient is 1, for every i = 1, . . . , r.

Our notion of Wr-finiteness differs from the ∂-finiteness in the Ore algebra Q(q,M)〈L〉
considered in Koutschan’s thesis [Kou09, Sec.2]. In particular, the Dirac δ-function δn,0 is
q-holonomic and W1-finite (as follows from Theorem 7.2 below) but not ∂-finite [Kou09,
Sec.2.4].

The following summarizes the relations among the above flavors of finiteness.
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Theorem 7.2. Suppose f ∈ Sr(V ). One has the following implications among properties of
f :

integrally Wr-finite⇒ q-holonomic⇒ strongly Wr-finite⇒ Wr-finite .

In other words,

(a) If f is integrally Wr-finite, then f is q-holonomic.
(b) If f is q-holonomic, then f is strongly Wr-finite.
(c) If f is strongly Wr-finite, then f is Wr-finite.

Proof. (c) is clear.
For (a), suppose for each i = 1, . . . , r there is a non-zero pi ∈ Ann(f)∩Wr,Li

with Li-leading

coefficient 1 and Li-degree ki. Assume pi = Lki
i +

∑ki−1
j=0 Ljiai,j, where ai,j ∈ R[M1, . . . ,Mr].

Recall that FN ⊂ Wr,+ is the R-span of all monomials MαLβ of total degree |α| + |β| ≤ N .
Then, FNf is in the R-span of MαLβf where |α| + |β| ≤ N and either β = (β1, . . . , βr)
satisfies βi ≤ ki for i = 1, . . . , r. The number of such monomials is O(N r). Consequently,
the dimension of Wr,+f is at most r, so f is q-holonomic with respect to Wr,+. By Proposition
3.4, f is q-holonomic over Wr.

For (b), suppose L is a subset of {M1, . . . ,Mr, L1, . . . , Lr} with r + 1 elements. Note that
d(Wr,L) = r + 1. Suppose f is q-holonomic over Wr. By Proposition 3.4, f is q-holonomic
over Wr,+ and hence d(Wr,+/Ann+(f)) ≤ r. Here Ann+(f) = Ann(f) ∩Wr,+. It follows
that Ann+(f) ∩Wr,L 6= {0}, implying f is strongly Wr-finite. �

Remark 7.3. The converse to (c) of Theorem 7.2 does not hold. Indeed, if R(u) ∈ R(u) is
a rational function in r-variables u = (u1, . . . , ur) and the function

f : Sr(Q(q)), n ∈ Zr 7→ f(n) = R(qn)

is well-defined, then it is Wr-finite. On the other hand, f rarely satisfies the elimination
property, hence it is not q-holonomic in general. Concretely, C. Koutschan pointed out to
us the following example:

f : Z2 → Q(q), f(n, k) =
1

qn + qk + 1
. (27)

It is obvious that f is W2-finite. On the other hand, f(n, k) does not satisfy the elimination
property for {Mn, Lk, Ln}, hence it is not q-holonomic. To show this, assume the contrary.
Then, there exists a nonzero operator

P =
∑
i,j

ci,j(q
n, q)LikL

j
n

(for a finite sum) where the ci,j are bivariate polynomials in q and qn. If P annihilates f ,
this means: ∑

i,j

ci,j(q
n, q)

qn+j + qk+i + 1
= 0 .

Now observe that in no term can there be a cancellation, since the numerator depends only
on qn. Next observe that the denominators of all terms in the sum are pairwise coprime.
Hence the expression on the left-hand side is zero if and only if all ci,j are zero. This gives
a contradiction.



A SURVEY OF q-HOLONOMIC FUNCTIONS 19

We end this section by discussing a finite description of q-holonomic functions, which is
the core of an algorithmic description of q-holonomic functions. For holonomic functions of
continuous variables, the next theorem is known as the zero recognition problem, described
in detail by Takayama [Tak92, Sec.4].

Theorem 7.4. Suppose f ∈ Sr(V ) is q-holonomic. Then there exists a finite set S ⊂ Zr such
that f |S uniquely determines f . In other words, if g ∈ Sr(V ) such that Ann(f) = Ann(g)
and f |S = g|S, then f = g.

Proof. We use induction on r. For r = 1, this follows from Remark 2.4. Suppose this holds
for r− 1. Since f is strongly Wr-finite, it follows that f is annihilated by a nonzero element
P = P (M1, L1, . . . , Lr) ∈ Wr. The L-exponents of P is a finite subset of Nr. Recall the
lexicographic total order α = (α1, . . . , αr) < β = (β1, . . . , βr) in Nr (when α 6= β) defined by
the existence of i0 such that αi = βi for i < i0 and αi0 < βi0 . Let Lα denote the leading term
of P in the lexicographic order. Its coefficient is p(q, qn1) which is nonzero for all but finitely
many values of n1. It follows by a secondary induction that the restriction of f on Nr is
uniquely determined by its restriction on ∪0≤k≤r−1(Nk × J × Nr−1−k) for some finite subset
J of N. Applying the same proof to the remaining 2r − 1 orthants of Zr and enlarging J
accordingly (but keeping it finite), it follows that f is uniquely determined by its restriction
on ∪0≤k≤r−1(Zk × J × Zr−1−k) for some finite subset J of Z. Without loss of generality, we
can assume that J contains one element. Since f is q-holonomic, it follows by parts (c) and
(d) of Theorem 5.2 that its restriction on Zk×J×Zr−1−k is q-holonomic too. The induction
hypothesis concludes the proof. �

8. Algorithmic aspects

From the very beginning, Zeilberger emphasized the algorithmic aspects of his theory of
holonomic functions, and a good place to start is the book A = B [PWZ96]. Algorithms
and closure properties for the class of Wr-finite functions (of one or several variables) were
developed and implemented by several authors that include Chyzak, Kauers, Salvy [CS98,
Kau09] and especially Koutschan [Kou10]. A core-part of those algorithms is elimination
of q-commuting variables. The definition of q-holonomic functions discussed in our paper is
amenable to such elimination, and we would encourage further implementations.
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[Lê06] , The colored Jones polynomial and the A-polynomial of knots, Adv. Math. 207 (2006),
no. 2, 782–804.

[LT15] Thang T. Q. Le and Anh T. Tran, On the AJ conjecture for knots, Indiana Univ. Math. J. 64
(2015), no. 4, 1103–1151, With an appendix written jointly with Vu Q. Huynh.

[Lus93] George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser
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