
WHAT IS A SEQUENCE OF NILSSON TYPE?

STAVROS GAROUFALIDIS

Abstract. Sequences of Nilsson type appear in abundance in Algebraic Geometry, Enumerative Combina-
torics, Mathematical Physics and Quantum Topology. We give an elementary introduction on this subject,
including the definition of sequences of Nilsson type and the uniqueness, existence, and effective computation
of their asymptotic expansion.
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1. Sequences of Nilsson type: definition

Sequences of Nilsson type are the ones that are asymptotic to power series in powers of 1/n and logn.
They appear in abundance Analysis (in asymptotic expansions of integrals), in Mathematical Physics and
in Algebraic Geometry (in relation to the Gauss-Manin connection); see for example [And89, Mal85, Mal74,
Pha85, Sab08]. They also appear in Enumerative Combinatorics (see [FS09, WZ85, Gar09]) and in Quantum
Topology. For instance, the Witten-Reshetikhin-Turaev invariant of a closed 3-manifold is a sequence of
complex numbers that depends on the level, and it is expected to be of Nilsson type; see [Wit89, FG91,
Gar92, Roz96, LR99, AH06]. In addition, the Kashaev invariant of a knot is expected to be a sequence of
Nilsson type; see [KT00, AH06, CG11]. The quantum spin network evaluation at a fixed root of unity is
known to be a sequence of Nilsson type; see [GvdVa, GvdVb]. For a general discussion of perturbative and
non-perturbative invariants of knotted objects that are expected to be sequences of Nilsson type, see [Gar08].

There is a close connection between sequences of Nilsson type and multivalued analytic functions with
quasi-unipotent monodromy; see for example Theorem 4.1 below.

Several people familiar with the ideas of Quantum Topology have asked for a self-contained definition of
sequences of Nilsson type and their asymptotics, its uniqueness, existence and effective computation.
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Asymptotics of sequences is a well-studied subject of analysis that goes back at least to Poincare; see
for example [Olv97, Cos09, Mal85]. Since we could not find a reference for sequences of Nilsson type in
the existing literature, we decided to write this introductory article. It concerns the asymptotic expansion
of sequences which are relevant in Quantum Topology, and may serve as an elementary introduction to
asymptotics. We claim no original results in this survey paper.

In order to define sequences of Nilsson type, we need to introduce Nilsson monomials hω(n) indexed by a
well-ordered set Ω, and a finite set Λ of complex numbers of equal magnitude.

For a natural number d ∈ N, a finite subset S of the rational numbers consider the well-ordered set
Ω = (S + N) × {0, 1, . . . , d} indexed by (α, β) < (α′, β′) if and only if α < α′ or α = α′ and β′ < β. Ω has
the order type of the natural numbers. In particular, for every ω ∈ Ω, the set of elements strictly smaller
than ω is finite. Consider the Ω-indexed family of monomials of Nilsson type given by:

(1) hω(n) =
(log n)β

nα

for ω = (α, β) ∈ Ω. It is easy to see that limn hω′(n)/hω(n) = 0 (abbreviated by hω′(n)/hω(n) = o(1), and
also by hω(n) ≫ hω′(n)) if and only if ω < ω′. This and all limits below are taken when n goes to infinity.

Fix a finite set Λ of nonzero complex numbers of magnitude r > 0. Let cω,λ be a collection of complex
numbers indexed by Ω × Λ.

Definition 1.1. (a) With the above notation, for a complex-valued sequence (an) the expression

(2) an ∼
∑

ω∈Ω

hω(n)
∑

λ∈Λ

cω,λλ
n

means that

• for every ω ∈ Ω we have:

(3)



anr
−n −

∑

ω′≤ω

hω′(n)
∑

λ∈Λ

cω′,λ(λr−1)n





1

hω(n)
= o(1)

• cω,λ 6= 0 for some (ω, λ) ∈ Ω × Λ.

(b) We say that a sequence (an) is of Nilsson type if there exist Ω,Λ and cω,λ such that (2) holds.

We will say that an asymptotic expansion (2) is Ω × Λ-minimal if

• For every λ ∈ Λ there exists ω ∈ Ω such that cω,λ 6= 0.
• For every ω ∈ Ω there exists λ ∈ Λ such that cω,λ 6= 0.

By considering a subset of Λ or Ω if necessary, it is easy to see that every asymptotic expansion has a minimal
representative.

2. Uniqueness

Our first task is to show that a sequence of Nilsson type uniquely determines Ω, Λ and the coefficients
cω,λ. The key idea is the following elementary lemma.

Lemma 2.1. If Λ is a finite subset of the unit circle and

(4)
∑

λ∈Λ

cλλ
n = o(1)

holds for some complex numbers cλ, then cλ = 0 for all λ ∈ Λ.

Proof. Divide (4) by λn
1 for some λ1 ∈ Λ. Then we have cλ1

+
∑

λ6=λ1
cλ(λ/λ1)

n = o(1), where λ/λ1 6= 1.
So,

1

n

n
∑

k=1



cλ1
+
∑

λ6=λ1

cλ(λ/λ1)
k



 = o(1).
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By averaging, it follows that

cλ1
+

1

n

∑

λ6=λ1

cλ
1 − (λ/λ1)

n+1

1 − λ/λ1
= o(1).

Thus, cλ1
= 0. Since λ1 was an arbitrary element of Λ, the result follows. �

Lemma 2.2. If (an) satisfies (2) then

(5) lim sup
n

|an|1/n = r.

Proof. Since cω,λ 6= 0 for some (ω, λ) ∈ Ω × Λ, without loss of generality assume that cω0,λ 6= 0 for some
λ ∈ Λ where ω0 is the smallest element of Ω. Equation (2) for ω = ω0 gives that

(6)
anr

−n

hω0
(n)

−
∑

λ∈Λ

cω0,λ(λr−1)n = o(1)

Now λr−1 are on the unit circle. It follows that
∣

∣

∣

∣

anr
−n

hω0
(n)

∣

∣

∣

∣

< C

for some C > 0. Since limn hω(n)1/n = 1 for all ω ∈ Ω, it follows that

lim sup
n

|an|1/n ≤ r

Since some cω0,λ is nonzero and λr−1 are on the unit circle, Lemma 2.1 implies that limn

∑

λ∈Λ cω0,λ(λr−1)n 6=
0. Since the sequence is bounded, it follows that there exists a subsequence nk such that

lim
nk

∑

λ∈Λ

cω0,λ(λr−1)nk = C′ 6= 0

Combined with Equation (6), it follows that

lim
nk

|ank
|1/nk = r

The result follows. �

In particular, Lemma 2.2 implies that sequences of Nilsson type satisfy lim supn |an|1/n > 0.

Proposition 2.3. Suppose that

(7) an ∼
∑

ω∈Ω

hω(n)
∑

λ∈Λ

cω,λλ
n

and

(8) an ∼
∑

ω′∈Ω′

hω′(n)
∑

λ′∈Λ′

c′ω′,λ′λ′n

are Ω × Λ-minimal and Ω′ × Λ′-minimal asymptotic expansions. Then Ω = Ω′, Λ = Λ′. Moreover, for all
(ω, λ) ∈ Ω × Λ we have cω,λ = c′ω,λ.

Proof. Let ω0 and ω′
0 denote the smallest elements of Ω and Ω′. Lemma 2.2 implies that r = r′ where r and

r′ are the magnitudes of the elements of Λ and Λ′ respectively. Equation (3) for ω0 and ω′
0 implies that

(9)
anr

−n

hω0
(n)

−
∑

λ∈Λ

cω0,λ(λr−1)n = o(1),
anr

−n

hω′

0
(n)

−
∑

λ′∈Λ′

c′ω′

0
,λ′(λ′r−1)n = o(1)

If ω0 6= ω′
0, we may assume that ω0 < ω′

0. In that case, observe that hω′

0
(n)/hω0

(n) = o(1). Multiply the
second equation above by hω′

0
(n)/hω0

(n) and subtract from the first. It follows that

−
∑

λ∈Λ

cω0,λ(λr−1)n +
hω′

0
(n)

hω0
(n)

∑

λ′∈Λ′

c′ω′

0
,λ′(λ′r−1)n = o(1)
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Since hω′

0
(n)/hω0

(n) = o(1), it follows that

∑

λ∈Λ

cω0,λ(λr−1)n = o(1)

Lemma 2.1 implies that cω0,λ = 0 for all λ contrary to our minimality assumption of (7). It follows that
ω0 = ω′

0. Subtracting, Equation (9) implies that

−
∑

λ∈Λ

cω0,λ(λr−1)n +
∑

λ′∈Λ′

c′ω′

0
,λ′(λ′r−1)n = o(1)

Lemma 2.1 implies that if cω0,λ 6= 0 for some λ ∈ Λ, then λ ∈ Λ′ and moreover cω0,λ = c′ω0,λ′ .
An easy induction on ω ∈ Ω proves the following statement. For every ω ∈ Ω, the following holds. If

cω,λ 6= 0 for some λ ∈ Λ, then λ ∈ Λ′ and ω ∈ Ω′ and cω,λ = c′ω,λ.

The minimality assumption and the above statement implies that Ω = Ω′ and Λ = Λ′ and cλ,ω = c′λ,ω for

all (ω, λ) ∈ Ω × Λ. �

Remark 2.4. Proposition 2.3 proves uniqueness in a non-effective way. We will come back to the problem
of computing cω,λ later on.

3. Alternative expression for sequences of Nilsson type

If (an) is a sequence of Nilsson type, we can write (2) in the form:

(10) an ∼
∑

λ,α,β

λnnα(logn)βSλ,α,βgλ,α,β(1/n)

where

• the summation in (10) is over a finite set,
• the growth rates λ are complex numbers numbers of equal magnitude,
• the exponents α are rational numbers and the nilpotency exponents β are natural numbers,
• the Stokes constants Sλ,α,β are complex numbers,
• gλ,α,β(x) ∈ C[[x]] are formal power series in x with complex coefficients and leading term 1.

Remark 3.1. In the definition of a sequence of Nilsson type, we may additionally require that

• Λ is a set of algebraic numbers,
• the formal power series gλ,α,β(x) is Gevrey-1, i.e., that the coefficient of xk in gλ,α,β(x) is bounded

by Ckk! for all k, where C depends on gλ,α,β,
• the coefficients of the formal power series gλ,α,β(x) lie in a fixed number field K,

These additional requirements hold for the evaluations of classical spin networks, see [GvdVa], as well as
Sections 4 and 6.1 below.

Example 3.2. For example, if d = 1 and S = {1, 3/2}, then Ω = (1 + N) ∪ (3/2 + N) and we have:

log n

n
≫ 1

n
≫ logn

n3/2
≫ 1

n3/2
≫ logn

n2
≫ 1

n2
≫ . . .

If Λ = {κ, µ, ν}, the asymptotic expansion (10) of a sequence of Nilsson type becomes:

an ∼ log n

n

∑

λ∈Λ

λnSλ,1gλ,1

(

1

n

)

+
logn

n3/2

∑

λ∈Λ

λn
j Sλ,2gλ,2

(

1

n

)

+
1

n

∑

λ∈Λ

λn
j Sλ,3gλ,3

(

1

n

)

+
1

n3/2

∑

λ∈Λ

λn
j Sλ,4gλ,4

(

1

n

)

where gλ,j(x) ∈ C[[x]] are formal power series in x and Sλ,j are complex numbers.
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4. Existence

In this section we will prove that a sequence is of Nilsson type, under some analytic continuation assump-
tions of its generating series. This is a well-known argument (see for example, [Cos09, CG11, FS09, GM10,
GIKM, Mal85]) that consists of the following parts:

• apply Cauchy’s theorem to give an integral representation of the sequence,
• deform the contour of integration to localize the computation near the singularities of the generating

function,
• analyse the local computation using the local monodromy assumption of the generating function.

Let us give the details of the above existence proof. Since sequences of Nilsson type are exponentially bounded
(as follows from Lemma 2.2), fix an exponentially bounded sequence (an) and consider its generating series

(11) G(z) =

∞
∑

n=0

anz
n

G(z) is an analytic function for all complex numbers z that satisfy |z| < 1/R. Suppose now that G has
analytic continuation on a disk of radius r with singularities at finitely many points κ, λ, µ, ν, . . . . Suppose
also that G has further analytic continuation on a disk of radius r+ǫminus finitely many segments emanating
from the singularities radially as in the following figure.

Assume in addition that G has quasi-unipotent local monodromy at each singularity λ, µ, ν, κ on the circle of
radius r (i.e., the eigenvalues of the local monodromy are complex roots of unity).

Theorem 4.1. Under the above assumptions, the sequence (an) is of Nilsson type.

Corollary 4.1. Suppose that G(z) =
∑∞

n=0 anz
n is a multivalued analytic function on C \Λ (where Λ ⊂ C

is a finite set) which is regular at z = 0, and has quasi-unipotent local monodromy. Then, (an) is a sequence
of Nilsson type.

Remark 4.2. We know of at least three ways to show that a germ G(z) of an analytic function can be
analytically continued to the complex plane, namely

(a) G satisfies a linear differential equation, see for example [Gar09, Thm.1] reviewed in Section 5.1 below.
For examples that come from Quantum Topology (specifically, spin networks) see [GvdVa, GvdVb].

(b) G satisfies a nonlinear differential equation. See for example the instanton solutions of Painlevé I
studied in detail in [GIKM] and the matrix models of [GM10].

(c) G is resurgent. See for example the Kontsevich-Zagier series studied in detail in [CG11], and more
generally the arithmetic resurgence conjecture of [Gar08] for sequences that appear in Quantum
Topology.

Proof. (of Theorem 4.1) We begin by applying Cauchy’s theorem to give an integral representation of (an).
If γ is a circle of radius less than 1/R that contains the origin, then we have:

(12) an =
1

2πi

∫

γ

G(z)

zn+1
dz
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We can deform γ to a contour C which consists of a contour Hλ around each singularity λ and finitely many
arcs γr+ǫ of the circle of radius 1/(r + ǫ) as in the following figure.

(13)

The contours Hλ are known as Hankel contours in Analysis (see [Olv97]) and Lefschetz thimbles in Algebraic
Geometry (see [Pha85, Sab08]). Cauchy’s theorem implies that

(14) an =
1

2πi

∑

λ∈Λ

∫

Hλ

G(z)

zn+1
dz +

1

2πi

∫

γr+ǫ

G(z)

zn+1
dz

The above expression is exact, and decomposes the sequence (an) into a finite sum of sequences (one per
singularity) and an extra term. Of course, there is nothing canonical about this decomposition, since the
size of the Hankel contour and γr+ǫ depends on ǫ. One could make the decomposition nearly canonical by
using Hankel contours that extend to infinity, but even so there are choices of directions to be made, and we
will not use them here.

The integral over γr,ǫ can be estimated by O((r + ǫ)−n) since G is uniformly bounded on the arcs γr,ǫ.
Since we assume that the local monodromy of G(z) around a singularity is quasi-unipotent, it follows (see
[Mal85]) that modulo germs of holomorphic functions at zero, G(λ + z) has a local expansion of the form

G(λ + z) =
∑

α′,β′

zα′

(log z)β′

hα′,β′(z)

where the summation is over a finite set, α′ ∈ Q, β′ ∈ N and hα′,β′(z) are germs of functions analytic at
z = 0. For a germ f(z) of a multi-valued analytic function at z = 0, let ∆0f denote its variation defined by

∆0f(z) = lim
ǫ→1

f(e2πiǫz) − lim
ǫ→0

f(e2πiǫz)

(see [Mal85]) when z is restricted on a line segment [0, ǫ). The variation of the building blocks zα and (log z)β

are given by

∆0(z
α) =











(e2πiα − 1)zα α ∈ Q \ Z

δ0 α ∈ Z \ N

0 α ∈ N

, ∆0(log z) = 2πi

where δ0 is the Dirac delta function (really, a distribution). For a singularity λ of G(z), let ∆λG(z) denote
the variation of G(λ+ z). It follows that for z in the line segment of Figure (13), we have

(15) ∆λG(z) =
∑

α,β

zα(log z)β
∞
∑

k=0

c′α,β,λ,kz
k−1

where the sum is over a finite set {α, β}, α ∈ Q \ N, β ∈ N and
∑∞

k=0

∑∞
k=0 c

′
α,β,λ,kz

k are germs of analytic

functions at z = 0. When α ∈ Z\N, we can deform the Hankel contour into a small circle centered around λ
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and apply Cauchy’s theorem. For the remaining cases α ∈ Q \Z, a change of variables z 7→ λ(1 + z) centers
the Hankel contour at zero and implies that

(16)

∫

Hλ

G(z)

zn+1
dz = λ−n

∫

H0

G(λ(1 + z))

(1 + z)n+1
dz = λ−n

∫ ǫ

0

∆λG(λz)

(1 + z)n+1
dz

A Beta-integral calculation gives that
∫ ∞

0

zγ−1

(1 + z)n+1
dz =

Γ(γ)Γ(n+ 1 − γ)

Γ(n+ 1)

and therefore
∫ ǫ

0

zγ−1

(1 + z)n+1
dz =

Γ(γ)Γ(n+ 1 − γ)

Γ(n+ 1)
(1 +O((r + ǫ)−n))

More generally, for a natural number β let us define

(17) Iγ,β(n) =

∫ ∞

0

zγ−1

(1 + z)n+1
(log z)βdz

Then, we have

(18) Iγ,β(n) =
Γ(γ)Γ(n+ 1 − γ)

Γ(n+ 1)
pβ(γ, n)

where pβ(γ, n) is a polynomial in the variables ψ(k)(n+ 1 − γ) and ψ(l)(γ) with rational coefficients, where
ψ(z) = Γ′(z)/Γ(z) is the logarithmic derivative of the Γ-function. For example, we have:

p0(n) = 1

p1(n) = −ψ(n+ 1 − γ) + ψ(γ)

p2(n) = ψ(n+ 1 − γ)2 + ψ(1)(n+ 1 − γ) − 2ψ(γ)ψ(n+ 1 − γ) + ψ(γ)2 + ψ(1)(γ)

Compare also with [Mal85, Eqn.I.4.2] and [Mal74, Eqn.7.5]. What is important is not the exact evaluation
of Iγ,β(n) given in (18), but the fact that the sequence Iγ,β(n) is of Nilsson type. This follows from the fact
that we have an asymptotic expansion (see [Olv97]):

(19)
Γ(n+ 1 − γ)

Γ(n+ 1)
∼ 1

nγ

(

1 +
γ2 − γ

2n
+

3γ4 − 2γ3 − 3γ2 + 2γ

24n2
+ . . .

)

Alternatively, one may show that the sequence Iγ,β(n) is of Nilsson type by a change of variables z = et − 1
which gives

∫ ∞

0

zγ−1

(1 + z)n+1
(log z)βdz =

∫ ∞

0

e−nttγ−1Aγ,β(t)dt

where

Aγ,β(t) =

(

et − 1

t

)γ−1(

log

(

et − 1

t

)

− log t

)β

dt

is a function which can be expanded into a polynomial of log t with coefficients functions which are analytic
at t = 0. Expand Aγ,β(t) into power series at t = 0 and interchange summation and integration by applying
Watson’s lemma (see [Olv97]) to conclude that Iγ,β(n) is of Nilsson type.

Replace ∆λG(λz) by (15) in (16) and interchange summation and integration by applying Watson’s lemma
(see [Olv97]). It follows that

1

2πi

∫

Hλ

G(z)

zn+1
dz ∼ λ−n

∑

α,β

1

nα
(logn)β

∞
∑

k=0

cα,β,λ,k
1

nk

Equation (14) cocnludes that (an) is of Nilsson type. Strictly speaking, the above analysis works only when
ℜ(α) > −1. This is a local integrability assumption of the Beta-integral. The asymptotic expansion (2)
remains valid as stated even when ℜ(α) ≤ −1 as follows by first integrating G(z) a sufficient number of times,
and then applying the analysis. This is exactly what was done in [CG11, Sec.7] at the cost of complicating
the notation. �
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Remark 4.3. Since the sequence (c′α,β,λ,k) as a function of k is exponentially bounded and the asymptotic

expansion (19) is Gevrey-1, it follows that the sequence (cα,β,λ,k) is Gevrey-1. Moreover, if the sequence
(c′α,β,λ,k) lies in a number field K, then we can write the asymptotic expansion of (an) in the form (10)

where Sα,β,λ are polynomials (with rational coefficients) of values of logarithmic derivatives of the Gamma
function at rational numbers.

5. G-functions

5.1. G-functions: examples of sequences of Nilsson type. In [Gar09, Thm.1] it was proven that
balanced multisum sequences (which appear in abundance in Enumerative Combinatorics) are sequences of
Nilsson type. The proof uses the theory of G-functions which verifies that the generating series of balanced
multisum sequences satisfies the hypothesis of Corollary 4.1. Let us give the definition of a balanced multisum
sequence, a G-function and an example.

Definition 5.1. (a) A term tn,k in variables (n, k) where k = (k1, . . . , kr) is an expression of the form:

(20) tn,k = Cn
0

r
∏

i=1

Cki

i

J
∏

j=1

Aj(n, k)!
ǫj

where Ci ∈ Q for i = 0, . . . , r, ǫj = ±1 for j = 1, . . . , J , and Aj are integral linear forms in the variables
(n, k) such that for every n ∈ N, the set

(21) supp(tn,•) := {k ∈ Zr |Aj(n, k) ≥ 0, j = 1, . . . , J}
is finite. We will call a term balanced if in addition it satisfies the balance condition:

(22)
J
∑

j=1

ǫjAj = 0.

(b) A (balanced) multisum sequence (an) is a sequence of complex numbers of the form

(23) an =
∑

k∈supp(tn,•)

tn,k

where t is a (balanced) term and the sum is over a finite set that depends on t.

For example, the following sequence is a balanced multisum

(24) an =
∑

k,l

(

n

k + l

)2(
n+ k

k

)3(
n+ l

l

)

=
∑

k,l

(n+ k)!3(n+ l)!

k!3l!n!2(k + l)!2(n− k − l)!2

where the summation is over the set of pairs of integers (k, l) that satisfy 0 ≤ k, l and k + l ≤ n.
Let us now recall what us a G-function. The latter were introduced by Siegel in [Sie29] with motivation

being arithmetic problems in elliptic integrals, and transcendence problems in number theory. For further
information about G-functions and their properties, see [And00, And89].

Definition 5.2. We say that series G(z) =
∑∞

n=0 anz
n is a G-function if

(a) the coefficients an are algebraic numbers,
(b) there exists a constant C > 0 so that for every n ∈ N the absolute value of every conjugate of an is

less than or equal to Cn,
(c) the common denominator of a0, . . . , an is less than or equal to Cn,
(d) G(z) is holonomic, i.e., it satisfies a linear differential equation with coefficients polynomials in z.

G-functions satisfy the hypothesis of Corollary 4.1; see [And00, And89]. Indeed, they satisfy a linear
differential equation which analytically continues them in the complex plane. Moreover, the arithmetic
hypothesis ensures that the local monodromy is quasi-unipotent. We can now state the main result of
[Gar09].
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Theorem 5.1. [Gar09] (a) If (an) is a balanced multisum sequence, its generating function G(z) =
∑∞

n=0 anz
n is a G-function.

(b) In that case, it follows that (an) is a sequence of Nilsson type.

The reader may have noticed that we defined the notion of a sequence of Nilsson type only when
lim sup |an|1/n > 0. In case the generating series is a G-function, the remaining case is taken care by
the following lemma.

Lemma 5.3. If G(z) =
∑∞

n=0 anz
n is a G-function and lim sup |an|1/n = 0, then an = 0 for all but finitely

many n.

Proof. The assumption implies that G(z) is an entire G-function. Since those are regular-singular at infinity,
it follows that G(z) is a polynomial; see also [And00, And89]. The result follows. �

5.2. Classical spin networks: examples of G-functions. In [GvdVa, GvdVb] it was proven that the
evaluation of a quantum spin network at a fixed root of unity is a balanced multisum sequence, and conse-
quently it is a sequence of Nilsson type.

6. Effective computations

6.1. Exact computations. Proposition 2.3 is a uniqueness statement about the asymptotics of a sequence
of Nilsson type, and Theorem 4.1 is an existence statement which is not effective. There are two types of
effective computations, exact and numerical. The exact computations use as an input a linear recursion
relation of the sequence. The following proposition is elementary and is discussed in detail for example in
[FS09, WZ85].

Proposition 6.1. Given a linear recursion relation for a sequence (an) of Nilsson type, one can compute
exactly λ, α, β and the power series gα,b,λ(x) that appear in Equation (10).

In particular, a linear recursion relation computes exactly the asymptotics of a sequence of Nilsson type,
up to a finite number of unknown Stokes constants.

To apply Proposition 6.1 one needs to find a linear recursion for a sequence (an). This comes from the
fundamental theorem of Wilf-Zeilberger which states that a balanced multisum sequence is holonomic, i.e.,
satisfies a linear recursion with coefficients polynomials in n; see [Zei90, WZ92, PWZ96]. The proof of the
above theorem has been computer implemented and works well for single sums and reasonably well for double
sums; see [PWZ96, PR97, PR]. As an example, consider the following sequence from [GvdVa, Sec.10]

an =
n!6

(3n+ 1)!2

4n
∑

k=3n

(−1)k(k + 1)!

(k − 3n)!4(4n− k)!3

Using the language of [GvdVa], (an) is the evaluation of the tetrahedron spin network (also known as 6j-
symbol) when all edges are equal to n. The command

<< zb.m

loads the package of [PR] into Mathematica. The command

teucl@n_, k_D := n!^6�H3 n + 1L!^2 H-1L^k Hk + 1L! 1�HH4 n - kL!^3 Hk - 3 nL!^4L

defines the summand of the sequence (an), and the command

Zb@teucl@n, kD, 8k, 3 n, 4 n<, n, 2D

computes the following second order linear recursion relation for the sequence (an)

-9 H1 + nL H2 + 3 nL2 H4 + 3 nL2 I451 + 460 n + 115 n2M a@nD +

H3 + 2 nL I319212 + 1427658 n + 2578232 n2 + 2423109 n3 + 1255139 n4 + 340515 n5 + 37835 n6M a@1 + nD -

9 H2 + nL H5 + 3 nL2 H7 + 3 nL2 I106 + 230 n + 115 n2M a@2 + nD � 0

This linear recursion has two formal power series solutions of the form
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a±,n =
1

n3/2
Λn
±

(

1 +
−432 ± 31i

√
2

576n
+

109847∓ 22320i
√

2

331776n2
+

−18649008± 4914305i
√

2

573308928n3

+
14721750481± 45578388960i

√
2

660451885056n4
+

−83614134803760± 7532932167923i
√

2

380420285792256n5

+
−31784729861796581∓ 212040612888146640i

√
2

657366253849018368n6
+O

(

1

n7

)

)

where

Λ± =
329 ∓ 460i

√
2

729
= e∓i6 arccos(1/3)

are two complex numbers of absolute value 1. The coefficients of the formal power series a±,n are in the

number field K = Q(
√
−2).

6.2. Numerical computations. When a sequence (an) is given by a multi-dimensional balanced sum, the
computed implemented WZ method may not terminate. In that case, one may develop numerical methods
for finding λ, α, β as in Equation (10). An example of this method is the asymptotics of the evaluation of the
Cube Spin Network that appears in the Appendix of [GvdVa]. Effective methods for numerical computations
of asymptotics have been developed by several authors, and have also been studied by Zagier.

6.3. Acknowledgment. The idea of the present paper was conceived during the New York Conference
on Interactions between Hyperbolic Geometry, Quantum Topology and Number Theory in New York in the
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