
WHITEHEAD DOUBLING PERSISTS
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Abstract. The operation of (untwisted) Whitehead doubling trivializes the Alexander module of
a knot (and consequently, all known abelian invariants), and converts knots to topologically slice
ones. In this note we show that Whitehead doubling does not trivialize the rational function that
equals to the 2-loop part of the Kontsevich integral.

1. Introduction

1.1. History. The colored Jones function J of a knot K is a 2-parameter formal power series

J(K)(h, λ) =

∞
∑

n,m=0

an,m(K)hnλm

with remarkable periodicity properties. By its definition, if λ = d is a natural number, J(h, d)
coincides with the colored Jones polynomial of the knot (using the (d + 1)-dimensional irreducible
representation of sl2) and thus

J(h, d) ∈ Z[e±h].

We can think of this as a periodicity property (i.e., a set of recursion relations) for the coefficients
an,m of J . This is an obvious periodicity property.

We now come to describe some hidden periodicity of J . Each coefficient an,m is a Vassiliev
invariant of degree n and vanishes if m > n. Thus, we can rearrange J as a sum of subdiagonal
terms

J(h, λ) =

∞
∑

k=0

hkQJ,k(hλ)

where

QJ,k(s) =

∞
∑

m=0

ak+m,msm.

The MMR conjecture, shown in [BG], states that QJ,0 is a reparametrization of the Alexander
polynomial of the knot. This translates to a hidden periodicity of J .

Rozansky, in his study of the colored Jones function conjectured that for every n ≥ 1, Qn is a
reparametrization of a rational function, whose denominator is a power of the Alexander polynomial.
Using a variety of quantum field theory techniques and an appropriate expansion of the R-martix,
in a difficult paper Rozansky proved the above mentioned conjecture, [Ro1].

It is well-known that the colored Jones function is an image of the graph-valued universal Vassiliev
invariant, the so-called Kontsevich integral. The Kontsevich integral has a subdiagonal expansion,
and Rozansky further conjectured that each term of the expansion of the Kontsevich integral should
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be given by a series of trivalent graphs with rational functions attached to their edges. This is often
called the Rationality Conjecture.

A weak form of the Rationality Conjecture was quickly proven by Kricker [Kr]. A stong form
followed by joint work with Kricker [GK], where a rational noncommutative invariant Zrat of knots
was constructed.

Although the construction of the Zrat invariant is rather involved, there are several axiomatic
properties which make it easier to understand parts of the Zrat invariant in terms of geometric
invariants of knots.

For example, consider the move that replaces a knot K in an integer homology sphere by a knot
K ′ obtained by surgery on a hullhomologous clasper in the complement of K. This null-move was
introduced in [GR]. For a reference on claspers, see [Gu1, Gu2, Ha] and also [GGP]. As was shown
in [GK], each term of the Zrat is a finite type invariantwith respect to the null move. Moreover,
0-equivalence (under the null move) coincides with S-equivalence. Below, we will evaluate Zrat on
a set of S-equivalent knots. In this case, the matrix part of Zrat is fixed and its graph part takes
values in a graded vector space, see [GK]. Let Qn = Zrat

n denote the degree n part of Zrat.
Qn takes values in a vector space over Q generated by trivalent graphs with 2n trivalent vertices.

The graphs have rational functions in t assigned to their edges, and satisfy certain linear relations
explained in [GR] and [GK]. For the statement and the proof of Theorem 1 below, we only need
to know that Qn takes value in an abelian group; and any vector space over Q is an abelian group.

1.2. Statement of the results. Our first result concerns the change of Qn under a modification
of a knot. All knots will be oriented and, unless otherwise mentioned, 0-framed. Consider a knot
K0 which intersects a ball B ⊂ S3 in two unknotted arcs with opposite orientation. This pattern
p = (K0, B) gives rise to a map:

τp : Knots → Knots

which sends K to the result of replacing B ∩ K0 with a 2-parallel of a 1-tangle version of K, with
0-framing.

This move on knots can be described in terms of surgery in the ambient space and has a long
history. It was already used in the sixties (under the term, surgical modification, see for example
Levine [L1]) to prove realization theorems for algebraic obstructions. Modification of knots was
also used in the seventies by Casson-Gordon in their secondary obstruction invariants. Later on,
the theme was taken by many authors including Gilmer, Livingston, and Cochran-Orr-Teichner
(the latter, use the biological term: infection). In the world of finite type invariants, a systematic
study of geometric surgery on clovers or claspers was initiated by Goussarov and Habiro [Gu1, Ha].

Theorem 1. (i) For fixed K0 and n ≥ 1, the map

φn : K → Qn(τp(K))

is a finite type invariant of 0-framed knots of type 2n, whose degree 2n part lies in the algebra of
Alexander-Conway coefficients.
(ii) For n = 1, we have that

Q1(τp(K)) = Q1(τp(unknot)) + cp · a(K)

where a(K) is a nontrivial Vassiliev invariant of degree 2 (such as the second derivative of the
Alexander polynomial) and cp is a constant that depends on the pattern.

2



As an application, consider the following pattern:

ε
B

0
K

(where the ε = ±1 indicates a full twist, depending on the sign of the clasp). Then,

τp(K) = Whǫ(K)

is the untwisted Whitehead double of K with either clasp, i.e., the satellite of K with respect to the
pattern:

.

Here is a sample corollary. Since it involves explicit computations with the Q1 invariant evaluated
on knots with trivial Alexander polynomial, we need to recall that

Q1 : Knots with trivial Alexander polynomial → A2(Λ)

where

A2(Λ) = ⊗3Q[t±1]/((f, g, h) = (tf, tg, th),Aut(Θ))

is the quotient of the abelian group ⊗3Q[t±1] modulo the subgroup generated by a⊗b⊗c = ta⊗tb⊗tc
and the subgroup generated by a⊗b⊗c = ga⊗gb⊗gc for g ∈ Aut(Θ). Here, Aut(Θ) = Sym3×Sym2

which acts on ⊗3Q[t±1] by permutation on the 3 factors of the tensor product and by simultaneous
replacement of t (in all factors of the tensor product) by t−1.

In order to make contact with [GR] and [GK, Sec.5.3], and to explain the origin of the Aut(Θ)
symmetry, we point out a graphical interpretation of elements of A2 by trivalent graphs with
oriented edges and beads (that is, elements of Q[t±1]) on their edges:

a ⊗ b ⊗ c ↔ ba c .

Corollary 1.1. We have:

Q1(Whǫ(K)) = εa(K) · 1 ⊗ 1 ⊗ (t + t−1 − 2)

where a(K) = 1/4 d2

dh2 |h=0∆(K)(eh) ∈ Z, and ε = ±1 is the sign of the clasp.

Whitehead doubling trivializes the Alexander module as well as the more sophisticated topo-
logical slicing obstructions of Casson-Gordon and Cochran-Orr-Teichner. On the other hand, Q1

remembers better the knot that is about to be Whitehead doubled.

2. Proofs

Proof. (of Theorem 1) Let us recall three different moves on the set K of 0-framed knots in S3:

• Changing a crossing, i.e., doing an I-modification in the language of [Gu2] and [Ha].
• Doing a ∆-move, i.e., doing a Y -modification in the language of [MN].
• Doing a null-move, in the language of [GR].
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These three moves lead in the usual way to three notions of finite type invariants and corresponding
notions of n-equivalence, denoted by ≡I

n,≡Y
n and ≡l

n respectively. Note that K ≡n K ′ implies that
f(K) = f(K ′) for all invariants f of type n. It is a folk result (easily proven by the results of
Goussarov and Habiro) that K ≡I

n+1 K ′ iff K ≡Y
n K ′. Furthermore, it is easy to see that if

K ≡Y
n K ′, then τp(K) ≡l

n τp(K
′). Further, in [GR] and [GK], itt was shown that Qn is a finite

type invariant of type 2n with respect to the null move, where Qn takes values in an appropriate
Q-vector space.

This discussion implies the following conclusion, for every fixed n.

K ≡I
2n+1 K ′ =⇒ K ≡Y

2n K ′ =⇒ τp(K) ≡l
2n τp(K

′) =⇒ φn(K) = φn(K ′).

Thus, φn : K 7→ Qn(τp(K)) is an additive (under connected sum) function on K/KI
2n+1 (here KI

n

denotes the set of n-trivial knots with respect to the I-move). By a theorem of Goussarov and
Habiro it follows that φn is a Vassiliev invariant of degree at most 2n + 1. We claim that φn is
Q-valued of Vassiliev degree 2n. Indeed, KI

2n/KI
2n+1 ⊗Q is a vector space spanned by uni-trivalent

graphs G with 2(2n+1) vertices such that every component of G contains a trivalent vertex, modulo
the AS and IHX relations. Using the AS relation, we can assume that distinct univalent vertices
of G are joined to distinct trivalent vertices. It follows that the number of trivalent vertices of G
is at least equal to the number of univalent vertices, and thus that G has at least 2n + 1 trivalent
vertices, which gives rise to a null move of degree 2n + 1, on which Qn vanishes.

This implies that φn is of Vassiliev degree 2n. Furthermore, if G is a unitrivalent graph of degree
2n with more than 2n trivalent vertices, then φn(G) = 0. The remaining graphs of degree 2n are
a disjoint union of wheels i.e., diagrams like . This, together with a result of Kricker-Spence-
Aitchinson [KSA] implies that the degree 2n part of Qn lies in the algebra of Alexander-Conway
coefficients.

This concludes the proof of the first part Theorem 1. The second part follows easily since, up to
a multiple, there is a unique Q-valued Vassiliev invariant of I-degree 2. �

Proof. (of Corollary 1.1) Notice that Whǫ(unknot) = unknot and that Q1(unknot) = 0. Thus,

φ1(K) = ca(K), where a(K) = d2

dt2
|t=1∆(K)(t) and c is a constant. In order to figure out c, we

need a computation. Let G = (G1, G2) be a wheel with two legs attached to an unknot K. Consider
the Y-link of degree 2 (also denoted by G) in the complement of Whǫ(K). Let Lij for i = 1, 2 and
j = 1, 2, 3 denote the six leaves of G labeled as in Figure 1.

L

22

21

L13

L23

L12

L

L11

K

Figure 1. On the left, a wheel with two legs. On the right, the associated clover of degree 2.

It follows from [GR] (see also [GK]) that Q1([(S
3,Whǫ(K)), G]) is the result of complete con-

tractions of all pairs of leaves of G1 ∪G2, where we label the edges by equivariant linking numbers
of the leaves. This gives rise to a linear combination of trivalent graphs with two trivalent vertices
and edges decorated by elements of Z[t, t−1].
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The equivariant linking function lkγ

fM
(see [GR]) of the leaves is given as follows:

lkγ

fM
(L1i, L2j) =

{

δi,j for i = 2, 3

εδ1,j(t + t−1 − 2) for i = 1,

where δa,b = 1 (resp. 0) if a = b (resp. a 6= b), and the sign ε = ±1 depends on the sign of the
clasp of the Whitehead double.

The computation of the equivariant linking function is best seen by drawing the universal abelian
cover of Whǫ(K) and lifting G to it.

Alternatively, one may use the genus 1 Seifert surface of Whǫ(K) drawn above and identify the
equivariant linking numbers in question with the equivariant linking numbers of links formed by
meridians dual to the bands.

In [L2, Prop.14.3] Levine computes the matrix B = (lkγ

fM
(mi,mj))i,j of equivariant linking num-

bers of meridians mi dual to the bands of a Seifert surface by:

B = (t − 1)(tA − AT )−1

where A is the Seifert matrix with respect to a basis consisting of bands, and AT is the transpose
of A. In our case, the Seifert matrix is

A =

(

0 1
0 ε

)

and the corresponding matrix B is

A =

(

ε(t + t−1 − 2) 1 − t
1 − t−1 0

)

.

On the other hand, we have that a([K,G]) = 1, since ∆(K)(eh) = exp(−2
∑

n a2n(K)h2n), where
a2n(K) is the coefficient of the degree 2n wheel w2n in the logarithm of the Kontsevich integral,
[KSA]. The result follows. �
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