MATH 4032 (Spring'13) - Supplementary Problems

Instructor : Prasad Tetali, office: Skiles 234, email: tetali@math.gatech.edu Office Hours: Wed. Fri. 1:00-2:00pm, Thurs. 2:00-3:00pm

For Practice Only: no need to submit

I. Chapter 3 of Cameroon's textbook: Exercises 9, 11, 14, 15 from Section 3.13.
II. Chapter 4 of Cameroon's textbook: Exercises 13, 14, 15, 16, 18 from Section 4.8.
III. Recall Property B problem: Let $m(n)=$ the smallest number of n-sets over some universe of elements which are not properly 2-colorable - meaning that there is no way to assign Red/Blue to the elements in the universe, without making some n-set monochromatic. Show that $m(n) \geq 2^{n-1}$. Hint: Use the probabilistic method.
IV. There are k people in an elevator at the ground floor. Each wants to get out at a random floor of one of the n upper floors. What is the expected number of stops by the elevator?

Hint: The answer is $n\left[1-(1-1 / n)^{k}\right]$.
V. A dominating set D in a graph $G=(V, E)$ is a subset of vertices so that each vertex either belongs to D or is adjacent to some vertex in D.
(i) Observe that for any subset $S \subseteq V, D:=S \cup(V \backslash N(S))$ is always a dominating set. (Here, by $N(S)$ we mean the union of neighborhoods of vertices in S.)
(ii) Let G be a graph on n vertices and minimum degree, $\min _{u} d(u)=\delta$. Show that there is a dominating set of size at most $n[1+\ln (1+\delta)] /(1+\delta)$.

Hint: Use the probabilistic method, with an alteration: Choose a set S randomly, by placing each vertex of V with probability p, independently of other vertices. Estimate $E[|S|+|V \backslash N(S)|]$ in terms of n and p. Optimize with respect to p. (You might find it convenient to use the inequality, $1-x \leq e^{-x}$, for x : real.)

Reminder. Test 1 on Monday, Feb. 11th, in class. OPEN NOTES, but no textbooks allowed.

