MATH 4032 (Spring'13) - Supplementary Problems II

Instructor : Prasad Tetali, office: Skiles 234, email: tetali@math.gatech.edu Office Hours: Wed. Fri. 1:00-2:00pm, Thurs. 2:00-3:00pm

For Practice Only: no need to submit

I. (Exercise 19.2 from S. Jukna's book). Let \mathcal{F} be a k-uniform k-regular family, i.e., each set has k points and each point belongs to k sets. Let $k \geq 10$. Show that there exists a 2 -coloring of points that leaves no set of \mathcal{F} monochromatic.
II. (Exercise 5.11 from S. Jukna's book). Let $t<n / 2$ and let \mathcal{F} be a family of subsets of an n-element set X. Suppose that: (i) each member of \mathcal{F} has size at most t, and (ii) \mathcal{F} is an antichain. Let \mathcal{F}_{t} be the family of all those t-element subsets of X, which contain at least one member of \mathcal{F}. Prove that then $|\mathcal{F}| \leq\left|\mathcal{F}_{t}\right|$.

Hint: Use Proposition 5.7 to extend each member of \mathcal{F} to a unique member in the family \mathcal{F}_{t}. Recall that Proposition 5.7 asserts that for $k \leq(n-1) / 2$ there is a matching between level k and level $k+1$ in the Boolean lattice, of size equalling the size of level k.
III. (Exercise 5.12 from S. Jukna's book). Let A be a 0-1 matrix with m 1's. Let s be the maximal number of 1 s in a row or column of A, and suppose that A has no square rtimesr all-1-sub-matrix. Use the König-Egerváry theorem to show that we then need at least $m /(s r)$ all-1 (not necessarily square) sub-matrices to cover all 1 s in A.

Hint: There are at least m / s independent 1s, and at most r of them can be covered by one all-1 sub-matrix.
IV. (Exercise 6.2 from S. Jukna's book). Take s pairwise disjoint ($k-1$)-element sets $V_{1}, V_{2}, \ldots, V_{s}$ and consider the family

$$
\mathcal{F}=\left\{S:|S|=s \text { and }\left|S \cap V_{i}\right|=1 \text { for all } i=1, \ldots, s\right\} .
$$

This family has $(k-1)^{s}$ sets. Show that it has no sunflower with k petals.
V. (Exercise 6.4 from S. Jukna's book). Argue as in the proof of the sunflower lemma to show that any set of more than $2(k-1)^{2}$ edges either contains a matching of size k or a star of size k. [Recall that a star of size k is a set of k edges incident to one vertex.]
VI. (Exercise 7.2 from S. Jukna's book). Let \mathcal{F} be an intersecting family of subsets of an n-element set X. Show that there is an intersecting family $\mathcal{F}^{\prime} \supseteq \mathcal{F}$ such that $|\mathcal{F}|=2^{n-1}$.

Hint: Show that for any set A such that neither A nor \bar{A} belongs to \mathcal{F}, exactly one of A and \bar{A} can be added to \mathcal{F}.
VII. (Exercise 7.4 from S. Jukna's book). The upper bound $\binom{n-1}{k-1}$ given by Erdös-Ko-Rado theorem is achieved by the families of sets containing a fixed element. Show that for $n=2 k$ there are other families achieving this bound.

Hint: Include one set out of every pair of sets formed by a k-element set and its complement.
Reminder. Test 2 on Wednesday, April 3rd, in class. OPEN NOTES, but no textbooks allowed. Please review all material covered in class since Test 1.

