MATH 4032 Combinatorial Analysis (Spring'13) - Homework 1

Instructor : Prasad Tetali, office: Skiles 234, email: tetali@math.gatech.edu
Office Hours: Wed. Fri. 1:00-2:00pm, Thurs. 2:00-3:00pm
Due: next Friday in class

1. Let H be a 3 -uniform hypergraph on a set V of 9 elements: $\left\{u_{1}, u_{2}, \ldots, u_{9}\right\}$.
(i) (Trivial). How many Red-Blue colorings are there of V with precisely 5 elements that are Red and 4 elements that are Blue?
(ii) Suppose we choose a random coloring uniformly from the set of all $(5,4)$ colorings from Part (i) - that is, any of the colorings in Part (i) has equal probability of being chosen. Then what is the probability that a fixed hyperedge (such as $\left\{u_{1}, u_{4}, u_{5}\right\}$, say) is monochromatic?
2. Let \mathcal{F} be a family of sets with the property that $A, B \in \mathcal{F}$ implies that $|A \cap B| \neq 1$. Then show that \mathcal{F} is 2 -colorable. (That is, show that the underlying points can be colored Red or Blue so that no set in \mathcal{F} is monochromatic.) You may assume that every set has at least two points, to avoid degeneracy.
(Hint: No need for probability! Just consider coloring points one by one...)
3. Prove that $R(4,3) \leq 10$ from first principles, without using any theorem proved in class. (Hint: use an argument similar to the one used to show $R(3,3) \leq 6$.)
4. Find the RHS of the following identity - it should not have any summations - and find a combinatorial proof of the resulting identity: $\sum_{k=1}^{n}\binom{n}{k}\binom{n}{n-k}=$??
5. Suppose $n \equiv 1(\bmod 8)$. Show that the number of subsets of an n-element set, whose size is 0 $(\bmod 4)$ is $2^{n-2}+2^{(n-3) / 2}$.
6. Let n be any positive integer. Prove that if $a_{1}, a_{2}, \ldots, a_{n}$ are n (not necessarily distinct) integers, then there is a subset of the integers whose sum is divisible by n. (Hint: Show that there exist $1 \leq i \leq j \leq n$ such that $\sum_{k=i}^{j} a_{k}$ is divisible by n.)

Optional problems.

O1. Let $G=(V, E)$ be a graph. Let $d(x)$ denote the degree of x, for each $x \in V$. Explain why the following holds:

$$
\sum_{x \in V} d(x)^{2}=\sum_{\{x, y\} \in E}(d(x)+d(y)) .
$$

O2. Give a combinatorial proof of the identity

$$
\binom{r}{r}+\binom{r+1}{r}+\binom{r+2}{r}+\cdots+\binom{n}{r}=\binom{n+1}{r+1} .
$$

Unresolved problems.

1. The best known bounds : $\sqrt{2} \leq R(k, k)^{1 / k} \leq 4$. Improvements?
2. $R(3,10)=$?, $R(4,6)=$?, and $R(5,5)=$?.
