MATH 4032 Combinatorial Analysis (Spring'13) - Homework 3

Instructor : Prasad Tetali, office: Skiles 234, email: tetali@math.gatech.edu Office Hours: Wed. Fri. 1:00-2:00pm, Thurs. 2:00-3:00pm

Due: Wednesday, March 6, 2013

Note: These are from Chapter 10 of the van Lint-Wilson book.

1. How many positive integers less than 1000 have no factor between 1 and 10 ?
(Hint: Use inclusion-exclusion with four E_{i} 's: with E_{i} denoting the integers between 1 and 1000 divisible by i, for $i=2,3,5,7$.)
2. How many monic polynomials in x of degree n are there in $\mathcal{F}_{p}[x]$ that do not take on the value 0 for $x \in \mathcal{F}_{p}$? (Recall that \mathcal{F}_{p} may be thought of as consisting of integers, $0,1, \ldots, p$, with addition and multiplication modulo p.)
(Hint: Use inclusion-exclusion and the fact that for a polynomial $f(x)$, if $f(i)=0$, then $(x-i)$ is a factor of $f(x)$.)
3. One of the most famous functions in complex analysis is the so-called Riemann ζ-function $\zeta(s):=\sum_{n=1}^{\infty} n^{-s}$, defined in the complex plane with the real part $\Re(s)>1$. Prove that

$$
1 / \zeta(s)=\sum_{n=1}^{\infty} \mu(n) n^{-s} .
$$

(Hint: Multiply $\sum_{n=1}^{\infty} a_{n} n^{-s}$ and $\sum_{m=1}^{\infty} b_{m} m^{-s}$. Determine the coefficient of k^{-s} and use the theorem about $\sum_{d \mid n} \mu(d)$.)
4. Count the number of permutations $x_{1}, x_{2}, \ldots, x_{2 n}$ of the integers 1 to $2 n$ such that $x_{i}+x_{i+1} \neq$ $2 n+1$ for $i=1,2, \ldots, 2 n-1$.
(Hint: Use the general theorem on inclusion-exclusion.)
5. Prove that for $0 \leq k \leq n$,

$$
\sum_{i=0}^{k}\binom{k}{i} d_{n-i}=\sum_{j=0}^{n-k}(-1)^{j}\binom{n-k}{j}(n-j)!
$$

Recall that d_{n} denotes the number of derangements on n distinct objects.
(Hint: Count permutations of integers $1,2, \ldots, n$ that fix none of $1,2, \ldots, n-k$.)
6. Prove the following direction of the Möbius inversion theorem: Suppose f and g satisfy the relation $g(n)=\sum_{d \mid n} \mu(d) f(n / d)$, then show that $f(n)=\sum_{d \mid n} g(d)$.

