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Abstract

We construct a deterministic fully polynomial time approximation scheme (FPTAS) for computing
the total number of matchings in a bounded degree graph. Additionally, for an arbitrary graph, we
construct a deterministic algorithm for computing approximately the number of matchings within
running time exp(O(

√
n log2 n)), where n is the number of vertices.

Our approach is based on the correlation decay technique originating in statistical physics. Pre-
viously this approach was successfully used for approximately counting the number of independent
sets and colorings in some classes of graphs [BG06],[Wei06],[GK07a]. Thus we add another problem
to the small, but growing, class of #P -complete problems for which there is now a deterministic
FPTAS.
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1 Introduction

The focus of the paper is the problem of computing the total number of (full and partial) matchings
in a given graph. This problem, along with many other combinatorial counting problems falls into
the class of #P-complete complexity class, and thus, modulo a basic complexity theoretic conjecture,
cannot be solved (exactly) in polynomial time. Ever since the introduction of the #P complexity class
by Valiant [Val], the focus on these problems shifted to finding approximating solutions. Here by far the
strongest and the most general method comes from the Markov chain Monte Carlo (MCMC) approach.
Based on the equivalence between the counting problem and a related sampling problem [JVV86],
this approach focuses on rapidly mixing Markov chains to obtain appropriate random samples. Many
randomized approximation schemes for various counting problems were derived in this way – see e.g.,
[JS97, J03] for several nontrivial applications. Among other results, a fully polynomial randomized
approximation scheme (FPRAS) for computing the total number of matchings of a given graph was
provided by Jerrum and Sinclair [S93, JS97]. Our main thrust in this work is in providing deterministic
algorithms for counting the number of matchings; this we are able to do efficiently (in fully polynomial
time) for the class of bounded degree graphs, and in sub-exponential time for general graphs (see details
below).

Recently an alternative approach for constructing approximate counting schemes was developed,
leading to deterministic approximation schemes for counting problems. The approach is based on the
concept of correlation decay originating in statistical physics [Dob70] for estimating certain marginal
probability distributions (See Proposition 2.2 below). The correlation decay concept, also called spatial
correlation decay, is related to the notion of uniqueness of Gibbs measures in infinite lattices, hence
the interest of statistical physicists in this subject. The approach of using correlation decay property
for constructing efficient algorithms for counting was introduced in Weitz [Wei06] and Bandyopadhyay
and Gamarnik [BG06], for the problems of counting the number of independent sets and colorings of a
graph. The development in [Wei06] was particularly impressive as, unlike in [BG06], no assumptions on
the girth of a graph are made and the approach led to the first known deterministic fully polynomial
time approximation scheme (FPTAS) for a problem in the #P-complete class, namely the problem of
counting the number of independent sets in graphs with degree ≤ 5. Weitz’s approach was based on
a clever reduction of the graph problem to that on a related well-known tree, the tree of self avoiding
walks. Very recently, the correlation decay approach was also put to use in Gamarnik and Katz [GK07a]
for the problem of counting the number of proper colorings of a graph. In this work the step of con-
structing a self-avoiding walk was bypassed, by instead creating a certain computation tree in a dynamic
programming type recursion and establishing correlation decay on the corresponding computation tree.
As observed in [GK07a], the advantage of establishing correlation decay on a computation tree is that
it leads to inverse polynomial errors on the marginal probabilities as opposed to constant errors that
one would obtain by using spatial correlation decay directly. For completeness, we reproduce here a
section from [GK07a] which explains this crucial difference which ultimately leads to polynomial time
approximation algorithms. The relation between correlation decay on a tree and on general graphs was
one of the motivations of Weitz’ [Wei06] work; and recently particular generalizations of it are given by
Jung and Shah [JS] and Nair and Tetali [NT] for certain Markov random field models.

In this paper we use the correlation decay approach for constructing a fully polynomial deterministic
approximation scheme for counting the total number of (partial and full) matchings of a graph. Thanks
to Vadhan’s work [V01], the problem of counting matchings in regular graphs of bounded degree (to
be precise, degree at least five) is also known to be #P-complete. In fact we solve a more general
problem - the one of computing the partition function corresponding to matchings with a given activity
level λ. We establish the correlation decay property on the computation tree. Interestingly, the analysis
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becomes far more transparent, when compared to the counterparts in independent sets and colorings. In
particular, we establish that the correlation decay property corresponding to counting matchings holds
for an arbitrary graph G and activity λ combination, in the appropriate sense. We show that the rate
of the correlation decay (appropriately defined) is ≈ 1−O( 1√

∆
), where ∆ is the maximum degree of the

graph. As a result we construct a deterministic FPTAS for computing the number of matchings in any
graph with ∆ = O(1). For the case of arbitrary graphs (with no restriction on the maximum degree)
we construct a deterministic approximation scheme which runs in time exp(O(

√
n log2 n)), where n

the number of vertices in the graph. The problem of computing the number of matchings of graphs
with large girth was addressed recently by Bayati and Nair [BN06] in the context of Belief Propagation
algorithms and the validity of the cavity method. The use of tree like recursions, similar to the one in
this paper, for computing the matching polynomials can also be found in the work of [God81]. The key
new idea is the use of correlation decay to reduce the computation time using the recursions. The fact
that the Gibbs distribution corresponding to matchings exhibits a spatial correlation decay was already
established by Heilmann and Lieb [HL72] by looking at complex roots of the partition function and
later by van den Berg [vdB98] using more probabilistic/combinatorial arguments – in particular, the
path of disagreement percolation argument along with the fact that such a path does not bifurcate for
the monomer-dimer model in establishing exponential decay of correlation for this model on Zd. Here
we show decay of correlations on the computation tree which is a stronger result. We also note that the
work of Kahn and Kim [KK98] is pertinent here. Using Godsil’s (self-avoiding) tree construction, they
show that in any d-regular graph, the probability that any fixed vertex is not in a (uniformly chosen)
random matching is asymptotically 1/

√
d; moreover, as we realized since doing the present work, their

proof establishing this fact (see Claim (2.6) in their paper) also uses (as we do below in Theorem 3.2)
a two level recursion and partial derivatives to show convergence to the above probability estimate.

It should be noted that, while an FPRAS for counting matchings is known to exist thanks to the
MCMC method, constructing deterministic counterparts is a far more challenging task. For example,
while an FPRAS for computing permanent of a matrix is known [JSV04], the best known deterministic
approximation scheme only gives factor en approximation [LSW00]. In fact the present paper led to a
recent improvement of this result [GK07b].

The connection between the correlation decay property and counting is understood within the field
of rapidly mixing Markov chains as well. Broadly speaking one expects that the lack of long-range
dependence (correlation decay) implies rapid mixing and thus the existence of randomized approxima-
tion scheme for counting/sampling problems. Specifically, when the graph satisfies a certain kind of
sub-exponential growth condition the correlation decay does imply rapid mixing (see e.g., [DSVW04],
[GMP05]). The converse, however, does not hold in general, as shown by Berger et al. [BKMP01], but
does hold in some weaker sense, as shown recently by Montanari and Semerjian [MS06].

The present work, along with [BG06],[BN06],[Wei06],[GK07a],[GK07b],[NT] reinforces this connec-
tion, as well as, broadly speaking, contributes to the exciting and emerging connection between theo-
retical computer science, probability theory and statistical physics.

The rest of the paper has the following structure. The definitions and the main result are presented
in Section 2. The correlation decay analysis is the subject of Section 3. The approximate counting
algorithm and the complexity analysis is presented in Section 4. The discussion on the difference
between spatial correlation decay and correlation decay on a computation tree, borrowed from [GK07a]
is given in Section 5. Some concluding remarks and further open questions are presented in Section 6.
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2 Definitions, preliminaries and the main result

We consider a simple labeled undirected graph G with n vertices. The vertex set is denoted by V =
{v1, . . . , vn}. E denotes the edge set. N(v, G) ⊂ V denotes the set of neighbors of v and ∆(v) =
|N(v, G)| denotes the degree of the vertex v. The degree of the graph is ∆ , maxv ∆(v). We abuse
notations by letting G\{v} denote a subgraph of G induced by nodes V \{v}. Let Gk = G\{v1, . . . , vk−1}
with G0 = G.

A matching is a subset M ⊆ E such that no two edges in M share a vertex. We denote by
M = M(G) the set of all matchings of G. For every k ≤ |V |/2 let M(k) be the number of size k
matchings in G.

Given a fixed parameter λ > 1, called the activity, a natural (Gibbs) probability distribution on the
set M of matchings is defined as:

PG(M) =
λ|M |

Z(G)
,

where the normalizing constant Z(G)1 is called the partition function corresponding to λ, and is ex-
pressed as

Z(G) =
∑

M∈M
λ|M |.

Denote by M a random matching selected according to the Gibbs measure PG, which clearly depends
on the given graph G. The principle goal of this paper is obtaining an approximation of PG(v /∈ M) for
every vertex v in polynomial time, for the class of bounded degree graphs G. Here, abusing notation
slightly, v ∈ M means matching M contains an edge incident to v. Thus this quantity simply represents
the probability that a random matching selected according to the Gibbs measure does not contain an
edge adjacent to v.

Our goal is constructing an algorithm which computes Z(G) approximately. The instance size of
the problem is O(max(|V |, |E|, | log λ|)).

Definition 2.1. An approximation algorithm A is defined to be a Fully Polynomial Time Approximation
Scheme (FPTAS) for computing Z(G) if, given arbitrary ε > 0, it produces a value Ẑ satisfying

exp(−ε) ≤ Ẑ

Z(G)
≤ exp(ε),

in time which is polynomial in n, 1
ε .

We now state our main result.

Theorem 2.1. There exist a deterministic algorithm which provides an FPTAS for computing Z(G)
corresponding to a constant activity λ for any graph, whose degree is bounded by a constant, ∆. The
above algorithm has complexity O((n

ε )κ log ∆+1), where κ = −2
/

log
(
1− 2

(
√

1+λ∆+1)

)
.

Thus, while the running time of the algorithm depends polynomially on 1/ε (hence Fully Polynomial
approximation scheme) the degree of the polynomial depends on both ∆ and λ. In the case of no
assumptions on the degree of the graph, the complexity of counting approximately the number of
matchings becomes exp(O(

√
n log2 n)). The hidden dependence on ε is a polynomial in 1

ε .

1For ease of notation we suppress the dependence of Z(G) on λ.
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We begin by establishing the following identity. This identity appears in various forms in the
context of Markov chain sampling method as well. The identity is also the essence of the cavity method
in statistical physics.

Proposition 2.2. The following identity holds

Z(G) =
1∏

1≤k≤|V | PGk
(vk /∈ M)

.

Proof. Observe that for every graph G and vertex v ∈ G

PG(v /∈ M) =
Z(G \ {v})

Z(G)
. (1)

Applying this identity recursively to vk, Gk, and using the convention that the partition function for
the graph with no edges equals 1, we obtain the result.

The above recursion for the partition function (matching polynomial) is the same as the one obtained
by Godsil in [God81]. It was also used by Kahn and Kim [KK98] for the analysis of random matchings
on regular large degree graphs.

The following corollary is a straightforward application of Proposition 2.2 and therefore we shall
focus our attention on constructing an algorithm for computing an approximation of PG(v /∈ M).

Corollary 2.3. Given any ε > 0, if there exists a fully polynomial time algorithm A, which on input
(G, v), computes a value p̂(v) satisfying∣∣∣ p̂(v)

PG(v /∈ M)

∣∣∣ ≤ exp(
ε

n
), (2)

then one immediately obtains a fully polynomial time approximation algorithm for Z(G).

3 Correlation decay analysis

A salient feature of the matching problem is that it allows a very simple recursive expression for the
value PG(v 6∈ M).

Proposition 3.1. The following holds for every vertex v:

PG(v /∈ M) =
1

1 + λ
∑

u∈N(v,G) PG\{v}(u /∈ M)
. (3)

In particular,

PG(v /∈ M) ≥ 1
1 + λ∆

. (4)

Proof. We have

Z(G) =
∑

M∈M(G):v/∈M

λ|M | +
∑

u∈N(v,G)

∑
M∈M(G):(v,u)∈M

λ|M |. (5)

Observe that the set of all matchings M such that v /∈ M is the set of all matchings in G\{v}. Also for
every matching M containing (v, u), M \{(v, u)} induces a matching in the graph G\{v, u}. Conversely,
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for every matching M in G \ {v, u}, M ∪ {(v, u)} creates a matching in G containing the edge (v, u).
Thus we can rewrite (5) as

Z(G) = Z(G \ {v}) +
∑

u∈N(v,G)

λZ(G \ {v, u}). (6)

Dividing both parts by Z(G \ {v}) and using the identity (1) we obtain the result.

For every subgraph Ĝ of the graph G every vertex v ∈ Ĝ and every t ∈ Z+ we introduce a quantity
ΦĜ(v, t) computed inductively as follows.

1. ΦĜ(v, 0) = 1 for all Ĝ, v.

2. For every t ≥ 1,

ΦĜ(v, t + 1) =
1

1 + λ
∑

u∈N(v,Ĝ) ΦĜ\{v}(u, t)
. (7)

The following is an immediate consequence of the definition of Φ: for every t ≥ 0,

1
1 + λ∆

≤ ΦĜ(v, t) ≤ 1, (8)

While we have introduced the values ΦĜ(v, t) for potentially exponentially many subgraphs of G, it
is only a small family of subgraphs of G for which the value of Φ will be relevant to us. The quantity
ΦĜ(v, t) will serve as an approximation of PĜ(v /∈ M). The essence of this approximation is described
in the following result.

Theorem 3.2 (Correlation Decay). The following holds for every vertex v and every positive even value
t: ∣∣∣ log PG(v /∈ M)− log ΦG(v, t)

∣∣∣ ≤ (
1− 2

(
√

1 + λ∆ + 1)

)t/2
log(1 + λ∆).

Remark : In the proof below we analyze two steps of the recursions (3) and (7). This leads to a
correlation decay rate ≈ (1 − 1√

λ∆
). We could instead use a one-step analysis, but this would give us

a decay rate only ≈ (1 − 1
λ∆). While this would not make a big difference in the case λ, ∆ = O(1), it

does make a difference in the general case, since ∆ could be as large as n − 1. The case λ = O(n
1
3 )

was used in [GK07b] for constructing an approximation algorithm for computing a permanent. It also
seems that 3-step analysis would not buy us better correlation decay as the rate ≈ (1− 1√

λ∆
) seems to

be tight. This observation is also implicit in [KK98].

Proof. Fix a vertex v ∈ G, and let N(v, G) = {u1, . . . , um}, N(ui, G \ {v}) = {w(i)
1 , ..., w

(i)
mi} . We

introduce the following shorthand notations, with x’s representing the true probabilities (of certain
vertices not being in random matchings) and y’s representing the corresponding approximations:

x = log PG(v /∈ M), xi = log PG\{v}(ui /∈ M), x
(i)
j = log PG\{v,ui}(w

(i)
j /∈ M) , (9)

y = log ΦG(v, t), yi = log ΦG\{v}(ui, t− 1), y
(i)
j = log ΦG\{v,ui}(w

(i)
j , t− 2) , (10)

for i = 1, . . . ,m, j = 1, . . . ,mi.
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Let M =
∑m

i=1 mi, ~z = {z(1)
1 , . . . , z

(1)
m1 , . . . , z

(m)
1 , ..., z

(m)
mm}. Let f : [0, 1]M → [0, 1] be given as

f(~z) = log
(
1 + λ

m∑
i=1

1

1 + λ
∑mi

j=1 ez
(i)
j

)
.

Then we can rewrite (3) and (7) as

x = −f(~x),
y = −f(~y).

We consider g(α) = f(α~x + (1 − α)~y) as a function of one-dimensional parameter α ∈ [0, 1] and fixed
vectors ~x, ~y. Applying the mean value theorem, there exists α ∈ [0, 1] such that for ~zα = α~x + (1−α)~y,

|x− y| = |∇f(~zα) · (~x− ~y)|
(a)

≤ |∇f(~zα)|L1 ‖~x− ~y‖L∞ , (11)

where (a) follows from Hölder’s inequality. It is easy to see that

‖∇f(~z)‖L1 =
1

1 + λ
∑m

i=1
1

1+λ
Pmi

j=1 e
z
(i)
j

m∑
i=1

λ

 1

1 + λ
∑mi

j=1 ez
(i)
j

2

λ

mi∑
j=1

ez
(i)
j .

Define Ai = 1 + λ
∑mi

j=1 ez
(i)
j . The L1-norm can be re-written, in terms of Ai as

‖∇f(~z)‖L1 =
1

1 + λ
∑m

i=1
1
Ai

m∑
i=1

λ(Ai − 1)
A2

i

= 1−
1 + λ

∑m
i=1

1
A2

i

1 + λ
∑m

i=1
1
Ai

.

It is not difficult to see that the expression
1+λ

Pm
i=1

1

A2
i

1+λ
Pm

i=1
1

Ai

is minimized, for 0 ≤ 1/Ai ≤ ∞, when

1/Ai =
√

1+λm−1
λm . To show this, first observe by taking partial derivatives that the minimum occurs

when all of Ai are equal. Then the solution for optimal Ai reduces to a quadratic equation. Substituting
for the minimum value, one obtains

‖∇f(~z)‖L1 = 1−
1 + λ

∑m
i=1

1
A2

i

1 + λ
∑m

i=1
1
Ai

≤ 1− 2
(
√

1 + λm + 1)
≤ 1− 2

(
√

1 + λ∆ + 1)
.

Applying this to (11) we obtain∣∣∣ log PG(v /∈ M)− log ΦG(v, t)
∣∣∣

≤
(
1− 2

(
√

1 + λ∆ + 1)

)
max

i,j

∣∣∣ log PG\{v,ui}(w
(i)
j /∈ M)− log ΦG\{v,ui}(w

(i)
j , t− 2)

∣∣∣.
Iterating this bound t/2 times we obtain that

∣∣∣ log PG(v /∈ M)−log ΦG(v, t)
∣∣∣ is at most (1− 2

(
√

1+λ∆+1)
)t/2

times maxĜ,u

∣∣∣ log PĜ(u /∈ M) − log ΦĜ(u, 0)
∣∣∣, where the maximum is over all subgraph/vertex pairs

(Ĝ ⊂ G, u ∈ Ĝ). Applying (4) and the fact ΦĜ(u, 0) = 0, maxĜ,u

∣∣∣ log PĜ(u /∈ M) − log ΦĜ(u, 0)
∣∣∣ is at

most log(1 + λ∆).
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4 Algorithm

Our algorithm is based on computing the values ΦG(v, t), for t = O(log n). In our analysis of algorithm
complexity, we assume that each arithmetic operation takes one unit of time. This can be done since
arithmetic operations introduce at most a polynomial time overhead in the computation.

Lemma 4.1. The values ΦG(v, t) can be computed in time O(∆t). In particular when t = O(log n) and
∆ = O(1), ΦG(v, t) can be computed in polynomial time.

Proof. The proof follows immediately from recursion (7).

Now based on this lemma, we propose the following algorithm for estimating the partition function
Z(G).

Algorithm CountMATCHINGS

INPUT: A graph/activity pair (G, λ) and a positive integer t.
BEGIN
Set Z = 1, Ĝ = G.
While Ĝ 6= ∅, find an arbitrary node v ∈ Ĝ. Compute ΦĜ(v, t).
Set Z = Z

ΦĜ(v,t) , Ĝ = Ĝ \ {v}.
END
OUTPUT: Z.

As a final step we show that Φ can be used to approximate the marginal probabilities PG(v /∈ M)
with polynomial accuracy.

Lemma 4.2. Let δ = − log
(
1− 2

(
√

1+λ∆+1)

)
. If t = 2d(log n + log log(1 + λ∆)− log ε)/δe, then

e−
ε
n ≤ ΦG(v, t)

PG(v /∈ M)
≤ e

ε
n .

Proof. Theorem 3.2 implies∣∣∣ log
ΦG(v, t)

PG(v /∈ M)

∣∣∣ ≤ (
1− 2

(
√

1 + λ∆ + 1)

)(log n+log log(1+λ∆)−log ε)/δ
log(1 + λ∆)

=
ε

n
.

The result then follows.

Proof of Theorem 2.1. First we assume the case of bounded degree graph and constant activity: λ, ∆ =
O(1). The bound on t given by Lemma 4.2 becomes in this case t = O(log n). The algorithm providing
FPTAS is CountMATCHINGS, with input G, λ, and t = O(log n) as in Lemma 4.2. We can combine
Lemma 4.1, Lemma 4.2 and Corollary 2.3 and observe that the complexity of the algorithm is bounded
by O(n∆t) where t = 2d(log n + log log(1 + λ∆) − log ε)/δe. This gives the desired FPTAS with the
complexity bounded as stated in the theorem.

In the general case we have for δ defined in Lemma 4.2 that δ−1 = O(
√

λ∆). Due to our assumption
λ = O(n), this gives t = O(1

δ log n
ε ) = O(

√
λ∆ log n

ε ). Thus again applying Lemma 4.1, the complexity
of the algorithm CountMATCHINGS is

O(n∆t) = O(nt) = exp(O(
√

λ∆ log2 n)),
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where ∆ = O(n) is used. (Here we ignore the explicit dependence on ε but it is easy to see that the
complexity depends polynomially on 1

ε .) The special case corresponding to counting matchings λ = 1
leads to an upper bound exp(O(

√
n log2 n)).

5 Comparison of the correlation decay on a computation tree and
the spatial correlation decay property

As we have mentioned above, the (spatial) correlation decay is known to hold for the Gibbs distribution
associated with matchings [HL72],[vdB98] in the following sense: for every node v the marginal prob-
ability P(v ∈ M) is asymptotically independent from similar probabilities associated with nodes on a
boundary of the depth-d neighborhood B(v, d) of v in the underlying graph G. It is natural to try to use
this result directly as a method for computing approximately the marginal probabilities P(v ∈ M), for
example by computing PB(v,d)(P(v ∈ M)) instead, say using brute force computation. Unfortunately,
this does not lead to a polynomial time algorithm. In order to obtain ε-approximation of the partition
function, we need order O(ε/n) approximation of the marginal probabilities, which means the depth
d of the neighborhood B(v, d) needs to be at least O(log n). Here n is the number of nodes. But
the resulting cardinality of B(v, d), even for the case of constant degree graphs is O(∆log n) = nO(1) -
polynomial in n and the brute-force computation effort would be exponential in n. Notice that even if
the underlying graph has a polynomial expansion |B(v, d)| ≤ dr, for some power r ≥ 1, the brute-force
computation would still be O(exp(logr n)) which is super-polynomial. This is where having correlation
decay on computation tree as opposed to spatial decay of correlation is useful.

6 Conclusions

We have constructed a deterministic algorithm for counting approximately the number of matchings of
a given graph. The algorithm runs in polynomial time for the class of bounded degree graphs, and in
subexponential time exp(O(

√
n log2 n)) for the class of all graphs, where n is the number of nodes.

A natural open question is whether there is an FPTAS for counting matchings in graphs of un-
bounded degrees? There seem to be some fundamental limitations of the approach proposed in this
paper – the correlation decay rate corresponding to the case of matchings seems to be of order 1−O( 1√

∆
),

and thus we speculate that the improvement should come along some combinatorial, (rather than sta-
tistical physics), type arguments. In general, it is of interest to see to what extent the correlation decay
approach can be used for solving approximately other counting problems for which the MCMC method
has been successful. This line of investigation might also bring us a step closer to understanding the
extent to which randomized algorithms are more powerful than deterministic algorithms.
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