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ABSTRACT. A key insight from statistical physics about spin systems on random graphs is the central
role played by Gibbs measures on trees. We determine the local weak limit of the hardcore model
on random regular graphs asymptotically until just below its condensation threshold, showing that it
converges in probability locally in a strong sense to the free boundary condition Gibbs measure on the
tree. As a consequence we show that the reconstruction threshold on the random graph, indicative of the
onset of point to set spatial correlations, is equal to the reconstruction threshold on the d-regular tree for
which we determine precise asymptotics. We expect that our methods will generalize to a wide range of
spin systems for which the second moment method holds.

1. INTRODUCTION

In this paper we consider the hardcore model on random d-regular graphs and study its local spatial
mixing properties. We determine the location of a phase transition where the model undergoes a spatial
mixing transition after which the spin at a typical vertex becomes dependent over long distances.
Theory from statistical physics relates this transition to the clustering or shattering threshold and
both of these transitions appear to be related to the apparent computational difficulty of finding large
independent sets. No algorithms are known to find independent sets of size (1+ε) logd

d n in a random
d-regular graph on n vertices which coincides with the spatial mixing threshold. In contrast the
maximal independent set is of size (2−od(1)) logd

d n [14]. In this work, we show that the reconstruction
or extremality threshold on the infinite d-regular tree determines the onset of long distance point to
set spatial correlations in the random d-regular graph. We prove an asymptotic lower bound on the
reconstruction threshold which matches the known upper bound in the first two terms of the asymptotic
series. Together, these results determine the asymptotic location of the threshold for the random
d-regular graph for the onset of point to set correlations over long distances.
In a finite graph G = (V,E), an independent set is a subset of the vertices containing no adjacent
vertices. Denote the set of independent sets as I(G). We will view an independent set as a spin
configuration σ, taking values in {0,1}V with σv denoting the spin at the vertex v. The hardcore model
(or hardcore measure) is the probability measure over the set of independent sets σ ∈ I(G) given by

P(σ) =
1
Z

λ∑v∈V σv1σ∈I(G). (1)

The parameter λ > 0 is known as the fugacity and controls the typical size of an independent set with
larger values of λ putting more of the weight of the distribution on larger independent sets. As usual,
Z is a normalizing constant called the partition function. The definition of Gibbs measures and the
hardcore model in particular can be extended to infinite graphs by way of the Dobrushin-Lanford-
Ruelle condition which essentially says that for every finite set A, the probability of a configuration on
A is given by the Gibbs distribution given by a random boundary generated by the measure outside of
A. Such a measure is called a Gibbs measure, and it may not be unique (see e.g. [16] for more details).
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On the infinite d-regular tree Td , there is a unique Gibbs measure for the hardcore model if and only
if λ≤ (d−1)d−1

(d−2)d . However, for every λ, there exists a translation invariant Gibbs measure given by a
Markov model on the tree which we denote by PTd (henceforth, we refer to this as “the translation
invariant measure” on Td). We denote the density of PTd , that is, the probability that a site is occupied,
by α = α(λ,d) which satisfies the relation

λ =
α

1−2α

(
1−α

1−2α

)d−1

. (2)

Since α = α(λ,d) is a strictly monotone increasing function of λ we will use both parameters inter-
changeably to specify the model depending on the context. The density of the largest independent
set of a d-regular random graph is asymptotically (2logd− (2+o(1)) ln lnd)/d [14]. The results we
present hold very close to this threshold, up to

α < αc(d) :=
(2logd− (3+o(1)) ln lnd)

d
.

We take λc to be the corresponding value of λ. The bulk of this paper is devoted to establishing that
the hardcore measure on the random d-regular graph is well approximated locally by the measure
PTd when λ < λc. We prove that the measure converges in a strong notion of local weak convergence
described in Section 1.2.

Theorem 1. Let Gn be the random d-regular graph on n vertices. Then for large enough d, the
hardcore measure on Gn with fugacity λ < λc converges in probability locally to the measure PTd .

Our methods provide a general framework for proving convergence in probability locally which we
expect will apply to various other Gibbs measures on random graphs such as colorings or NAE-SAT.
Having established Theorem 1, it is natural to consider properties of the measure PTd . The set of Gibbs
measures is convex and so we may ask whether PTd is extremal, that is, it is not a convex combination
of other Gibbs measures. Extremality is equivalent to a notion of point to set correlation on trees called
the reconstruction problem (for a survey, see [27]).
To formalize the definition of the problem, we will make use of a description of PTd as a Markov model
on the tree generated as follows. First the spin at the root is chosen to be occupied with probability α

and unoccupied with probability 1−α, where α is chosen as in (2). The spins of the remaining vertices
of the graph are generated from their parents’ spins by taking one step of the Markov transition matrix

M =

(
p11 p10
p01 p00

)
=

(
0 1
α

1−α

1−2α

1−α

)
,

where pi j denotes the probability of the spin at a vertex being j given that the spin of the parent is
state i. Since (α,1−α) is reversible with respect to M this gives a translation invariant measure on Td
which corresponds to the measure PTd with fugacity λ.
Let σ(L) denote the spins of the vertices at distance L from the root as generated by the Markov model
described above. The reconstruction problem on the tree asks if we can recover information on σρ,
the spin of the root ρ from the spins σ(L) as L→ ∞. Formally, we say that the model (Td ,M) has
non-reconstruction if

lim
L→∞

PTd (σρ = 1|σ(L))→ α(λ,d) (3)

in probability as L→∞, and otherwise, the model has reconstruction. Non-reconstruction is equivalent
to extremality of the Gibbs measure or that the tail σ-algebra of the Gibbs measure is trivial [27].
Information theoretically, non-reconstruction corresponds to fast decay of correlations between the
spin at the root and the spins of far away vertices [27]. Proposition 12 of [26] implies that there exists
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a critical fugacity λR (or, equivalently, a critical density αR) such that reconstruction holds for the
hardcore model with fugacity λ > λR and non-reconstruction holds for λ < λR. The reconstruction
problem on the tree was originally studied as a problem in statistical physics but has since found many
applications including in computational phylogenetic reconstruction [11], the study of the geometry of
the space of random constraint satisfaction problems (CSP’s) [1, 20] and the mixing time of Markov
chains [3, 8, 23, 30, 35].
Here we establish tight bounds on the reconstruction threshold for the hardcore model on the d-regular
tree1. The upper bound was shown by Brightwell and Winkler [9], and our contribution is the lower
bound.

Theorem 2. For large enough d, the reconstruction threshold for PTd on the d-regular tree satisfies

(ln2−o(1)) ln2 d
2ln lnd

≤ λR ≤ (e+o(1)) ln2 d.

Prior to our work, Martin [22] had shown that λR > e−1. Restating Theorem 2 in terms of α we have
that the critical density for reconstruction satisfies

1
d
(lnd + ln lnd− ln ln lnd− ln2+ ln ln2−o(1))≤ αR ≤

1
d
(lnd + ln lnd +1+o(1)) (4)

leaving only an additive (ln ln lnd)/d gap between the bounds. The form of our bound in equation (4)
is strikingly similar to the bound for the q-coloring model [32] which states that reconstruction (resp.
non-reconstruction) holds when the degree d is at least (resp. at most) q(lnq+ ln lnq+O(1)).
The next theorem, combined with Theorem 2 gives a precise picture of the local spatial mixing
properties of the hardcore model on the random d-regular graph. In [17] a natural extension of the
reconstruction problem was introduced for graphs. Let {Gn} be a family of random graphs whose size
n goes to infinity, and let σ be distributed according to the hardcore model with fugacity λ. We will
use σ(S) to denote the configuration on a subset of vertices S and σv to denote the spin at a vertex v.
The model has non-reconstruction if for a uniformly chosen u ∈V (Gn),

lim
L→∞

limsup
n

E
∣∣∣P(σu = 1|σ(∂Bu(L)),u

)
−α(λ,d)

∣∣∣= 0 (5)

where Bu(L) denotes the vertices within distance L of u (and by abuse of notation, the induced
subgraph), ∂Bu(L) denotes the boundary of Bu(L) and α(λ,d) is the density given by (2).

Theorem 3. Let λ < λc and let α(λ,d) be the density given by (2). Let Gn be the random d-regular
graph on n vertices and let u be a uniformly random vertex in V (Gn). Then, for large enough d,

PTd (σρ = 1|σ(L)) P→ α(λ,d) as L→ ∞

⇔

lim
L→∞

limsup
n

E
∣∣∣∣P(σu = 1|σ(∂Bu(L)),U

)
−α(λ,d)

∣∣∣∣= 0

That is, the random d-regular graph has non-reconstruction if and only if (Td ,M) has non-reconstruction.

1.1. Related work. A significant body of work has been devoted to the reconstruction problem on
the d-regular tree by probabilists, computer scientists and physicists for a number of different spin
configuration models. The earliest such result is the Kesten-Stigum bound [19] which states that for a
Markov model defined on the tree, reconstruction holds whenever θ2(d−1)> 1, where θ is the second
largest eigenvalue of the corresponding Markov matrix. This bound was shown to be tight in the case of

1This result previously appeared in extended abstract form in [4].
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the Ising model [6, 13] where it was shown that non-reconstruction holds when θ2(d−1)≤ 1. Similar
results were derived for the Ising model with small external field [8] and the 3-state Potts model [31]
which constitute the only models for which exact thresholds are known. On the other hand, for the
hardcore model θ2(d− 1) = (1+ o(1)) 1

d ln2 d and thus at least when d is large, the Kesten-Stigum
bound is known not to be tight [9].
In both the coloring model and the hardcore model the reconstruction threshold is far from the Kesten-
Stigum bound for large d. In the coloring model close to optimal bounds on the reconstruction
threshold [5, 32] were obtained by first showing that, when n is small, the information on the root
is sufficiently small. Then a quantitative version of [18] establishes that the information on the root
converges to 0 exponentially quickly. In this work, we show that the hardcore model behaves similarly.

1.1.1. Replica Symmetry Breaking and Finding Large Independent Sets. The reconstruction problem
plays a deep role in the geometry of the space of solutions of random CSPs. While for problems
with few constraints the space of solutions is connected and finding solutions is generally easy, as the
number of constraints increases the space may break into exponentially many small clusters. Physicists,
using powerful but non-rigorous “replica symmetry breaking” heuristics, predicted that the clustering
phase transition exactly coincides with the reconstruction region on the associated tree model [21, 20].
This picture was rigorously established (up to first order terms) for the coloring and satisfiability
problems [1] and further extended to sparse random graphs by [25]. When solutions are far apart, local
search algorithms will in general fail. Indeed for both the coloring and SAT models, no algorithm is
known to find solutions in the clustered phase. It has been conjectured to be computationally intractable
beyond this phase transition [1].
Previous results [17, 25] have related the reconstruction problem on the Poisson tree with constant
expected degree with reconstruction in sparse random graph ensembles. These results established
a “replica” condition saying that the empirical distribution of pairs of spins at a vertex from two
independent configurations are from a product measure. This does not apply in the case of the hardcore
model since the degree of a vertex affects its probability of being in the independent set. At the same
time, for the d-regular random graph the methods of [25] do not seem to be directly applicable and we
approach the problem instead using the theory of local weak convergence of Gibbs measures.
The associated CSP for the hardcore model corresponds to finding large independent sets in random
d-regular graphs. The replica symmetric heuristics again predict that the space of large independent
sets should be clustered in the reconstruction regime. Specifically this refers to independent sets
of size αn where α > αR, the density of 1’s in the hardcore model at the reconstruction threshold,
and roughly half the density of the largest independent set [14]. On the other hand the best known
algorithm finds independent sets only of density (1+o(1)) lnd

d [36], which is equal to αR asymptotically
as d→ ∞. This is consistent with the physics predictions and it was shown that at the reconstruction
threshold independent sets exhibit the same clustering phenomena in random regular graphs [29, 15]
and Erdős-Renyi random graphs [10] as colorings and SAT [1, 20]. By determining the reconstruction
threshold on such graphs we provide further evidence supporting the connection of the reconstruction
threshold with the computational hardness of finding large independent sets in random graphs.
Sufficiently close to the satisfiability threshold many CSPs including the hardcore model are believed
to undergo an additional phase transition called condensation [20]. Beyond this transition the second
moment method fails and the distribution places most of its weight on a constant number of clusters
[2]. After the condensation transition it is believed that the hardcore measure no longer converges
locally to PTd explaining the necessity of an upper bound on λ in our theorems.

1.2. Local Weak Convergence. There are a number of natural notions of local weak convergence
of Gibbs measures and we introduce these now, following the notation used in [24]. Let Td denote
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the space of hardcore Gibbs measures on Td endowed with the topology of weak convergence and
let Md to be the space of probability measures over Td . For a sequence of graphs Gn we denote a
hardcore measure by µn while ν denotes a hardcore measure on Td . The notation Td(L) will denote the
restriction of the tree Td to a ball of radius L around the root (and by abuse of notation, we also use it
to denote the set of vertices of the restriction). The shorthand µL

n or νL denote the restrictions of the
corresponding measures to a ball of radius L. For a measure on Gibbs measures m ∈Md , we let mL

denote the measure on the space of measures on {0,1}Td(L) induced by such projections.

Definition 1.1. Consider a sequence of graphs-Gibbs measure pairs {(Gn,µn)}n∈N and for v ∈V (Gn),
let PL

n(v) denote the law of the pair (Bv(L),σ(Bv(L))) when σ is drawn with distribution µn. Let Un
denote the uniform measure over a random vertex u∈V (Gn). Let PL

n =EUn(PL
n(u)) denote the average

of PL
n(u). Let δTd(L) denote the Dirac measure on graphs which is 1 on Td(L).
A. The first mode of convergence concerns picking a random vertex u and a random local

configuration in the neighbourhood of u. Formally, for ν̄ ∈ Td we say that {µn}n∈N converges
locally on average to ν̄ if for any L,

lim
n→∞

dTV
(
PL

n ,δTd(L)× ν̄
L)= 0. (6)

B. A stronger form of convergence involves picking a random vertex u and the associated random
local measure PL

n(u) and asking if this distribution of distributions converges. Formally, we
say that the local distributions of {µn}n∈N converge locally to m ∈Md if it holds that the law
of PL

n(u) converges weakly to δTd(L)×mL for all L.
C. If m is a point mass on ν̄ ∈ Td and if the local distributions of {µn}n∈N converge locally to m

then we say that {µn}n∈N converges in probability locally to ν̄. Equivalently convergence in
probability locally to ν̄ says that for any L and any ε > 0 it holds that

lim
n→∞

Un
(
dTV(PL

n(u),δTd(L)×ν
L)> ε) = 0. (7)

Remark 1.2. As noted in [24], C⇒ B⇒ A while in [34] it is noted that if the measures ν are extremal
Gibbs measures then the three notions of convergence A, B and C are equivalent.

At a high level, convergence locally on average to ν means that after averaging the local distribution of
configurations over all the vertices, the random configuration converges weakly to ν while convergence
in probability locally to ν means that the local distribution at almost every vertex is close to ν eventually.
As noted above the former is a weaker condition and is in fact much simpler to prove. One can apply
the second moment method for the hardcore model on the random d-regular graph for a large range of
λ to relate the hardcore measure to its planted version where one first chooses a random independent
set and then constructs a uniformly chosen graph compatible with the set. By exploring the graph in
the planted measure by progressively revealing its edges one can show convergence locally on average
to the measure PTd and via the second moment method this can be extended to the original hardcore
distribution. This argument does not imply the stronger local convergence in probability and indeed, if
one assumes the picture developed in statistical physics, in the condensation phase one expects local
convergence of type A but not convergence of type B or C.
In order to investigate the reconstruction problem it is necessary to work with local convergence in
probability. Much of the work of the paper involves showing how the second moment method can be
used to imply this stronger notion of convergence. Thus, our proof shows that for the hardcore model,
up to the fugacity for which the second moment method holds, the notions A and C of local convergence
of measures are equivalent. Our methods are quite general and should apply to a broad range of CSPs
and Gibbs measures on graphs. Roughly speaking, one would need to show a corresponding bound on
the second moment of the partition function and concavity of the log-partition function. One would
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also need to show that the partition function changes by a bounded amount when an edge is added and
as such, our method should be applicable to non-zero temperature models.

1.3. Outline of the proof. We begin by establishing a lower bound on the reconstruction threshold
for the d-regular tree in Section 2, proving Theorem 2. We show that when α is bounded by the lower
bound in (4) then even for a tree of depth 3 there is already significant loss of information of the spin
at the root. In particular we show that if the spin of the root was 1 then the typical posterior probability
that the spin of the root is 1 given the spins at level 3 will be less than 1

2 . The result is completed by
linearizing the tree posterior probability recursion similarly to [8, 31]. In this part of the proof we
closely follow the analysis of [8] who analyzed the reconstruction problem for the Ising model with
small external field. We do not require the full strength of their analysis, however, as in our case we are
far from the Kesten-Stigum bound. We show that a quantity referred to as the magnetization decays
exponentially fast to 0. The magnetization provides a bound on the posterior probabilities and this
completes the result.
The ln lnd term in our bound on λR in Theorem 2 is explained as the first point at which there is
significant decay of information at level 3 on the tree. In particular the analysis in Proposition 2.3 part
c) is essentially tight. It may be possible to get improved bounds by considering higher depth trees
although the description of the posterior distribution necessarily becomes more complex. A sharper
analysis of this sort was done in [32] for the coloring model although the method there made crucial
use of the symmetry of the states.
The bulk of the paper concerns proving local weak convergence to PTd for the hardcore model on
the random d-regular graph and this is shown in Theorem 5.4 in Section 5. Our main tool is a new
approach to the use of the second moment method. We select say, n

3
5 randomly chosen vertices

in the d-regular random graph, and consider a “punctured” graph with the local neighborhoods of
these vertices removed. The punctured graph is used to study the partition function of the original
graph conditional on the configuration of the boundaries of these neighborhoods. The second moment
method in combination with Azuma’s inequality implies that the partition function conditioned on
a boundary configuration is within a multiplicative factor of exp(O(n

1
2+ε)) of the expected partition

function. We prove convergence in probability locally by showing that it is extremely unlikely that
a constant fraction of the n

3
5 randomly chosen vertices have a local measure which is far from the

translation invariant measure on the tree. Indeed, we show that this would entail the existence of a set
of configurations on the set of boundary vertices which has a constant probability under the hardcore
measure but expected probability of only exp(−cn

3
5 ). In Proposition 5.1 we show that this is precluded

by the second moment method.
One strength of our approach is that it does not require the detailed calculations of the small graph
conditioning method. In many spin systems, including the one studied here, the ratio of the second
moment of the partition function to the square of the first moment tends to a value greater than 1 and so
the second moment method cannot be used to estimate the partition function with probability tending
to 1. In this case, small graph conditioning can be used to give estimates on the partition function [37].
The first and second moments of the hardcore partition function for a d-regular random graph are
derived in Section 3 while the calculations for the punctured random graph appear in Section 4. The
remaining proof involves establishing the requisite bound on the second moment itself. This involves
determining the maximum of a function which corresponds to the expected log number of pairs of
independent sets in a random regular graph with a given overlap between them. In Proposition 3.3,
which is proved in Section 6, we consider the scaled log-partition function, determine its maximum
and show that it decays quadratically near its maximum. This is a key fact used in relating the first and
second moments of the partition functions of the random graph in Section 4.
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2. UPPER BOUND ON THE RECONSTRUCTION THRESHOLD ON THE TREE

In this section we present the proof of Theorem 2. We start by noting that for any finite restriction
of Td to its first n levels, we can use the Markov matrix M as before to generate an independent set
from the hardcore measure by setting the spin of the root to be occupied with probability α and then
applying the matrix as before to generate the spins at the children recursively until we reach the leaves
of the tree.
We define the following quantities which are related to the transition probabilities of the Markov matrix
M. Let

π01 =
1−α

α
, ∆ := π01−1 =

1−2α

α
, and

θ := p00− p10 = p11− p01 =−
α

1−α
.

As mentioned in the introduction, θ, the second eigenvalue of M, plays a particularly important role in
the reconstruction problem.
For ease of notation, we will establish non-reconstruction for the model (T̃d ,M) where T̃d is the d-ary
tree (where each vertex has d children) rather than on the d-regular tree. It is not difficult to modify
the recursion we will obtain for the d-ary tree to a recursion for the (d + 1)-regular tree, showing
that non-reconstruction also holds in that case. Finally, we can show that non-reconstruction on the
d-regular tree is equivalent to non-reconstruction on the (d + 1)-regular tree once we note that in
equation (4) we have that αR(d + 1)−αR(d) = o(d) so the difference can be absorbed in the error
term. We will use T to denote a finite tree whose root will be denoted x. Let P1

T ,E1
T (and resp. P0

T ,E0
T

and PT ,ET ) denote the probabilities and expectations with respect to the measure on the leaves of T
obtained by conditioning on the root x to be 1 (resp. 0, and stationary). Let L = L(n) denote the set
of vertices of T at depth n and let σ(L) = σ(L(n)) denote the configuration on level n. We will write
PT (·|σ(L) = A) to denote the measure conditioned on the leaves being in state A ∈ {0,1}L(n).
As in [8] we analyze the weighted magnetization of the root of T which is a function of the random
configuration the vertices at distance n from the root and defined as follows:

X = X(n) := (1−α)−1[(1−α)PT (σx = 1|σ(L))−αPT (σx = 0|σ(L))]

=
1

π01

(
PT (σx = 1|σ(L))

α
−1
)
. (8)

Notice that since ET (PT (σx = 1|σ(L))) = PT (σx = 1) = α, by (8), we have that ET (X) = 0. Also,
from the first line of (8), it can be verified that X ≤ 1 since PT (σx = 1|σ(L) = A)≤ 1 for any A. We
will also make use of the following second moments of the magnetization.

X = X(n) := ET (X2), X1 = X1(n) := E1
T (X

2), X0 = X0(n) := E0
T (X

2)

The following equivalent definition of non-reconstruction is well known and follows from the definition
in (3) using (8).

Proposition 2.1. Non-reconstruction for the model (T̃d ,M) is equivalent to

lim
n→∞

X = 0.

In the remainder of the proof we derive bounds for X . We begin by showing that already for a 3 level
tree, X becomes small. Then we establish a recurrence along the lines of [8] that shows that once X is
sufficiently small, it must converge to 0. As this part of the derivation follows the calculation in [8] we
will adopt their notation in places. Non-reconstruction is then a consequence of Proposition 2.1. In the
next lemma we determine some basic properties of X .
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Lemma 2.2. For any n≥ 1, the following relations hold:

a) ET (X) = αE1
T (X)+(1−α)E0

T (X).
b) X = αX1 +(1−α)X0.
c) E1

T (X) = π01X and E0
T (X) =−X .

Proof. Note that for any random variable Y = Y (A) which depends only on the states at the leaves, we
have ET (Y ) = αE1

T (Y )+(1−α)E0
T (Y ). Parts a) and b) therefore follow since X is a random variable

that is a function of the states at the leaves. For part c) we proceed as follows. The first and last
equalities below follow from (8).

E1
T (X) = π

−1
01 ∑

A
PT (σ(L) = A|σx = 1)

(
PT (σx = 1|σ(L) = A)

α
−1
)

= π
−1
01 ∑

A
PT (σ(L) = A)

PT (σx = 1|σ(L) = A)
α

(
PT (σx = 1|σ(L) = A)

α
−1
)

= π
−1
01

(
ET ((PT (σx = 1|σ(L)))2)

α2 −1
)

= π01ET (X2)

The second part of c) follows by combining this with a) and the fact that ET (X) = 0. �

The following proposition estimates typical posterior probabilities which we will use to bound X . Let
T (n) denote the tree which is the restriction of T̃d to its first n levels. For a finite tree T , let T i be the
subtrees rooted at the children of the root ui.

Proposition 2.3. For a finite d-ary tree T we have that

a) For any configuration at the leaves A = (A1, · · · ,Ad),

PT (σx = 0|σ(L) = A) =
(

1+λ∏
i
PT i(σui = 0|σLi = Ai)

)−1
.

b) Let G be the set of leaf configurations

G =

{
σ(L) | PT (σx = 0|σ(L)) = 1

2

(
1+

1
1+2λ

)}
.

Then

P0
T (σ(L) ∈ G)

P1
T (σ(L) ∈ G)

=
α

1−α

1+λ

λ
.

c) Let β > ln2− ln ln2 and α = 1
d

(
lnd + ln lnd− ln ln lnd−β

)
. Then in the 3-level d-ary tree T (3)

we have that

E1
T (3)(P(σρ = 1|σ(L)))≤ 1

2
.

Proof. Part a) is a consequence of standard tree recursions for Markov models established using Bayes
rule. For part b) first note that

PT (σx = 1 | σ(L) ∈ G) = 1−PT (σx = 0 | σ(L) ∈ G)

=
1
2

(
1− 1

1+2λ

)
(9)
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Now,

P0
T (σ(L) ∈ G) =

PT (σx = 0 | σ(L) ∈ G)PT (σ(L) ∈ G)

1−α

=
α

1−α

1+λ

λ

(
PT (σx = 1 | σ(L) ∈ G)PT (σ(L) ∈ G)

α

)
=

α

1−α

1+λ

λ
P1

T (σ(L) ∈ G)

where the first and third equations follow by definition of conditional probabilities and the second
follows from (9) and the definition of G which establishes b).
For part c), we start by calculating the probability of certain posterior probabilities for trees of small
depth. With our assumption on α we have that

λ =
α

1−2α

(
1+

α

1−2α

)d

=
(1+od(1))e−β ln2 d

ln lnd

Since σ(L) = 0 under P1
T (1), by part a) we have that

P1
T (1)(σx = 0|σ(L)) = 1

1+λ
w.p. 1.

Also,

PT (1)(∀ i, ui = 0|σx = 0) =
(

1−2α

1−α

)d

Using the two equations above, we have that

P0
T (1)(σx = 0|σ(L)) =

{
1 w.p. 1−

(1−2α

1−α

)d

1
1+λ

w.p.
(1−2α

1−α

)d
.

The first case above corresponds to leaf configurations of the tree T (1) where at least one of the leaves
is 1, while the second case corresponds to the configurations where all the leaves are 0. Next, applying
part a) to a tree of depth 2, we have

P1
T (2)(σx = 0|σ(L)) = 1

1+λ∏iP0
T (1)(σui = 0|σ(L))

Using this expression we can write down this conditional probability based on the leaf configurations
of the subtrees of the root of depth 1.

P1
T (2)(σx = 0|σ(L)) =


1

1+λ
w.p.

(
1−
(1−2α

1−α

)d
)d

1
2

(
1+ 1

1+2λ

)
w.p.

(
1−
(1−2α

1−α

)d
)d−1 (1−2α

1−α

)d
d

> 1
2

(
1+ 1

1+2λ

)
o.w.

(10)

The first case above corresponds to the situation when each subtree of the root of depth 1 has a leaf
configuration where at least one of the leaves is 1. The second case is when one of the d subtrees has a
leaf configuration where all leaves are 0, while the remaining subtrees have leaf configurations where
at least one leaf is 1. The third case corresponds to the remaining possibilities.
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By part b) with G as defined, and (10) we have that after substituting the expressions for λ and ω,

P0
T (2)(σ(L) ∈ G) =

α

1−α

1+λ

λ
P1

T (2)[σ(L) ∈ G ]

=
α(1+λ)

λ(1−α)

(
1−
(

1−2α

1−α

)d
)d−1(

1−2α

1−α

)d

d

≥ (1−od(1))
eβ ln lnk

k
(11)

We can now calculate the values of P1
T (3)(σx = 0|σ(L)) as follows. By part a)

P1
T (3)(σx = 0|σ(L)) = 1

1+λ∏iP0
T (2)(σui = 0|σ(L))

Denote

p =
α(1+λ)

λ(1−α)

(
1−
(

1−2α

1−α

)d
)d−1(

1−2α

1−α

)d

d

Thus, p is the probability that if we started with σρ = 0 in T (2), the configuration at the leaves is from
G . If we start with σρ = 1 in T (3), the number subtrees of the root with leaf configurations in G is
distributed binomially and will be about d p. By Chernoff bounds, and the bound on p from (11),

P
(

Bin(d, p)< eβ ln lnd−2
√

eβ ln lnd
)
<

1
3
.

Finally, by the definition of G ,

P0
T (2)(σui = 0|σ(L) ∈ G) =

1
2

(
1+

1
1+2λ

)
and hence,

E1
T (3)(P(σx = 1|σ(L))) = E1

T (3)(1−P(σx = 0|σ(L)))

≤

(
1− 1

1+λ(2(1−od(1)))−(e
β ln lnd−2

√
eβ ln lnd)

)
2
3
+

1
3

By taking d large enough above, we conclude that for β as in the assumptions and large enough d,

E1
T (3)(P(σx = 1|σ(L)))≤ 1

2

�

Lemma 2.4. Let β > ln2− ln ln2 and α = 1
d

(
lnd + ln lnd− ln ln lnd−β

)
. For d large enough,

X(3)≤ α

2
.
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Proof. By part c) of Lemma 2.2, and part c) of Proposition 2.3,

X(3) =
1

π2
01

(
E1

T3
(P(σx = 1 | σ(L)))

α
−1

)

≤ 1
π2

01

(
1

2α
−1
)

≤ α

2
�

Next, we present a recursion for X and complete the proof of the main result. The development of the
recursion follows the steps in [8] closely so we follow their notation and omit some of the calculations.

FIGURE 1. The tree T

FIGURE 2. The tree T after
obtained after merging T ′ and
T ′′. The dashed subtree is T̂ .

Magnetization of a child. Let T be a finite tree with root x as before. Let y be a child of x and let T ′

be the subtree of T rooted at y (see Figure 1). Let A′ be the restriction of A to the leaves of T ′. Let
Y = Y (A′) denote the magnetization of y.

Lemma 2.5. We have
a) E1

T (Y ) = θE1
T ′(Y ) and E0

T (Y ) = θE0
T ′(Y ).

b) E1
T (Y

2) = (1−θ)ET ′(Y 2)+θE1
T ′(Y

2).

c) E0
T (Y

2) = (1−θ)ET ′(Y 2)+θE0
T ′(Y

2).

The proof follows from the first part of Lemma 2.2 and the Markov property when we condition on x.
Next, we can write the effect on the magnetization of adding an edge to the root and merging roots of
two trees as follows. Referring to Figure 2, let T ′ (resp. T ′′) be a finite tree rooted at y (resp. z) with
the channel on all edges being given M, leaf states A (resp A′′) and weighted magnetization at the root
Y (resp. Z). Now add an edge (ŷ,z) to T ′′ to obtain a new tree T̂ . Then merge T̂ with T ′ by identifying
y = ŷ to obtain a new tree T . To avoid ambiguities, denote by x the root of T and X the magnetization
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of the root of T . We let A = (A′,A′′) be the leaf state of T . Let Ŷ be the magnetization of the root of T̂ .

Note: In the above construction, the vertex y is a vertex “at the same level” as x, and not a child of x as
it was in Lemma 2.5.

Lemma 2.6. With the notation above, Ŷ = θZ.

The proof follows by applying Bayes rule, the Markov property and Lemma 2.2. These facts also
imply the following result.

Lemma 2.7. For any tree T̂ ,

X =
Y + Ŷ +∆YŶ

1+π01YŶ
.

With these lemmas in hand we can use derive a recursive upper bound on the second moments. We
will use the expansion

1
1+ r

= 1− r+ r2 1
1+ r

.

Taking r = π01YŶ , by Lemma 2.7 we have

X = (Y + Ŷ +∆YŶ )
(

1−π01YŶ +(π01YŶ )2 1
1+π01YŶ

)
= Y + Ŷ +∆YŶ −π01YŶ

(
Y + Ŷ +∆YŶ

)
+(π01)

2(YŶ )2X

≤ Y + Ŷ +∆YŶ −π01YŶ
(
Y + Ŷ +∆YŶ

)
+(π01)

2(YŶ )2 (12)

where the last inequality follows since X ≤ 1 with probability 1.
Let ρ′ = Y 1/Y and ρ′′ = Z1/Z. Below, the moments Y etc. are defined according to the appropriate
measures over the tree rooted at y (i.e. T ′) etc.
Applying Lemmas 2.2, 2.5 and 2.6, we have the following relations.

E1
T (X) = π01X , E1

T (Y ) = π01y, E1
T (Y

2) = Y ρ
′

E1
T (Ŷ ) = π01θ

2Z, E1
T (Ŷ

2) = θ
2Z((1−θ)+θρ

′′). (13)

Applying (π01)
−1E1

T (·) to both sides of (12), we obtain the following.

X ≤ Y +θ
2Z +∆π01Y Z−π01θ

2Y Zρ
′−π01θ

2Y Z((1−θ)+θρ
′′)

−∆θ
2Y Zρ

′((1−θ)+θρ
′′)+π01θ

2Y Zρ
′((1−θ)+θρ

′′)

= Y +θ
2Z−π01θ

2Y Z(A−∆B)

where

A = ρ
′+(1−ρ

′)((1−θ)+θρ
′′),

and B = 1− (π01)
−1

ρ
′((1−θ)+θρ

′′) = 1− α

1−2α
ρ
′((1−θ)+θρ

′′).

If A−∆B ≥ 0, this would already give a sufficiently good recursion to show that X(n) goes to 0, so we
will assume is negative and try to get a good (negative) lower bound. First note that by their definition
ρ′,ρ′′ ≥ 0. Further since Y = αY 1 +(1−α)Y 0,

ρ
′ ≤ 1

α
.
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Similarly,

ρ
′′ ≤ 1

α
.

Since E1
T (Ŷ

2) and Z ≥ 0, it follows from (13) that (1−θ)+θρ′′ ≥ 0. Together with the fact that ρ′ ≥ 0,
this implies that B ≤ 1.
Since A is multi-linear in (ρ′,ρ′′), to minimize it, its sufficient to consider the extreme cases. When
ρ′ = 0, A is minimized at the upper bound of ρ′′ and hence

A ≥ 1−π01
α

1−α
= 0.

When ρ′ = 1
α

,

A =
1
α
+

(
1− 1

α

)
[1−θ(1−ρ

′′)]≥ 0.

Hence, we have

X ≤ Y +θ
2Z +

1−2α

1−α
Y Z.

Applying this recursively to the tree, we obtain the following recursion for the moments

X ≤ 1−α

1−2α
θ

2

((
1+Z

1−2α

1−α

)k

−1

)
We bound the (1+ x)k−1 term as

|(1+ x)k−1| ≤ e|x|k−1 =
∫ |x|k

0
es ds≤ e|x|kk|x|

and this implies the following recursion.

Proposition 2.8. If for some n, X(n)≤ α

2 , we have that

X(n+1)≤ θ
2
(

1−α

1−2α

)2

e
1
2 αddX(n).

Thus if
(

α

1−2α

)2 e
1
2 αdd < 1 then it follows from the recursion that

lim
n

X(n) = 0. (14)

When α = 1
d

(
lnd + ln lnd− ln ln lnd−β

)
and β > ln2− ln ln2, by Lemma 2.4, for d large enough,

X(3) ≤ α

2 . Hence by equation (14) we have that X(n)→ 0 and so by Proposition 2.1 we have
non-reconstruction. Since reconstruction is monotone in λ and hence in α it follows that we have
non-reconstruction for α≤ αR for large enough d. This completes the proof of Theorem 2.

3. PARTITION FUNCTION OF THE HARDCORE MODEL FOR RANDOM d-REGULAR GRAPH

In this section, we derive expressions for the first and second moments of the hardcore partition
function for the d-regular random graph. The calculations are along the lines of those in [28] and we
adopt their notation here. We will work with the configuration model for random graphs, described
below, in order to simplify the calculations.
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3.1. Configuration model. Let H (n,d) denote the set of all d-regular (multi)graphs on n vertices
and G(n,d) the subset of d-regular simple graphs. The analysis of the properties of a random graph
in G(n,d) can often be simplified by making use of the configuration model, introduced by Bollóbas
[7]. Fix d and n such that dn is even. Define a d-regular multigraph on n vertices via the configuration
model as follows. Begin by replacing each vertex with d distinct copies and then generate a uniformly
random pairing of the dn distinct points. Finally, collapse the d copies corresponding to each vertex
back into one vertex, obtaining a uniformly random multigraph in H (n,d). Let S be the event that the
multigraph obtained is simple. Clearly, on the event S, the graph obtained is uniformly distributed over
G(n,d). Moreover, for fixed d,

P(S) = (1+o(1))exp
(

1−d2

4

)
, (15)

where the o(1) term tends to 0 as n→ ∞. Since the probability in (15) is uniformly bounded away
from 0, any event that holds asymptotically with high probability for H (n,d) also holds asymptotically
with high probability when we condition on S, i.e. for G(n,d). In what follows, by “d-regular
random graph”, we will mean the multigraph generated by the configuration model, unless mentioned
otherwise.
One useful property of the configuration model that we will make use of repeatedly is that the pairings
of the dn distinct points may be revealed sequentially. That is, given a vertex v, we may reveal the
pairings of its d copies one by one so that the distribution of pairings over the remaining unmatched
points remains uniform.
Notation: In the sequel, we will use f (n)= Θ̃(g(n)) to mean equality of the functions up to polynomial
factors in n. We will assume throughout that quantities of the form an,αn,γn,εn are integers. We use
“with high probability” to mean with probability going to 1 as n→ ∞. We will use σu to denote the
restriction of an independent set σ of the graph to a vertex u. Finally, the restriction of σ to a subset of
vertices S will be denoted by σ(S).

3.2. The first moment of the partition function. In this section, we calculate the first moment of
the partition function for the hardcore model on the d-regular random graph. For an independent set
σ ∈ I(G), let |σ| denote the number of vertices in I. For fugacity λ, the partition function is given by

ZG = ZG(λ) = ∑
σ∈I(G)

λ
|σ|.

Let 0≤ α≤ 1/2 and let ZG,α = ZG,α(λ) be the contribution to the partition function from independent
sets of size αn, i.e.

ZG,α := ∑
σ∈I(G):|σ|=αn

λ
αn, ZG = ∑

α

ZG,α.

The following approximation will be useful in simplifying the probabilities obtained in the sequel. Let
a > 0 be a constant. Then, by Stirling’s approximation,

an

∏
j=1

j = exp
(

n
∫ a

0
ln(x)dx+an ln(n)+O(lnn)

)
. (16)

Let

H(x) =−x ln(x)− (1− x) ln(1− x).
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Lemma 3.1. Let G∼H (n,d). Fix λ > 0 and 0≤ α≤ 1
2 . The first moment of ZG,α is given by

E(ZG,α) =

(
n

αn

)
λ

αn
αnd−1

∏
i=0

(1−α)nd− i
nd−1−2i

= Θ̃(1)exp(nΦ(α)) (17)

where

Φ(α) = Φ(α,λ) = H(α)+α ln(λ)+d
(
(1−α) ln(1−α)−

(
1−2α

2

)
ln(1−2α)

)
. (18)

Proof. The first equality follows by calculating the probability in the configuration model that a given
subset of αn vertices is an independent set, i.e. that the vertices in the subset are not matched to
vertices in the subset itself. The second equality follows by (16). �

For λ > 0, it can be verified that the maximum of Φ is achieved at α∗ = α∗(λ,d), which is the solution
to the equation

λ
1−α

α

(
1−2α

1−α

)d

= 1 (19)

which is obtained by differentiating Φ. To solve, if we were to set α = x/d, this would reduce roughly
to solving xex = λd and thus we obtain that

α
∗(λ,d) = (1+o(1))

ln(λd)
d

.

Notice that the relation (19) between α,λ and d is equivalent to (2).

3.3. The second moment of the partition function. To estimate the second moment E((ZG,α)
2), we

consider the contributions from pairs of independent sets S,T each of size αn. We divide this according
to the size of the overlap |S∩T |= γn and according to the number εn of edges of the graph which go
from each of S,T to the complement V \ (S∪T ). Call this contribution Z(2)

G,α,γ,ε. That is, for (α,γ,ε) in
the region

R =

{
(α,γ,ε) : 0≤ α,γ,ε≤ 1

2
, α− γ− ε≥ 0, 1−2α−2ε≥ 0

}
, (20)

we define

Z(2)
G,α,γ,ε :=

λ
2αn
∣∣∣{S,T ∈ I(G) : |S|= |T |= αn, |S∩T |= γn, |EG(S,V \ (S∪T ))|= |EG(T,V \ (S∪T ))|= εn

}∣∣∣
and

E((ZG,α)
2) = ∑

γ,ε

E
(

Z(2)
G,α,γ,ε

)
.
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Calculating the probability in the configuration model that a pair of subsets of vertices S and T as
above are both independent sets, we have that for G∼H (n,d),

E
(

Z(2)
G,α,γ,ε

)
= λ

2αn
(

n
αn

)(
αn
γn

)(
(1−α)n
(α− γ)n

)
γnd−1

∏
i=0

(1−2α+ γ)dn− i

γnd−1

∏
i=0

dn−1−2i

×

×


εdn−1

∏
i=0

((1−2α)dn− i) ·
(α−γ−ε)dn−1

∏
i=0

(α− γ)dn− i

(α−γ)dn−1

∏
i=0

((1−2γ)dn−1−2i)

·

εdn−1

∏
i=0

(1−2α− ε)dn− i

εdn−1

∏
i=0

(1−2α)dn−1−2i

 . (21)

The following function arises in the approximation of the expression in (21)

f (α,γ,ε) = 2α ln(λ)+H(α)+H1(γ,α)+H1(α− γ,1−α)+dΨ2(α,γ,ε)

where

H1(x,y) =−x(ln(x)− ln(y))+(x− y)(ln(y− x)− ln(y))

and

Ψ2(α,γ,ε) = H1(ε,α− γ)+
∫

γ

0
ln(1−2α+ γ− x)dx−

∫
γ

0
ln(1−2x)dx

+
∫

ε

0
ln(1−2α− x)dx+

∫
α−γ−ε

0
ln(α− γ− x)dx−

∫
α−γ

0
ln(1−2γ−2x)dx

+
∫

ε

0
ln(1−2α− ε− x)dx−

∫
ε

0
ln(1−2α−2x)dx.

In particular, in Section 6 we will show that the logarithm of E(Z(2)
G,α,γ,ε) scaled by n is well approxi-

mated by f , and for λ < λc, f decays quadratically around its maximum.

Proposition 3.2. Let G∼H (n,d) and 0≤ α≤ 1
2 . Then,

E
(

Z(2)
G,α,γ,ε

)
= exp(n f (α,γ,ε)+O(ln(n))) .

For any α, define γ̂= γ̂(α) :=α2 and ε̂= ε̂(α) :=α(1−2α). We will also use the shorthand γ∗ := γ̂(α∗)
and ε∗ := ε̂(α∗).

Proposition 3.3. Let λ < λc, and (α,γ,ε) ∈ R . Then, the function f (α,γ,ε) attains its maximum at
(α∗,γ∗,ε∗) and is strictly concave at this point. In particular for some C =C(d,λ),

f (α∗,γ∗,ε∗)− f (α,γ,ε)≥C(|α−α
∗|2 + |γ− γ

∗|2 + |ε− ε
∗|2).

Finally, the following second moment-type bound is also proved in Section 6.

Proposition 3.4. Let G∼H (n,d) and λ < λc. Then,

E((ZG)
2) = Θ̃(1)(E(ZG))

2.
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4. PARTITION FUNCTION OF A PUNCTURED RANDOM GRAPH

In this section we study the effect on the hardcore measure of a d-regular random graph of conditioning
on the spins of a small number of the vertices. In order to do this, we analyze the partition function
of a punctured graph G̃ obtained from a d-regular random graph G by deleting a small fraction of
vertices and their neighborhoods. Define the following quantities with respect to a graph G = (V,E).
Let d(u,v) = dG(u,v) denote the distance between two vertices u,v ∈V . For a vertex u ∈V and integer
r, the r-neighborhood of u, denoted Br(u) and its (vertex) boundary are defined as

Br(u) := {v ∈V : d(u,v)≤ r}, ∂Br(u) := Br(u)\Br−1(u).

Lemma 4.1. Let G = (V,E) ∼ H (n,d). Let S ⊂ V be a set of vertices with |S| = n3/5 and let r be
some large constant. Then, the expected number of u ∈ S such that the neighborhood Br(u) contains
another vertex in S is O(n1/5) and the probability of a neighbourhood with 3 vertices in S is O(n−1/5).
Furthermore, with high probability, for all u ∈ S the neighbourhood Br(u) is a tree.

Proof. The bounds on the number of vertices of S in a local neighbourhood follow from the indepen-
dence of the set S and the graph G and a union bound. The number of cycles of length at most 2r has
constant expected value which implies that with high probability the neighbourhoods of vertices in S
are trees. �

Let G = (V,E)∼H (n,d) and fix a large constant r. Let S⊂V be a uniformly chosen set of vertices
with |S|= n3/5. Let G̃=(Ṽ , Ẽ) be the graph obtained by deleting from V the set of vertices∪v∈SBr−1(v)
and any edges adjacent to these vertices. Define

B := G̃
⋂(⋃

u∈S

∂Br(u)

)
. (22)

Let

S′ = {s ∈ S : ∀s′ ∈ S\{s},Br(s)∩Br(s′) =∅,Br(s) is a tree} (23)

Let k = |S′|. Let s1, . . . ,sk be an arbitrary ordering of the elements of S′ and for 1 ≤ i ≤ k define
Wi := ∂Br(si). Define Wk+1 := B\∪k

i=1Wi.

Corollary 4.2. The vertices of B have degree d− 1 or d− 2 in G̃ with high probability. With high
probability, the number of vertices in G̃ of degree d−2 is O(n

1
5 ) and the number of vertices of degree

d−1 is n
3
5 (1−o(1))d(d−1)r. The size of S′, k = (1−o(1))n

3
5 with high probability.

Proof. Suppose a vertex v ∈ B is in ∂Br(u1)∩ ∂Br(u2) for some u1,u2. We know that with high
probability it is not in any third ∂Br(u3), otherwise there are 3 centers close together contradicting
Lemma 4.1. Therefore its degree in G̃ is at least d−2 since there are at most two vertices adjacent to
it in ∪v∈SBr−1(v). In the other case, v ∈ ∂Br(u) for a unique vertex u ∈ S and hence its degree in G̃ is
d−1. The bounds on the numbers of these vertices follow by Lemma 4.1 and applying the second
moment method. The bound on the size of k then follows immediately from Lemma 4.1. �

In what follows we will sometimes work in the conditional space of the configuration model where G
is such that the high probability conclusions of Lemma 4.1 and Corollary 4.2 hold for G̃. Since the
configuration model allows us to expose edges and maintain the uniform distribution over pairings
of the unmatched pairs, under the conditioning, G̃ is a graph chosen according to the configuration
model where the degrees of the vertices are modified appropriately, and we denote this set of graphs
by Ĥ (n,d). We use P̂ and Ê to denote the corresponding conditional expectation and probabilities.
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4.1. The First Moment of the Partition Function of G̃. Let B be the subset of vertices defined in
(22) and let σ ∈ {0,1}B. Define ZG,σ to be the partition function over independent sets of G whose
restriction to B is σ, i.e.,

ZG,σ := ∑
ω∈I(G):ω(B)=σ

λ
|ω|.

Similarly, define

ZG̃,σ := ∑
ω∈I(G̃):ω(B)=σ

λ
|ω|.

In this section, we will show that in expectation, for the boundary B as defined in (22) and any
σ ∈ {0,1}B, ZG̃,σ is essentially proportional to a product measure on B. Let m = |V (G̃)\B|. Define
ZG̃,α,σ to be the partition function for independent sets of G̃ whose restriction to B is σ ∈ {0,1}B and
for which α fraction of the vertices V (G̃)\B are in the independent set

ZG̃,α,σ := ∑
ω∈I(G̃):ω(B)=σ,∑v∈V\B ωv=αm

λ
|ω|.

Fix an independent set ω of G̃ whose restriction to B is σ such that ∑v∈V (G̃)\B ωv = αm. Let L = |σ| and
let Li be the number of vertices in σ of degree d− i for i = 1,2. Let Mi denote the number of vertices
of B of degree d− i for i = 1,2. We can calculate the expectation of the partition function as before
using the exploration process in the configuration model. Let N1 = (d−1)L1+(d−2)L2+dαm be the
number of half-edges adjacent to a vertex in the independent set. Let NT = (d−1)M1+(d−2)M2+dm
be the total number of half-edges overall. Calculating the probability that the pairing of the half edges
does not pair vertices which are in the independent set, we have

Ê
(
ZG̃,α,σ

)
= λ

L1+L2+αm
(

m
αm

)N1−1

∏
i=0

(NT −N1− i)

N1−1

∏
i=0

(NT −1−2i)

. (24)

In what follows, let G∼H (n,d) and let G̃ be defined as above. Recall that α∗ is given by the solution
to (19). Let σ0 denote the empty independent set on B.

Proposition 4.3. Fix λ > 0.

(1) For all σ ∈ {0,1}B, and 0≤ α≤ 1
2 ,

Ê
(
ZG̃,α,σ

)
Ê
(
ZG̃,α,σ0

) = exp
(

O(n
1
5 )
)(

λ

(
1−2α

1−α

)d−1
)|σB|

.

(2) Let α be such that |α−α∗|<Cn−
2
5 for a constant C > 0. Then,

Ê
(
ZG̃,α,σ

)
Ê
(
ZG̃,α,σ0

) = exp
(

O(n
1
5 )
)

χ(σ)

where

χ(σ) =

(
λ

(
1−2α∗

1−α∗

)d−1
)|σ|

.
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Proof. We compare the formula (24) for σ and σ0. Let N′1,N
′
T be the corresponding quantities for

σ0 as defined before. Note that for i = 1,2, L′i = 0 and N′T = NT . Comparing the numerators and
denominators of the fraction in (24) we obtain that

Ê(ZG̃,α,σ)

Ê(ZG̃,α,σ0
)
= λ

L1+L2

N1−N′1−1

∏
i=0

(NT −2N′1−2i)

N1−N′1−1

∏
i=0

(NT −N′1− i)

= λ
L1+L2

(
1−2α

1−α

)N1−N′1
×

×

N1−N′1−1

∏
i=0

(
1+

1
(1−2α)dm

((d−1)M1 +(d−2)M2−2i)
)

N1−N′1−1

∏
i=0

(
1+

1
(1−α)dm

((d−1)M1 +(d−2)M2− i)
)

= λ
L1+L2

(
1−2α

1−α

)N1−N′1
exp

(
O

(
(N1−N′1)n

3
5 )

dm

))
,

where the last line follows since M1 ≤ O(n
3
5 ) and M2 ≤ O(n

1
5 ). Since N1−N′1 = (d− 1)L1 +(d−

2)L2 ≤ O(n
3
5 ) and m = n(1−o(1)), we obtain that

Ê
(
ZG̃,α,σ

)
Ê
(
ZG̃,α,σ0

) = λ
L1+L2 exp

(
O(n

1
5 )
)(1−2α

1−α

)(d−1)L1+(d−2)L2

= exp
(

O(n
1
5 )
)(

λ

(
1−2α

1−α

)d−1
)|σ|(

1−2α

1−α

)−L2

= exp
(

O(n
1
5 )
)(

λ

(
1−2α

1−α

)d−1
)|σ|

.

The last bound follows since L2≤O(n
1
5 ) by the assumed conditioning, giving part (1) of the proposition.

Finally, by the assumption that |α−α∗| ≤Cn−
2
5 the last expression above can be bounded by

= exp
(

O(n
1
5 )
)(

λ

(
1−2α∗

1−α∗

)d−1
)|σ|

,

completing part (2) of the proposition. �

Proposition 4.4. For all σ ∈ {0,1}B, and for large enough constant C =C(λ,d),

Ê(ZG̃,σ) = (1−o(1)) ∑
α:|α−α∗|≤Cn−

2
5

Ê(ZG̃,α,σ).

Corollary 4.5. For any σ ∈ {0,1}B,

Ê(ZG̃,σ) = exp
(

O(n
1
5 )
)

χ(σB)Ê(ZG̃,σ0
).

Proof. The claim follows by putting together part (2) of Proposition 4.3 and Proposition 4.4. In
particular, taking C to be large enough as in Proposition 4.4,

Ê(ZG̃,σ) = (1−o(1)) ∑
α:|α−α∗|≤Cn−

2
5

Ê(ZG̃,α,σ) = exp
(

O(n
1
5 )
)

χ(σ) ∑
α:|α−α∗|≤Cn−

2
5

Ê(ZG̃,σ0
)

= exp
(

O(n
1
5 )
)

χ(σ)Ê(ZG̃,σ0
).
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�

To prove Proposition 4.4, we need a few intermediate results. Let Gm ∼H (m,d) where m = |V (G̃)\B|,
as defined above. Define the partition functions ZGm,α and Z(2)

Gm,α,γ,ε
as ZG,α and Z(2)

G,α,γ,ε were defined
respectively, with G = Gm.

Lemma 4.6. For any 0≤ α≤ 1
2 ,

Ê(ZG̃,α,σ0
)

Ê(ZG̃,α∗,σ0
)
=

E(ZGm,α)

E(ZGm,α∗)
exp
(

O(n
3
5 |α−α

∗|)
)
.

Proof. Let N1 and NT be defined as in (24). Define N∗1 and N∗T analogously for α∗. Note that for the
configuration σ0, Li = 0 for i = 1,2 and NT = N∗T . Comparing the expressions in (24) and (17), we
have that

Ê(ZG̃,α,σ0
)

Ê(ZG̃,α∗,σ0
)
=

E(ZGm,α)

E(ZGm,α∗)
×

dαm−1

∏
i=0

dm−2i−1
dm+(d−1)M1 +(d−2)M2−2i−1

dα∗m−1

∏
i=0

dm−2i−1
dm+(d−1)M1 +(d−2)M2−2i−1

×

×

dαm−1

∏
i=0

(1−α)dm+(d−1)M1 +(d−2)M2− i
(1−α)dm− i

dα∗m−1

∏
i=0

(1−α∗)dm+(d−1)M1 +(d−2)M2− i
(1−α∗)dm− i

=
E(ZGm,α)

E(ZGm,α∗)
exp
(

O(n
3
5 |α−α

∗|)
)

where the last line follows by the bounds on m and Mi for i = 1,2. �

Lemma 4.7. For 0≤ α≤ 1
2 , there is a constant C =C(λ,d)> 0 such that

E(ZGm,α)

E(ZGm,α∗)
= Θ̃(1)exp

(
−Cn|α−α

∗|2
)
.

Proof. Recall the expression (18) for Φ(α). Writing the Taylor expansion for Φ(α) around α∗ and
noting that Φ′(α∗) = 0, we have

Φ(α)−Φ(α∗) =
∂Φ(α∗)

∂α
|α−α

∗|+ 1
2

∂2Φ(α∗)

∂α2 |α−α
∗|2 +o

(
|α−α

∗|2
)

=−
(

1
α∗(1−α∗)

+
d

(1−α∗)(1−2α∗)

)
|α−α

∗|2 +o
(
|α−α

∗|2
)

and therefore

E(ZGm,α)

E(ZGm,α∗)
= Θ̃(1)exp(m(Φ(α)−Φ(α∗))) = Θ̃(1)exp

(
−Cn|α−α

∗|2
)
.

�
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Proof of Proposition 4.4. Combining part (1) of Proposition 4.3, Lemma 4.6 and Lemma 4.7, we have
that for any 0≤ α≤ 1

2 ,

Ê(ZG̃,α,σ)

Ê(ZG̃,α∗,σB
)
=

Ê(ZG̃,α,σ)

Ê(ZG̃,α,σ0
)
·
Ê(ZG̃,α,σ0

)

Ê(ZG̃,α∗,σ0
)
·
Ê(ZG̃,α∗,σ0

)

Ê(ZG̃,α∗,σB
)

= exp
(

O
(

n
1
5 −Cn|α−α

∗|2 +n
3
5 |α−α

∗|
))

When |α−α∗|>Cn−
2
5 , for a large enough constant C =C(λ,d), the second term in the parenthesis

above dominates and right hand side can be made arbitrarily small. Therefore

Ê(ZG̃,σ) = ∑
α:|α−α∗|>Cn−2/5

Ê(ZG̃,α,σ)+ ∑
α:|α−α∗|≤Cn−2/5

Ê(ZG̃,α,σ)

= (1−o(1)) ∑
α:|α−α∗|≤Cn−2/5

Ê(ZG̃,α,σ).

�

4.2. The Second Moment of the Partition Function of G̃. As before, we divide the second moment
E((ZG̃,α,σ)

2) into the contribution from pairs of independent sets S and T of G̃ whose restriction to B
is σ, ∑v∈V\B Sv = ∑v∈V\B Tv = αm and |(S∩T )\B|= γm. We can further divide according the number
εdm of half-edges which are paired from each of S and T to V (G̃)\ (S∪T ). Denote this contribution
by Z(2)

G̃,α,γ,ε,σ
. Thus, we can write

E
(
(ZG̃,α,σ)

2)= ∑
γ,ε

E
(

Z(2)
G̃,α,γ,ε,σ

)
.

As before, let L denote |σ| with Li denoting the numbers of vertices of B in the independent set of
degrees d− i for i = 1,2. Define Mi as before and let Ki = Mi−Li. Calculating the probability in the
configuration model that a pair of subsets S and T as above are independent sets we obtain

Ê
(

Z(2)
G̃,α,γ,ε,σ

)
= λ

2αm+2(L1+L2)

(
m

αm

)(
αm
γm

)(
(1−α)m
(α− γ)m

)
×

×


γmd+(d−1)L1+(d−2)L2−1

∏
i=0

(1−2α+ γ)dm+(d−1)K1 +(d−2)K2− i

γmd+(d−1)L1+(d−2)L2−1

∏
i=0

dm+(d−1)M1 +(d−2)M2−1−2i

×

×


εdm−1

∏
i=0

(1−2α)dm+(d−1)K1 +(d−2)K2− i ·
(α−γ−ε)dm−1

∏
i=0

(α− γ)dm− i

(α−γ)dm−1

∏
i=0

(1−2γ)dm+(d−1)K1 +(d−2)K2−1−2i

×

×

εdm−1

∏
i=0

(1−2α− ε)dm+(d−1)K1 +(d−2)K2− i

εdm−1

∏
i=0

(1−2α)dm+(d−1)K1 +(d−2)K2−1−2i

 . (25)
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In the main result of this section, we show in Proposition 4.15, that the second moment Ê
(
(ZG,σ)

2
)

is
roughly the square of the first moment Ê(ZG,σ) by an analysis similar to that in [28, Theorem 6.11]
and [33, Lemma 3.5]. We begin with a series of intermediate results that are needed for the proof.

Proposition 4.8. Let (α,γ,ε) ∈ R . Then, for any σ ∈ {0,1}B,

Ê
(

Z(2)
G̃,α,γ,ε,σ

)
≤ exp

(
O
(

n
1
5

))
Ê
(

Z(2)
G̃,α∗,γ∗,ε∗,σ

)
.

To prove Proposition 4.8, we need a few intermediate lemmas.

Lemma 4.9. Let (α,γ,ε) ∈ R . Then, for some C =C(λ,d)> 0

Ê(Z(2)
G̃,α,γ,ε,σ0

)

Ê(Z(2)
G̃,α∗,γ∗,ε∗,σ0

)
≤ exp

(
−Cn

(
|α−α

∗|2 + |γ− γ
∗|2 + |ε− ε

∗|2
)
+O

(
n

3
5 (|α−α

∗|+ |γ− γ
∗|+ |ε− ε

∗|)
))

.

Proof. For the configuration σ0, for i = 1,2, Li = 0 and Ki = Mi. Comparing the expressions (21) and
(25), we obtain that for Gm ∼H (m,d),

Ê(Z(2)
G̃,α,γ,ε,σ0

)

Ê(Z(2)
G̃,α∗,γ∗,ε∗,σ0

)

=
E(Z(2)

Gm,α,γ,ε
)

E(Z(2)
Gm,α∗,γ∗,ε∗

)
×

γmd−1

∏
i=0

(1−2α+ γ)dm+(d−1)M1 +(d−2)M2− i
(1−2α+ γ)dm− i

γ∗md−1

∏
i=0

(1−2α∗+ γ∗)dm+(d−1)M1 +(d−2)M2− i
(1−2α∗+ γ∗)dm− i

×

×

γ∗md−1

∏
i=0

dm+(d−1)M1 +(d−2)M2−1−2i
dm−1−2i

γmd−1

∏
i=0

dm+(d−1)M1 +(d−2)M2−1−2i
dm−1−2i

×

εmd−1

∏
i=0

(1−2α)dm+(d−1)M1 +(d−2)M2− i
(1−2α+ γ)dm− i

ε∗md−1

∏
i=0

(1−2α∗)dm+(d−1)M1 +(d−2)M2− i
(1−2α∗)dm− i

×

×

(α∗−γ∗)md−1

∏
i=0

(1−2γ∗)dm+(d−1)M1 +(d−2)M2−1−2i
(1−2γ∗)dm−1−2i

(α−γ)md−1

∏
i=0

(1−2γ)dm+(d−1)M1 +(d−2)M2−1−2i
(1−2γ)dm−1−2i

×

×

εmd−1

∏
i=0

(1−2α− ε)dm+(d−1)M1 +(d−2)M2− i
(1−2α− ε)dm− i

ε∗md−1

∏
i=0

(1−2α∗− ε∗)dm+(d−1)M1 +(d−2)M2− i
(1−2α∗− ε∗)dm− i

×

×

ε∗md−1

∏
i=0

(1−2α∗)dm+(d−1)M1 +(d−2)M2−1−2i
(1−2α∗)dm−1−2i

εmd−1

∏
i=0

(1−2α)dm+(d−1)M1 +(d−2)M2−1−2i
(1−2α)dm−1−2i

= exp(m( f (α,γ,ε)− f (α∗,γ∗,ε∗))+O(ln(m)))exp
(

O
(

n
3
5 (|α−α

∗|+ |γ− γ
∗|+ |ε− ε

∗|)
))
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The final equality follows by Proposition 3.2 and the bounds on the sizes of m,M1 and M2 by the
assumed conditioning. By Proposition 3.3, we have that for some constant C, possibly depending on d
and λ,

f (α,γ,ε)− f (α∗,γ∗,ε∗)≤−C
(
|α−α

∗|2 + |γ− γ
∗|2 + |ε− ε

∗|2
)
.

Therefore, we obtain that

Ê(Z(2)
G̃,α,γ,ε,σ0

)

Ê(Z(2)
G̃,α∗,γ∗,ε∗,σ0

)
≤ exp

(
−Cn

(
|α−α

∗|2 + |γ− γ
∗|2 + |ε− ε

∗|2
)
+O

(
n

3
5 (|α−α

∗|+ |γ− γ
∗|+ |ε− ε

∗|)
))

.

�

Lemma 4.10. Let (α,γ,ε) ∈ R . For any σ ∈ {0,1}B,

Ê(Z(2)
G̃,α,γ,ε,σ

)

Ê(Z(2)
G̃,α,γ,ε,σ0

)
= (χ(σ))2 exp

(
O
(
|α−α

∗|+ |γ− γ
∗|+ |ε− ε

∗|)n
3
5 +n

1
5

))
.

Proof. Using the expression (25) for each of E(Z(2)
G̃,α,γ,ε,σ0

) and E(Z(2)
G̃,α,γ,ε,σ

) and taking ratios of the
numerators and denominators separately for each of the products, we have

Ê(Z(2)
G̃,α,γ,ε,σ

)

Ê(Z(2)
G̃,α,γ,ε,σ0

)
= λ

2|σ| exp
(

O(n
1
5 )
)
×

×

(
(1−2α)2

(1−2α+ γ)(1−2γ)1/2

(1−2α− ε)

(1−2α)

(1−2γ)1/2

(1−2α)1/2

(1−2α−2ε)

(1−2α− ε)

(1−2α)1/2

(1−2α−2ε)1/2

)(d−1)L1+(d−2)L2

= λ
2|σ| exp

(
O(n

1
5 )
)
·

(
(1−2α)(1−2α−2ε)1/2

(1−2α+ γ)

)(d−1)L1+(d−2)L2

= λ
2|σ| exp

(
O
(

n
1
5 +n

3
5 (|α−α

∗|− |γ− γ
∗|+ |ε− ε

∗|)
))((1−2α∗)(1−2α∗−2ε∗)1/2

(1−2α∗+ γ∗)

)(d−1)L1+(d−2)L2

Since γ∗ = (α∗)2, ε∗ = α∗(1−2α∗) and |σ|= L1 +L2, the last line gives that

Ê(Z(2)
G̃,α,γ,ε,σ

)

Ê(Z(2)
G̃,α,γ,ε,σ0

)
=

(
λ

(
1−2α∗

1−α∗

)d−1
)2|σ|

exp
(

O
(
|α−α

∗|+ |γ− γ
∗|+ |ε− ε

∗|)n
3
5 +n

1
5

))
and the lemma follows. �

Putting these results together we now prove Proposition 4.8.

Proof of Proposition 4.8. Let σ ∈ {0,1}B and write

Ê
(

Z(2)
G̃,α,γ,ε,σ

)
Ê
(

Z(2)
G̃,α∗,γ∗,ε∗,σ

) =
Ê
(

Z(2)
G̃,α,γ,ε,σ

)
Ê
(

Z(2)
G̃,α,γ,ε,σ0

) Ê
(

Z(2)
G̃,α,γ,ε,σ0

)
Ê
(

Z(2)
G̃,α∗,γ∗,ε∗,σ0

) Ê
(

Z(2)
G̃,α∗,γ∗,ε∗,σ0

)
Ê
(

Z(2)
G̃,α∗,γ∗,ε∗,σ

) .
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Applying Lemmas 4.9 and 4.10 to the terms in the product above, we have that

Ê
(

Z(2)
G̃,α,γ,ε,σ

)
Ê
(

Z(2)
G̃,α∗,γ∗,ε∗,σ

) ≤
≤ exp

(
O
(

n
3
5 (|α−α

∗|+ |γ− γ
∗|+ |ε− ε

∗|)+n
1
5

)
−Cn

(
|α−α

∗|2 + |γ− γ
∗|2 + |ε− ε

∗|2
))

. (26)

For a constant C, define the set

RC =
{
(α,γ,ε) ∈ R s.t. |α−α

∗|, |γ− γ
∗|, |ε− ε

∗| ≤Cn−
2
5

}
.

Note that for some sufficiently large C, if (α,γ,ε) ∈ RC, the the right-hand side of (26) can be bounded
by exp

(
O(n

1
5 )
)

. On the other hand, if (α,γ,ε) 6∈ RC for any constant C, then the right-hand side of
(26) can be made arbitraily small and therefore, for any (α,γ,ε) ∈ R and σ

Ê
(

Z(2)
G̃,α,γ,ε,σ

)
≤ exp

(
O(n

1
5 )
)
Ê
(

Z(2)
G̃,α∗,γ∗,ε∗,σ

)
.

�

Proposition 4.11. For any σ ∈ {0,1}B,

Ê
(

Z2
G̃,σ

)
≤ exp

(
O(n

1
5 )
)
(χ(σ))2 Ê

(
Z2

G̃,σ0

)
.

Proof. Applying the Cauchy-Schwarz inequality, Proposition 4.8 and Lemma 4.10, we have

Ê
(

Z2
G̃,σ

)
= Ê

((
∑
α

ZG̃,α,σ

)2
)

= Θ̃(1)∑
α

Ê
(

Z2
G̃,α,σ

)
= Θ̃(1) ∑

α,γ,ε

Ê
(

Z(2)
G̃,α,γ,ε,σ

)
≤

≤ exp
(

O(n
1
5 )
)
Ê
(

Z(2)
G̃,α∗,γ∗,ε∗,σ

)
= exp

(
O(n

1
5 )
)
(χ(σ))2 Ê

(
Z(2)

G̃,α∗,γ∗,ε∗,σ0

)
≤

≤ exp
(

O(n
1
5 )
)
(χ(σ))2

∑
α,γ,ε

Ê
(

Z(2)
G̃,α,γ,ε,σ0

)
= exp

(
O(n

1
5 )
)
(χ(σ))2

∑
α

Ê
(

Z2
G̃,α,σ0

)
≤

≤ exp
(

O(n
1
5 )
)
(χ(σ))2 Ê

((
∑
α

ZG̃,α,σ0

)2
)

= exp
(

O(n
1
5 )
)
(χ(σ))2 Ê

(
Z2

G̃,σ0

)
.

�

The next step is to show a bound on the second moment of ZG̃,σ0
by the square of the first moment,

and we begin with the following intermediate result.

Lemma 4.12.

Ê
(

Z(2)
G̃,α∗,γ∗,ε∗,σ0

)
= exp

(
O(n

1
5 )
)(

Ê(ZG̃,α∗,σ0
)
)2
.

Proof. As before, we note that for the configuration σ0, for i = 1,2, Li−0 and Ki = Mi. Comparing
the expressions (21) and (25) we obtain that
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Ê
(

Z(2)
G̃,α∗,γ∗,ε∗,σ0

)
E
(

Z(2)
Gm,α∗,γ∗,ε∗

) = exp
(

O(n
1
5 )
)
×

×

(
(1−2α∗+ γ∗)(1−2γ∗)

1
2

(1−2α∗)

(1−2α∗)(1−2α∗)
1
2

(1−2α∗− ε∗)(1−2γ∗)
1
2

(1−2α∗)(1−2α∗− ε∗)
1
2

(1−2α∗−2ε∗)(1−2α∗)
1
2

)(d−1)K1+(d−2)K2

= exp
(

O(n
1
5 )
)((1−α∗)2

1−2α∗

)(d−1)K1+(d−2)K2

(27)

where the last equality follows by canceling terms and using the fact that γ∗ = (α∗)2 and ε∗ =
α∗(1−2α∗). Similarly, comparing (17) and (24), we obtain that

Ê(ZG̃,α∗,σ0
)

E(ZGm,α∗)
= exp

(
O(n

1
5 )
)( 1−α∗

(1−2α∗)
1
2

)(d−1)K1+(d−2)K2

. (28)

Combining Proposition 3.2, Lemma 3.1 and Lemma 6.2, we have that

Ê
(

Z(2)
Gm,α∗,γ∗,ε∗

)
(
Ê(ZGm,α∗)

)2 = exp
(

O(n
1
5 )
) exp(m f (α∗,γ∗,ε∗)+O(lnm))

exp(2nΦ(α∗))
= exp

(
O(n

1
5 )
)
. (29)

Finally, putting together (27), (28) and (29) proves the lemma.
�

Proposition 4.13.

Ê
(

Z2
G̃,σ0

)
≤ exp

(
O(n

1
5 )
)(

Ê
(
ZG̃,σ0

))2

Proof. Applying the Cauchy-Schwartz inequality, we have

Ê
(

Z2
G̃,σ0

)
= Ê

((
∑
α

ZG̃,α,σ0

)2
)
≤ Θ̃(1)∑

α

Ê
(

Z2
G̃,α,σ0

)
= Θ̃(1) ∑

α,γ,ε

Ê
(

Z(2)
G̃,α,γ,ε,σ0

)
≤

≤ exp
(

O(n
1
5 )
)
Ê
(

Z(2)
G̃,α∗,γ∗,ε∗,σ0

)
≤ exp

(
O(n

1
5 )
)(

Ê
(
ZG̃,α∗,σ0

))2 ≤

≤ exp
(

O(n
1
5 )
)(

Ê
(
ZG̃,σ0

))2

where the second inequality is by Proposition 4.8 and the third inequality is by Lemma 4.12. �

Define ZG,α,σ to be the partition function over independent sets of G whose restriction to B is σ and for
which α fraction of the vertices in V (G̃)\B are in the independent set. That is,

ZG,α,σ := ∑
ω∈I(G):ω(B)=σ,∑v∈V (G̃)\B ωv=αm

λ
|ω|.

Lemma 4.14. For any σ ∈ {0,1}B and 0≤ α < 1
2 , the partition functions for G and G̃ can be related

by
ZG,σ = κ(σ)ZG̃,σ

and
ZG,α,σ = κ(σ)ZG̃,α,σ
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where κ(σ) is a constant depending only on the configuration σ and has a product structure

κ(σ) =
k+1

∏
i=1

κi(σ(Wi)).

and κi = κ j for 1≤ i, j ≤ k.

Proof. By the Markov property. �

Putting these results together, we obtain the following.

Proposition 4.15. For any σ ∈ {0,1}B,

Ê((ZG,σ)
2)≤ exp(O(n

1
5 ))(Ê(ZG,σ))

2.

Proof.

Ê((ZG,σ)
2) = Ê((ZG̃,σ)

2(κ(σ))2) (by Lemma 4.14)

≤ exp
(

O(n
1
5 )
)
Ê((ZG̃,σ0

)2(χ(σ)κ(σ))2) (by Proposition 4.11 )

≤ exp
(

O(n
1
5 )
)
(Ê(ZG̃,σ0

χ(σ)κ(σ)))2 (by Proposition 4.13)

≤ exp
(

O(n
1
5 )
)
(Ê(ZG,σ))

2. (by Corollary 4.5 and Lemma 4.14)

�

5. LOCAL WEAK CONVERGENCE TO THE FREE MEASURE ON THE TREE

The first result in this section shows that there does not exist a “bad set” of neighborhoods with large
stationary probability where the partition function is much larger than the expected partition function.
In the sequel, we will show that if on a constant fraction of the n

3
5 random neighborhoods, the local

measure is far from the free measure on the tree, then such a bad set exists with high probability.

Proposition 5.1. Let c > 0 and suppose that G∼ Ĥ (n,d). The probability that there exists a set of
independent set configurations B ⊂ {0,1}B such that

E1(B) :=

{
∑

σ∈B
ZG,σ > exp

(
cn

3
5

)
∑

σ∈B
Ê(ZG,σ)

}
(30)

and

E2(B) :=

{
∑

σ∈B
ZG,σ > exp

(
−n

4
7

)
Ê(ZG)

}
(31)

is at most exp
(
−n

3
5 (c−o(1))

)
.

The choice of 4
7 could be replaced with any constant less than 3

5 and greater than 1
2 .

Proof. Suppose that there is a set B of boundary configurations such that E1(B) and E2(B) hold.
Define the set of configurations

D :=
{

σ ∈ B : ZG,σ >
1
3

exp
(

cn
3
5

)
Ê(ZG,σ)

}
.
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Suppose it was the case that

∑
σ∈B\D

ZG,σ >
1
2 ∑

σ∈B
ZG,σ.

Then,

1
3

exp
(

cn
3
5

)
∑

σ∈B\D
Ê(ZG,σ)> ∑

σ∈B\D
ZG,σ >

1
2 ∑

σ∈B
ZG,σ.

This contradicts (30) (that E1(B) holds) and thus we may assume that

∑
σ∈D

ZG,σ >
1
2 ∑

σ∈B
ZG,σ.

Therefore, by (31) (that E2(B) holds) we have

∑
σ∈D

ZG,σ >
1
2 ∑

σ∈B
ZG,σ >

1
2

exp
(
−n

4
7

)
∑

σ∈{0,1}B

Ê(ZG,σ) . (32)

By (32), and Markov’s inequality,

P̂(∃B s.t. E1(B)∩E2(B))≤ P̂

(
∑

σ∈D
ZG,σ >

1
2

exp
(
−n

4
7

)
∑

σ∈{0,1}B

Ê(Zσ)

)
≤

2Ê

(
∑

σ∈D
ZG,σ

)
exp
(
−n

4
7

)
∑

σ∈{0,1}B

Ê(Zσ)
.

(33)

By the definition of D and Proposition 4.15 we have

Ê

(
∑

σ∈D
ZG,σ

)
< 3exp

(
−cn

3
5

)
∑

σ∈D
Ê

(
ZG,σ

ZG,σ

Ê(ZG,σ)

)
≤ 3exp

(
−cn

3
5

)
∑

σ∈{0,1}B

Ê

(
ZG,σ

ZG,σ

Ê(ZG,σ)

)
≤

≤ exp
(
−cn

3
5

)
exp
(

O(n
1
5 )
)

∑
σ∈{0,1}B

Ê(ZG,σ) . (34)

Putting together (33) and (34), we obtain that

P̂(∃B s.t. E1(B)∩E2(B))≤ exp
(
−n

3
5 (c−o(1))

)
,

which completes the proof of Proposition 5.1. �

Recall the definition of the set of vertices S′ from (23) and recall that for each si ∈ S′, Wi is the set of
vertices on the boundary ∂Br(si) and |S′|= k. Fix 1≤ i≤ |S′|. Let T1, . . . ,T|Wi| be (d−1)-ary trees and
let T̃ be their union. Let PT̃ be the product of the free measures on the trees. Let us identify the roots
u(i) = {u1, . . . ,u|Wi|} of these trees with the vertices of Wi. Let T be the tree obtained by joining to T̃ a
d-ary tree of depth r whose leaves are identified with the ui.

Lemma 5.2. Define the distribution ν on {0,1}B by

ν(A) :=
∑
σ∈A

χ(σ)κ(σ)

∑
σ∈{0,1}B

χ(σ)κ(σ)
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If σ∼ ν, then for each 1≤ i≤ k, the σ(Wi) are independent and

ν(σ(Wi) ∈ ·) = PT (σ(u(i)) ∈ ·) = PTd (Br(ρ) ∈ ·). (35)

Proof. By relating the occupation probability of the root for the free measure for the d-regular tree and
the occupation probability of the root of the free measure on the (d−1)-ary tree, it can be verified that

PT̃ (σ(Wi) = ω) ∝ χ(ω).

By the Markov property,
PT (σ(Wi) = ω) ∝ χ(ω)κ(ω).

Therefore

ν(σ(Wi) = ω) = PT (σ(u(i)) = ω) (36)

and (35) follows. �

Let PGn denote the hardcore measure on the random d-regular graph of size n. Recall that we have
local weak convergence to the free measure if for all all r, with high probability over a uniformly
chosen vertex u, for ε > 0, as n→ ∞,

P(dtv(PGn(σ(Br(u)) ∈ ·),PTd (σ(Br(ρ)) ∈ ·)> ε))→ 0. (37)

The following lemma will be used in the next result.

Lemma 5.3. Let I be an index set, (Xi)i∈I random variables and (ai)i∈I constants. Suppose that for
each i,

P(Xi < ai)≤ ε

for some ε > 0. Then,

P

(
∑
i∈I

Xi <
1
2 ∑

i∈I
ai

)
≤ 2ε.

Proof. We show first that

∑
i

Xi <
1
2 ∑

i
ai ⇒ ∑

i
ai1Xi>ai <

1
2 ∑

i
ai ⇔ ∑

i
ai1Xi≤ai ≥

1
2 ∑

i
ai.

The equivalence above is immediate and the first implication can be seen as follows:
1
2 ∑

i
ai > ∑

i
Xi ≥∑

i
Xi1Xi>ai ≥∑

i
ai1Xi>ai .

Applying Markov’s inequality, we have

P

(
∑

i
Xi <

1
2 ∑

i
ai

)
≤ P

(
∑

i
ai1Xi≤ai ≥

1
2 ∑

i
ai

)
≤ 2ε.

�

We will show the following result which in turn implies (37), since with high probability k = (1−
o(1))n3/5.

Theorem 5.4. Let G∼H (n,d). Let ω be an independent set drawn according to the hardcore measure
on G. For any ε > 0,

|{1≤ i≤ k : dtv(PGn(ω(Wi)) ∈ ·),PTd (Br(ρ) ∈ ·))> ε}|
k

P→ 0 , (38)

as n→ ∞.
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Proof. Let E be the event that the left hand side of (38) is at least δ > 0. If E occurs, then by the
definition of total variation distance, there exists a set J of indices of size δk and Ai ∈ {0,1}Wi for i ∈ J
such that

PG (ω(Wi) ∈ Ai)−PT (ω(u(i)) ∈ Ai)> ε ∀i ∈ J.

This implies

E

(
∑
i∈J
1(ω(Wi) ∈ Ai)

)
−∑

i∈J
PT (ω(u(i)) ∈ Ai)≥ εδk. (39)

Using the fact that ∑
i∈J
1(ω(Wi) ∈ Ai)≤ δk, we obtain that

E

(
∑
i∈J
1(ω(Wi) ∈ Ai)

)
−∑

i∈J
PT (ω(u(i)) ∈ Ai)≤

≤ εδn
3
5

2
+δkP

(
∑
i∈J
1(ω(Wi) ∈ Ai)>

εδn
3
5

2
+∑

i∈J
PT (ω(u(i)) ∈ Ai)

)
. (40)

Combining (39) and (40) and using the fact that k ≥ (1−o(1))n
3
5 , we get

P

(
∑
i∈J
1(ω(Wi) ∈ Ai)>

εδn
3
5

2
+∑

i∈J
PT (ω(u(i)) ∈ Ai)

)
≥ ε

3
. (41)

Define the set of configurations

B :=

{
σ ∈ {0,1}∪iWi s.t. ∑

i∈J
1(σ ∈ Ai)>

εδn
3
5

2
+∑

i∈J
PT (σ ∈ Ai)

}
.

By (41), on the event E

∑
σ∈B

ZG,σ ≥
ε

3
ZG. (42)

In particular, (42) holds when G∼ Ĥ (n,d). By Proposition 4.15, for any σ∈ {0,1}B and G∼ Ĥ (n,d),

Ê(Z2
G,σ)

(Ê(ZG,σ))2
≤ exp

(
O(n

1
5 )
)
,

so that by the Paley-Zygmund inequality,

P̂
(

ZG,σ >
1
2
Ê(ZG,σ)

)
≥ exp

(
−O(n

1
5 )
)
.

Indeed, by Markov’s inequality, it follows that for any κ > 0

P̂

(
ZG,σ ∈

[
Ê(ZG,σ)

2
,enκ

Ê(ZG,σ)

])
≥ exp

(
−O(n

1
5 )
)
. (43)

On the other hand, by Azuma’s inequality, for all κ > 0,

P̂
(
| lnZG,σ− Ê(lnZG,σ)| ≥ n

1
2+κ

)
≤ exp

(
−n1+2κ

2ndλ

)
≤ exp(−n2κ). (44)

Together, (43) and (44) imply that the interval

[ln(Ê(ZG,σ)− ln2,nκ + ln Ê(ZG,σ)]∩ [Ê(logZG,σ)−n1/2+κ, Ê(logZG,σ)+n1/2+κ]
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is non-empty and hence

|Ê(lnZG,σ)− ln(Ê(ZG,σ))| ≤ 2n
1
2+κ.

Plugging this into (44), we obtain that for each fixed σ,

P̂
(

ZG,σ ≥ exp
(
−O(n

1
2+κ)

)
Ê(ZG,σ)

)
≥ 1− exp(−n2κ).

By Lemma 5.3,

P̂

(
∑

σ∈B
ZG,σ ≥ exp

(
−O(n

1
2+κ)

)
∑

σ∈B
Ê(ZG,σ)

)
≥ 1−2exp(−n2κ)

and combining with (42), we have that

P̂

(
∑

σ∈B
ZG,σ ≥ exp

(
−O(n

1
2+κ)

)
Ê(ZG)

)
≥ 1−2exp(−n2κ).

That is, we have shown that the event E2(B), as defined in Proposition 5.1 holds with high probability
on the event E . By Corollary 4.5 and Lemma 4.14 for each σ ∈ B , we have

Ê(ZG,σ) = exp
(

O(n
1
5 )
)

χ(σ)κ(σ)Ê(ZG,σ0).

Summing this over all possible σ, we have

Ê(ZG) = ∑
σ∈{0,1}B

exp
(

O(n
1
5 )
)

χ(σ)κ(σ)Ê(ZG,σ0),

and comparing these two equalities, we obtain that

∑
σ∈B

Ê(ZG,σ) = exp
(

O(n
1
5 )
) ∑

σ∈B
χ(σ)κ(σ)

∑
σ∈{0,1}B

χ(σ)κ(σ)
Ê(ZG) = exp

(
O(n

1
5 )
)

ν(B)Ê(ZG). (45)

By Lemma 5.2 and Azuma-Hoeffding,

ν(B) = ν

(
∑
i∈J
1(σ ∈ Ai)>

εδn
3
5

2
+∑

i∈J
PT (σ ∈ Ai)

)

= ν

(
∑
i∈J
1(σ ∈ Ai)−ν

(
∑
i∈J
1(σ ∈ Ai)

)
>

εδn
3
5

2

)
≤ exp

(
−cn

3
5

)
.

Combining the above bound with (45), we obtain that

∑
σ∈B

Ê(ZG,σ)≤ exp
(
−cn

3
5

)
Ê(ZG). (46)

Using (46), we have that if E and E2(B) hold, then

∑
σ∈B

ZG,σ > exp
(
−O(n

1
2+κ)

)
Ê(ZG)≥ exp

(
cn

3
5

)
Ê

(
∑

σ∈B
ZG,σ

)
,

and therefore, the event E1(B) as defined in Proposition 5.1 holds. Therefore, on the event {E ∩
E2(B)}, E1(B) holds with probability at least 1−2exp(−n2κ).
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To summarise, we have shown that on the event E , the event {E1(B)∩E2(B)} holds with high
probability. Applying Proposition 5.1,

exp(−cn
3
5 )≥ P̂(E1(B)∩E2(B))≥ P̂(E1(B)∩E2(B)|E)P̂(E)≥ (1−o(1))P̂(E).

Thus, P̂(E)→ 0 as n→ ∞. Since G ∼ Ĥ (n,d) with high probability, P(E)→ 0 as n→ ∞ and the
claim follows. �

Theorem 5.4 implies (37), which establishes local weak convergence to the free measure, proving
Theorem 1. Given local weak convergence, the equivalence of the reconstruction thresholds and hence
Theorem 3, follow.

6. TECHNICAL LEMMAS ABOUT THE PARTITION FUNCTION

In this section we show that the second moment E(Z2
G) is close to the the square of the first moment

E(ZG) and satisfies a quadratic decay property. Let

H1(x,y) =−x(ln(x)− ln(y))+(x− y)(ln(y− x)− ln(y)).

Recall that

E
(

Z(2)
G,α,γ,ε

)
= λ

2αn
(

n
αn

)(
αn
γn

)(
(1−α)n
(α− γ)n

)
γnd−1

∏
i=0

(1−2α+ γ)dn− i

γnd−1

∏
i=0

dn−1−2i

×

×


εdn−1

∏
i=0

(1−2α)dn− i ·
(α−γ−ε)dn−1

∏
i=0

(α− γ)dn− i

(α−γ)dn−1

∏
i=0

(1−2γ)dn−1−2i

·

εdn−1

∏
i=0

(1−2α− ε)dn− i

εdn−1

∏
i=0

(1−2α)dn−1−2i

 . (47)

We also recall that the following function arises naturally in the estimation of the second moment:

f (α,γ,ε) = 2α ln(λ)+H(α)+H1(γ,α)+H1(α− γ,1−α)+dΨ2(α,γ,ε) ,

where

Ψ2(α,γ,ε) = H1(ε,α− γ)+
∫

γ

0
ln(1−2α+ γ− x)dx−

∫
γ

0
ln(1−2x)dx

+
∫

ε

0
ln(1−2α− x)dx+

∫
α−γ−ε

0
ln(α− γ− x)dx−

∫
α−γ

0
ln(1−2γ−2x)dx

+
∫

ε

0
ln(1−2α− ε− x)dx−

∫
ε

0
ln(1−2α−2x)dx. (48)

Using (16) to compare terms in (47) and (48) proves Proposition 3.2 showing that

E
(

Z(2)
α,γ,ε

)
= exp(n f (α,γ,ε)+O(lnn)).

Thus the second moment depends on the behavior of the function f . We will show a series of technical
lemmas showing that f attains its maximum at (α∗,γ∗,ε∗) and decays quadratically around this point.
Define

αc :=
(2−δd) log(d)

d
,

where δd =C ln lnd+1
lnd → 0 as d→ ∞ and C > 3.
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Lemma 6.1. For each fixed α,γ in the region R , the function f has a local maximum at

ε = ε(α,γ) =
1
2

(
1−2γ−

√
(1−2α)2 +4(α− γ)2

)
.

Proof. Differentiating (48), we have that the derivative of f is given by

∂ f
∂ε

= d ln
(
(α− γ− ε)(1−2α− ε)(1−2α−2ε)2

ε2(1−2α− ε)(1−2α−2ε)

)
.

Since the hardcore model is a permissive model, we may assume that the local maxima of f are in
the interior of R (see e.g. [12, Proposition 3.2]. Solving for ε by setting ∂ f

∂ε
= 0, gives that the unique

solution in the interior of R is ε = ε. Further, we check that the second derivative

∂2 f
∂ε2 =−d

(
1

α− γ− ε
+

2
1−2α−2ε

+
2
ε

)
< 0,

and hence ε is a maximum. �

We will also use the following technical lemma.

Lemma 6.2. For any 0≤ α≤ 1
2 ,

2Φ(α) = f (α, γ̂, ε̂).

Proof. Substituting γ̂ = α2 and ε̂ = α(1− 2α) in the expression for f (α,γ,ε), and simplifying, we
have

2Φ(α)− f (α, γ̂, ε̂) = 2d
(
(1−α) ln(1−α)− 1−2α

2
ln(1−2α)−2

)
−dΨ2(α, γ̂, ε̂)

+H(α)+H1(α
2,α)+H1(α(1−α),1−α) = 0 �

Define the function
g(α,γ)≡ f (α,γ,ε(α,γ))

and consider its extremal values for fixed α in the region where α,γ≥ 0 and α− γ≥ 0. The derivative
of g is given by

∂g
∂γ

(α,γ) =
∂ f
∂γ

(α,γ,ε(α,γ)) , (49)

while its second derivative is
∂2g
∂γ2 (·, ·) =

∂ f
∂2γ

(·,ε)+ ∂ε

∂γ

∂ f
∂γ∂ε

(·, ·,ε). (50)

We establish the behavior of the function f near its maximum by showing several facts about g.

Proof of Proposition 3.3. By Lemma 6.1, for fixed α and γ, f has a maximum at ε(α,γ). Thus, it
remains to find the maximum of g(α,γ). In what follows we will show that for fixed α, g is maximized
at (α,α2). Noting that ε(α, γ̂) = α(1− 2α), it follows that f is maximized at (α∗,γ∗,ε∗) since by
Lemma 6.2, f (α,α2,α(1−2α)) = 2Φ(α), and by (19), Φ is maximized at α∗.
We can verify that (α,α2) is a stationary point of g by computing the first derivative. In what follows,
we establish that for fixed α < αc, (α,α2) is a global maximizer of g(α,γ) by considering several
possible ranges for γ. This will consist of two main steps. The first is to show that (α,α2) is a maximum
and the second is to show that the function g is larger at (α,α2) than at any other possible maximum.
Let γi := ci

α

ln(α−1)
for i = 1,2,3 with the constants ci to be set later.

Computing the derivatives using equations (49) and (50) gives that
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∂2g
∂γ2 =−

(
2

α− γ
+

1
γ
+

1
1−2α+ γ

)
+d

(
1

1−2α+ γ
+

2
α− γ

− 2(α− γ)

(α− γ− ε)
√
(1−2α)2 +4(α− γ)2

)
. (51)

Γ � Α
2

Γ2 �

Α

logJ 1

Α
N

Γ � Α -

Α

logJ 1

Α
N

0.005 0.010 0.015 0.020
Γ

-2000

-1500

-1000

-500

500

¶2 gHΑ, ΓL

¶ Γ2

FIGURE 3. Second derivative of g(α,γ) with respect to γ.
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FIGURE 4. First derivative of g(α,γ) with respect to γ.

1) Let d be sufficiently large so that by the assumption that α < αc, we have that d < 3α−1 ln(α−1).
Let d also be large enough so that for a small constant c1 to be chosen later, α2 < c1α/ ln(α−1). We
show that there is a constant c1 so that for γ ∈ [0,γ1],

∂2g
∂γ2 < 0 (see Figure 3) and hence the stationary

point (α,α2) of g is a maximum (see Figures Figure 4 and 5).
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FIGURE 5. The function g(α,γ).

Note that the first term of the second derivative (51) is negative and has magnitude at least
1/γ≥ α−1 ln(α−1)/c1 for this range of γ. The term on the second line of (51) is positive, but we
will argue that its magnitude is O(α−1 ln(α−1)). The claim will follow by taking the constant c1 to
be small enough.

The terms in the second bracket of (51) can be bounded by O(1) as can be seen below from the
series expansion in Mathematica (note that this calculation does not depend on the size of γ or on
c1).

1
1−2α+ γ

+
2

α− γ
− 2(α− γ)√

(1−2α)2 +4(α− γ)2

(
α− γ−

(
1−2γ−

√
(1−2α)2+4(α−γ)2

)
2

)
=
(
1+4α+O(α2)

)
+
(
−3−12α+O(α2)

)
γ+O(γ2) . (52)

Therefore
∂2g
∂γ2 <−1

γ
+Cd <− 1

c1
α
−1 ln(α−1)+Cα

−1 ln(α−1) ,

where above the particular value of C may change in each appearance. Hence by choosing c1 to be
sufficiently small, the claim follows.

We now divide the analysis showing that γ = α2 corresponds to a global maximum into two
cases based on the size of α.

2) When α is small enough, we show that g has no stationary point for γ ∈ (α2,α]. Suppose that
α < ε ln(d)/d for ε sufficiently small. Then, for some ε′, d < ε′α−1 ln(α−1). Expanding the terms
in the second bracket of (51) as in (52), and recalling that ∂g(α,α2)/∂γ = 0, we have that for
γ > α2,

∂g
∂γ

(α,γ)<
∫

γ

α2
(−1

s
+Cd)ds < ln

(
α2

γ

)
+Cε

′
α
−1 ln(α−1)(γ−α

2). (53)

We claim that the bound on the right hand side of (53) is maximized at the end points of the
interval [α2,α]. Indeed, differentiating the bound with respect to γ, the only stationary point in the
interval is at γ = α/(Cε′ ln(α−1)). Furthermore, the second derivative of the bound is positive so
that the stationary point can only be a minimum.
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At γ = α2, the bound evaluates to 0. Evaluating (53) at γ = α, we obtain that

∂g
∂γ

(α,α)< ln(α)+Cε
′
α
−1 ln(α−1)(α−α

2)≤ ln(α)(1−Cε
′)< 0

since ε′ can be made arbitrarily small by our choice of ε. It follows that ∂g(α,γ)/∂γ < 0 in (α2,α]
and the interval does not contain any stationary points.

When α≥ ε ln(d)/d, there may be a second stationary point near (α,α) and the values of g at
the stationary points must be compared to show that (α,α2) is the global maximum. This will be
done in the points that follow.

3) We show that there is a constant c2 > c1 so that for γ ∈ (α2,γ2],
∂g
∂γ

< 0. Thus, for this range of γ

there are no stationary points of g (see Figure 4). Integrating the second derivative in this range we
obtain that

∂g
∂γ

(α,γ2) =
∫

γ1

α2

∂2g(α,s)
∂s2 ds+

∫
γ2

γ1

∂2g(α,s)
∂s2 ds≤−

∫
γ1

α2

1
2s

ds+
∫

γ2

γ1

Cdds

=
1
2

ln
(

α2

γ1

)
+Cd(γ2− γ1)≤

1
2

ln
(

α ln(α−1)

c1

)
+C(c2− c1).

The upper bounds in the first line above follow by the arguments similar to those of 1) and 2) above.
In particular, c1 can be chosen small enough so that the first bound follows. The last inequality
follows since α < αc which implies d < 3α−1 ln(α−1). As d→ ∞, α→ 0 and therefore for large
enough d, the first derivative will be negative as claimed.

4) There are constants c2,c3 such that c2 > c1 and for γ ∈ [γ2,α− γ3],
∂2g
∂γ2 > 0 (see Figure 3). This

implies that g does not have a maximum in this range.
For this range of γ, the first term of ∂2g

∂γ2 in (51) can be bounded as

−
(

2
α− γ

+
1
γ
+

1
1−2α+ γ

)
≥−

(
2
c3

+
1
c2

)
α
−1 ln(α−1). (54)

The second term can be bounded below as follows. We use the Taylor series expansion

√
x+ y =

√
x+

∞

∑
i=1

x
1
2−iyi

(
i

∏
k=1

(
3
2
− k
)

1
i!

)
to expand as follows with x = (1−2α)2 and y = 4(α− γ)2:

ε = (α− γ)− 1
2

∞

∑
i=1

(1−2α)1−2i(2(α− γ))2i

(
i

∏
k=1

(
3
2
− k
)

1
i!

)
.

Rearranging, we have

α− γ− ε =
1
2

∞

∑
i=1

(2(α− γ))2i

(1−2α)2i−1

(
i

∏
k=1

(
3
2
− k
)

1
i!

)
.

Similarly, √
(1−2α)2 +4(α− γ)2 =

∞

∑
i=0

(2(α− γ))2i

(1−2α)2i−1

(
i

∏
k=1

(
3
2
− k
)

1
i!

)
.
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Therefore, the second term of (51) can be bounded as follows

d

(
1

1−2α+ γ
+

2
α− γ

− 2(α− γ)

(α− γ− ε)
√
(1−2α)2 +4(α− γ)2

)

= d

1+
2

α− γ

1− 1(
1

1−2α
− (α−γ)2

(1−2α)3 + · · ·
)(

(1−2α)+ 2(α−γ)2

1−2α
− 2(α−γ)4

(1−2α)3 + · · ·
)


= d

1+
2(α− γ)

(1−2α)2

1−4 (α−γ)2

(1−2α)2 · · ·

1+ (α−γ)2

(1−2α)2 −4 (α−γ)4

(1−2α)4 · · ·

≥ d
(

1+
2(α− γ)

(1−2α)2

(
1−5

(α− γ)2

(1−2α)2

))
≥ d.

(55)

Combining (54) and (55) we see that to prove the claim it is enough to choose constants c2 and
c3 to satisfy

(
2
c3
+ 1

c2

)
α−1 ln(α−1)< d. Recall that we are now in the case that d > ε′α−1 ln(α−1).

Thus, the claim follows by choosing c2 > c1 and c2 and c3 large enough.
5) Lastly, we show that for γ ∈ [α− γ3,α], the maximum obtained has a smaller value than the

maximum at γ = α2 (see Figure 5). By (51) we have

∂g2

∂γ2 ≥−
2

α− γ

(
1+

α− γ

γ

)
≥
−2
(

1+ c3
ln(α−1)−c3

)
α− γ

Suppose that γ4 is any maximum of g in this interval so that ∂g(α,γ)/∂γ = 0. We can bound the
first derivative as follows.

∂g(α,γ)
∂γ

=
∫

γ

γ4

∂2g(α,s)
∂s2 ds≥−2

(
1+

c3

ln(α−1)− c3

)∫
γ

γ4

1
α− s

ds

=−2
(

1+
c3

ln(α−1)− c3

)
ln
(

α− γ4

α− γ

)
.

Now, using the above bound, we integrate to obtain

g(α,α)−g(α,γ4) =
∫

α

γ4

∂g(α,s)
∂s

ds≥−2
(

1+
c3

ln(α−1)− c3

)
(α− γ4)>−2(1+ εd)(α− γ4)

⇒ g(α,γ4)< g(α,α)+2(1+ εd)(α− γ4) ,

where εd = 1/(lnd− ln lnd). We would like to show that g(α,α2)> g(α,γ4). Thus it suffices to
show that g(α,α2)−g(α,α)> 2(1+ εd)(α− γ4). Roughly, g(α,α) should behave like Φ, the first
moment, while g(α,α2) is 2Φ. Recall that g(α,α) = f (α,α,0) since ε(α,α) = 0. Comparing (17)
and (21), we have

exp(n f (α,α,0)) = λ
αnenΦ(α)

⇒ g(α,α) = f (α,α,0) = α log(λ)+Φ(α) .

Also,

Φ(α) = α log(λ)+
1
n

ln(|{σ : |σ|= αn}|) .
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Therefore,

g(α,α2)−g(α,α) = 2Φ(α)−α log(λ)−Φ(α)

=
1
n

ln(|{σ : |σ|= αn}|)

= H(α)+d
(
(1−α) ln(1−α)+(α− 1

2
) ln(1−2α)

)
. (56)

Using Mathematica to expand the terms of the expression in (56), we obtain for α < αc,

H(α)+d
(
(1−α) ln(1−α)+(α− 1

2
) ln(1−2α)

)
= (1− ln(α))α− d +1

2
α

2−
(

d
2
+

1
6

)
α

3 +O(α4)

> 2(1+ εd)α > 2(1+ εd)(α− γ4) ,

for d sufficiently large.
The first part of Proposition 3.3 follows by the five facts above. Next we show that f (α,γ,ε) decays
quadratically near α∗,γ∗,ε∗. We start by calculating the Hessian matrix for f . The partial second
mixed derivatives of f (α,γ,ε) evaluated at γ̂ = α2 and ε̂ = α(1−2α) are given by:

∂2 f
∂α2 =

α2(6−21d)+2α4(−4+d)−d +16α3d +α(−2+8d)
(1−2α)2(−1+α)2α2

∂2 f
∂α∂γ

=
α(2−4d)+d +α2d

(−1+α)2α2

∂2 f
∂α∂ε

=

(
1−4α+2α2

)
d

(1−2α)2α2

∂2 f
∂γ2 =

−1+
(
−1+4α−2α2

)
d

(−1+α)2α2

∂2 f
∂γ∂ε

=− d
α2

∂2 f
∂ε2 =−

(
1−2α+2α2

)
d

(1−2α)2α2 .

Using Mathematica to calculate the characteristic polynomial of the Hessian matrix, we obtain

1
(1−α)3α5(1−2α)3

(
(2d−8αd +12α

2d−8α
3d +2αd2−6α

2d2 +8α
3d2−2α

3d3)

+(2α
2−12α

3 +24α
4−16α

5 +2αd−14α
2d +50α

3d−102α
4d +120α

5d−92α
6d +40α

7d

+2α
3d2−10α

4d2 +10α
5d2 +16α

6d2−20α
7d2)x

+(α3−5α
4 +6α

5 +2α
6 +4α

7−24α
8 +16α

9 +3α
3d−29α

4d +116α
5d−236α

6d +246α
7d

−116α
8d +16α

9d)x2

+(α5−9α
6 +33α

7−63α
8 +66α

9−36α
10 +8α

11)x3) .
Recall that α = O(lnd/d). Thus by taking d sufficiently large, it is enough to consider only the leading
terms in the coefficients of the characteristic polynomial. Recall also that α ≤ 1/2. First, note that
the value of the polynomial at x = 0 which is given by the constant coefficient is positive. Secondly,
each of the other coefficients is also positive, so that for all x > 0, the derivative of the characteristic
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polynomial is positive. Hence the polynomial itself has only real negative roots and the Hessian is
negative definite. Thus, f is strictly concave at α∗,γ∗,ε∗ and must decay quadratically around its
maximum. Hence we have that for any (α,γ,ε),

f (α∗,γ∗,ε∗)− f (α,γ,ε)≥C(|α−α
∗|2 + |γ− γ

∗|2 + |ε− ε
∗|2). �

We conclude by establishing Proposition 3.4 which says that second moment of the partition function
can be bounded by the square of the first moment up to a polynomial term.

Proof of Proposition 3.4. Applying the Cauchy-Schwartz inequality we have

E((ZG)
2) = ∑

α,α′
E(ZG,αZG,α′) = Θ̃(1)∑

α

E((ZG,α)
2)

= Θ̃(1) ∑
α,γ,ε

EZ(2)
G,α,γ,ε ≤ exp(n f (α∗,γ∗,ε∗)+O(logn))

= exp(2Φ(α∗)n+O(logn)) = Θ̃(1)(EZG)
2 , �

where the inequality is by Proposition 3.2 while the penultimate equality is by Lemma (6.2).
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