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Abstract

Motivated by the rate at which the entropy of an ergodic Markov chain relative to its station-
ary distribution decays to zero, we study modified versions of logarithmic Sobolev inequalities
in the discrete setting of finite Markov chains and graphs. These inequalities turn out to be
weaker than the standard log-Sobolev inequality, but stronger than the Poincare’ (spectral gap)
inequality. We show that, in contrast with the spectral gap, for bounded degree expander
graphs, various log-Sobolev constants go to zero with the size of the graph. We also derive a hy-
percontractivity formulation equivalent to our main modified log-Sobolev inequality. Along the
way we survey various recent results that have been obtained in this topic by other researchers.
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1 Introduction

Let (M,P, π) be an ergodic, reversible Markov chain with a finite state space M , transition prob-
ability matrix P and stationary distribution π. For f, g : M → R, let E(f, g) denote the Dirichlet
form defined by

E(f, g) = −Eπ(fLg) = −
∑
x∈M

f(x)Lg(x)π(x), (1.1)

where −L = I − P is the associated Laplacian matrix. Then the spectral gap of P or the small-
est non-zero eigenvalue of −L can be defined as the optimal positive constant in Poincaré-type
inequality

λ1Varπ(f) ≤ E(f, f), (1.2)

over all f : M → R. As usual, Varπ(f) = Eπf
2 − (Eπf)2 stands for the variance and Eπf =

∫
f dπ

for the expectation of f with respect to the measure π. One arrives at such a functional (or
variational) definition of the spectral gap in a natural way by considering the rate of decay of
variance of the distribution of the chain with respect to the stationary distribution. More formally,
working in the technically-easier continuous time, let µt = µ0Pt be the distribution of the chain at
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time t, for t ≥ 0, where Pt = etL is the semi-group generated by L. Then it is a classical fact that
the density ft(x) = µt(x)

π(x) , x ∈M , satisfies the identity

d

dt
Varπ(ft) = −2E(ft, ft), (1.3)

thus motivating the above definition of λ1. On the other hand, only recently attention seems to
have been given to the following equally natural property: for all t > 0,

d

dt
D(µt||π) = −E(ft, log ft), (1.4)

where D(µ||π) =
∑

x∈M µ(x) log µ(x)
π(x) denotes the so-called informational divergence or the relative

entropy of µ with respect to π. Using the standard notation for the entropy functional Entπ(f) =
Eπf log f −Eπf log Eπf , one is now motivated in studying the inequality

ρ0 Entπ(f) ≤ 1
2
E(f, log f) (1.5)

in the class of all positive f on M , since then d
dtD(µt||π) ≤ −2ρ0D(µt||π). Together with a well-

known relation between the total variation norm ‖µt−π‖TV =
∑

x∈M |µt(x)−π(x)| and the relative
entropy, the latter leads to the bound

‖µt − π‖2
TV ≤ 2 log

1
π∗

e−2ρ0t, t ≥ 0, (1.6)

where π∗ = minx∈M π(x). This recovers and in fact improves upon a similar bound, due to P.
Diaconis and L. Saloff-Coste [15], employing the logarithmic Sobolev constant ρ, the best one in
the standard logarithmic Sobolev inequality

ρEntπ(f2) ≤ 2 E(f, f). (1.7)

As is shown in [15], for the time τ2 = inf{t > 0 : supµ0

[
Eπ|ft − 1|2]1/2 ≤ 1/e} “to reach station-

arity,” one has
1
4ρ

≤ τ2 ≤
(

1 +
1
4

log log
1
π∗

)
1
2ρ
.

Therefore, while ρ captures rather accurately the convergence to stationarity in terms of
supµ0

[
Eπ|ft − 1|2]1/2, which in general is larger than D(µt||π), it seems better to use ρ0 when one

wants to work with either the relative entropy or the total variation norm.
In this paper we aim to study a number of general properties of this constant in the framework

of abstract Markov kernels and finite graphs and put it in the hierarchy of various Sobolev-type
inequalities actively circulating in the literature in the recent years. In general, the inequality (1.5),
defining ρ0, may be viewed as a modified form of L. Gross’ inequality (1.7) – a concept, suggested
in 1996 by M. Ledoux [27] in connection with the concentration of measure phenomenon. To be
more precise, he studied the form involving the length of the gradient,

ρ1 Entπ(ef ) ≤
∫

|∇f |2ef dπ, (1.8)
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as an approach to some of M. Talagrand’s deviation inequalities for product probability measures.
Afterwards, some other modifications of (1.8) have appeared in the literature, especially in the
discrete settings, cf. e.g. [6], [7], [28], [29]. In particular, the inequality (1.5) was considered by
M. Ledoux [29] for product measures on the discrete cube and, as an application, for Poissonian
limits. While preparing the present paper, we learnt that the inequality (1.5) was also introduced
by Dai Pra, Paganoni and Posta (see [13] where ρ0 is referred to as the “entropy constant”) in
the context of certain Gibbs measures on Zd. In particular, they showed examples of measures
which fail to satisfy the classical inequality (1.7), while satisfying (1.5). The crucial identity (1.4)
justifying (1.5) in the framework of Markov kernels was probably first observed in the early 90’s
by D. Bakry [2] and D. Stroock [38], and later was used in bounds involving ρ rather than ρ0, cf.
e.g. [15], [19]. We also learnt that F. Gao and J. Quastel [20] have recently considered ρ0 and
using martingale tools obtained for it a lower estimate on the symmetric group and for slices of
the discrete cube. Unaware of [20] and our present work, these examples and some others (such as
the top-to-random card shuffle) have been derived by S. Goel [21]. A very detailed analysis of the
decay of relative entropy in the specific example of the top-to-random shuffle is reported in [37].
It should therefore be emphasized that, since in many interesting examples ρ0 is much better than
ρ, the role of (1.5) needs to be explored in terms of various applications regardless of (1.7). In an
upcoming paper [36] some of the ideas from this paper are being further employed in developing
the so-called transporation inequalities in discrete settings.

These notes (which are an extended and a detailed version of [8]) are organized as follows.
In Section 2, we formalize the argument leading to the bound (1.6) under (1.5) in the general
non-reversible case. In Section 3, we observe that

ρ ≤ ρ0 ≤ ρ1 ≤ λ1

and discuss several standard examples illustrating these relations. In many of them, ρ0 is in fact the
order of λ1, while ρ = o(ρ0), thus providing tight bounds on convergence to stationarity using the
total variation norm. In Section 4, we introduce a family of inequalities that interpolate between
the modified logarithmic Sobolev inequality (1.5) and the Poincaré inequality (1.1). In application
to Markov chains, these more general inequalities allow one to control a distance-like quantity
Eπf

p
t − 1 (between µt and π) uniformly over all p ∈ (1, 2].
It is natural to wonder how the relative entropy decays for random walks on expander graphs

(namely the graphs for which λ1 is bounded away from zero). In Section 5, it is shown (using ρ1)
that in fact both ρ and ρ0 are of the order of 1/ log |G| for bounded degree expanders G. Here we
also discuss a concentration content of (1.5) in terms of deviations of Lipschitz functions on G. On
the computational side, we remark that ρ0 of a graph can be computed efficiently up to arbitrary
accuracy, in similarity to λ1, while we can only argue that ρ can be estimated efficiently up to a
factor of at most five.

Note that the eigenvalue interpretation of λ1 tells us that there is a function (namely an eigen-
function) which achieves the optimal value in the variational description of λ1. The same is not
necessarily true for ρ and ρ0 (e.g., as in the symmetric two-point space). In such a case, it turns
out that if the inf in the definition of ρ0 is not achieved, then in fact ρ0 = λ1! The analogous result
for ρ was known to be true, implicit in the work of Rothaus [34] in the context of manifolds and
also appears explicitly in the context of finite Markov chains in [35]. These questions are discussed
in Section 6. Finally, in the last (7th) section we give a hypercontractivity characterization of ρ0.
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2 Convergence to stationarity

Elaborating on the introduction, we start with a stochastic matrix P on a finite set M , and define
a Markov process {Xt}t≥0 in M with initial distribution, say, µ0 and transition matrices

Pt = e−t(I−P ), t ≥ 0,

with the generator −L = I −P . To study the asymptotic behavior of the probability distributions
µt of random variables Xt for large time, we will assume that:

a) There is a stationary distribution π for P , i.e., πP = π.
b) π(x) > 0, for all x ∈M .
c) For all x, y ∈M , there exists n ≥ 1 with Pn(x, y) > 0.

Since M is finite, the irreducibility property c) implies that such a π exists and is unique, see
e.g. [18], and it is easy to see that (c) and (a) in turn imply (b). Moreover, by b), any probability
distribution µ on M is absolutely continuous with respect to π.

Thus, let ft(x) = µt(x)
π(x) , x ∈M , be the density of µt with respect to π at time t ≥ 0. As is well

known, the measures µt approach π, or equivalently, ft’s are getting close to 1 for large t. A proper
quantitative statement may be done, for example, in terms of Lp-distance

‖ft − 1‖p
Lp(π) =

∫
|ft − 1|p dπ, 1 ≤ p < +∞,

which becomes the total variation norm ‖µt − π‖TV in case p = 1. Another important measure of
closeness is the informational divergence,

D(µt||π) = Entπ(ft) =
∫
ft log ft dπ.

Recall that µt = µ0Pt. Let P ∗ denote the time-reversal of P defined by the identity π(x)P ∗(x, y) =
π(y)P (y, x), x, y ∈M . Let

P ∗
t = etL

∗
=

∞∑
n=0

tn(L∗)n

n!

be the semigroup associated to the dual −L∗ = I−P ∗. Then the following is a useful basic technical
fact.

Lemma 2.1 For any µ0 and all t ≥ 0, ft = P ∗
t f0. Consequently, for any x ∈M ,

dft(x)
dt

= L∗ft(x).

For example, differentiating the function Varπ(ft) =
∫
f2

t dπ − 1, we get

d

dt
Varπ(ft) =

∫
d

dt
f2

t dπ = 2
∫
ftL

∗ft dπ = 2
∫
L(ft)ft dπ = −2 E(ft, ft).

Therefore, starting from the Poincaré-type inequality (1.2) with a constant λ1 > 0, one gets
d
dt Varπ(ft) ≤ −2λ1Varπ(ft). Integrating over t, one arrives at the standard estimate:
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Theorem 2.2 For every initial distribution µ0,

Varπ(ft) ≤ Varπ(f0) e−2λ1t, t ≥ 0. (2.1)

Now, let us repeat a similar argument towards the study of the informational divergence.

Lemma 2.3 For any µ0 and all t > 0, the density ft is strictly positive on M . Furthermore, the
function t→ D(µt||π) is differentiable on (0,+∞), and

d

dt
D(µt||π) = −E(ft, log ft), t > 0.

Proof. Given x, y ∈M and t ≥ 0, write Taylor’s expansion

P ∗
t (x, y) = e−t

∞∑
n=0

tn

n!
(P ∗)n(x, y).

Since π(x)(P ∗)n(x, y) = π(y)Pn(y, x), for all n ≥ 1, with the assumptions b)−c) we get P ∗
t (x, y) > 0

whenever t > 0. Since ft = P ∗
t f0 and

∑
x f0(x) = 1, this yields the first statement of the lemma.

Thus, in the range t > 0, we are allowed to perform differentiation in accordance with Lemma 2.1
and the identity (1.1) for the Dirichlet form:

d

dt
D(µt||π) =

∫
d

dt
ft log ft dπ

=
∫

(log ft + 1)L∗ft dπ =
∫
L(log ft)ft dπ = −E(ft, log ft).

2

Now, similarly to Theorem 2.2, we can start from the modified logarithmic Sobolev inequality
(1.5) on M . By Lemma 2.3, d

dt D(µt||π) ≤ −2ρ0D(µt||π), for all t > 0. Integrating this inequality
over t and since the right hand side is continuous at t = 0, we arrive at:

Theorem 2.4 For every initial distribution µ0,

D(µt||π) ≤ D(µ0||π) e−2ρ0t, t ≥ 0. (2.2)

Remark 2.5 Note that we did not make the assumption of reversibility of the Markov kernel,
namely, the assumption that π(x)P (x, y) = π(y)P (y, x), for all x, y ∈ M . In the next section,
assuming reversibility we will observe that ρ ≤ ρ0, thus showing that the estimate (2.2) improves
upon

D(µt||π) ≤ D(µ0||π) e−2ρ t, t ≥ 0. (2.3)

The latter was obtained by D. Bakry [2] and D. Stroock [38], see discussion in [15].

Remark 2.6 Together with (2.3), Theorem 3.6 in [15] also involves nonreversible Markov kernels
in which case ρ is replaced with ρ/2 (a result of L. Miclo [32]). However observe (as also pointed
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out in [15]) that there is something inherently reversible about E(f, f) – namely, using the notation
EP (f, f) to indicate the dependence on the kernel, it is easily seen that

EP (f, f) = EP̂ (f, f), with P̂ :=
1
2
(P + P ∗),

where P ∗ is the time-reversal of P . Hence one has in general, for the optimal constants in (1.2)
and (1.7),

λ1(P ) = λ1(
1
2
(P + P ∗)), ρ(P ) = ρ(

1
2
(P + P ∗)).

Thus the estimate (2.2) together with ρ0(1
2 (P + P ∗)) ≥ ρ(1

2 (P + P ∗)) (see Proposition 3.6 below)
recovers the nonreversible case of [15] as well.

Remark 2.7 The above proof of Lemma 2.3 which led to Theorem 2.4 is implicitly contained
in [15] (or as paraphrased in the appendix of [19]). The important difference is that the usual
log-Sobolev inequality (3.2) is taken as a starting point in [19] and in all the above-mentioned
papers.

The estimates given in Theorems 2.2 and 2.4 are not comparable in general: each may have its
own advantages. When ρ0 = λ1 or when these constants are of similar magnitude, the estimate (2.2)
can be more useful than the estimate (2.1). First note, there is a general inequality

∫
f dπ Entπf ≤

Varπ(f), holding true for any measurable function on an arbitrary probability space. Applying this
to f = ft, we get

D(µt||π) ≤ Varπ(ft).

Hence, in the second theorem, a smaller distance (the informational divergence at time t) is esti-
mated from above by a smaller quantity (the informational divergence at the initial time multiplied
by an exponentially decreasing factor).

Another natural and typical objective is obtaining the rates of convergence in total variation
norm ‖µt − π‖TV uniformly over all possible µ0. Then, in order to apply (2.1), one can use the
bound ‖µt − π‖2

TV ≤ Varπ(ft). The right hand side of (2.1) is maximized when µ0 is one of the
Dirac measures δx which leads to

‖µt − π‖2
TV ≤ 1

π∗
e−2λ1t, where π∗ = min

x∈M
π(x). (2.4)

It is also possible to relate the total variation norm to the informational divergence, using the
following well known inequality, see e.g. Lemma 12.6.1 in [12], [15] or [19]: for every probability
measure µ on M ,

‖µ− π‖2
TV ≤ 2D(µ||π). (2.5)

With estimate (2.2) this leads to a certain refinement of (2.4) in the case where ρ0 is approximately
λ1:

Corollary 2.8 For every initial distribution µ0 on M , for all t ≥ 0,

‖µt − π‖2
TV ≤ 2 log

1
π∗
e−2ρ0t. (2.6)
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A general 2-state chain can be used to show that in (2.6), the dependence on t can be sharp;
(once again, ρ0 and λ1 are of the same order in such an example.)

It might also be worth mentioning that the bounds (2.4) and (2.6) can be sharpened by virtue
of Theorem 2.2 under mild symmetry assumptions of the initial density f0 about its mean value∫
f0 dπ = 1. In particular, we have:

Corollary 2.9 For every initial distribution µ0 such that
∫
(f0 − 1)3 dπ = 0,

Varπ(ft) ≤ 2 log
1
π∗
e−2λ1t, t ≥ 0. (2.7)

Proof. Let ξ = f0 − 1 so that
∫
ξ dπ = 0 and

∫
ξ3 dπ = 0. We may assume that f0 > 0 and f0 6= 1

identically on M . Fix p ∈ (1, 2] and consider the function

ψ(s) =
∫

(1 + sξ)p dπ = ‖1 + sξ‖p
p, |s| ≤ 1.

We have ψ(0) = 1, ψ′(0) = 0, and

ψ′′(s) = p(p− 1)
∫
ξ2(1 + sξ)p−2 dπ = p(p− 1)‖ξ‖2

2

∫
(1 + sξ)p−2 dν,

where ν is a probability measure on M with density ξ2

‖ξ‖2
2

with respect to the measure π. Since the

function t → tp−2 is convex in t > 0, and since 1 + sξ > 0 for all |s| ≤ 1, we obtain by Jensen’s
inequality that

∫
(1 + sξ)p−2 dν ≥

(∫
(1 + sξ) dν

)p−2

=
(∫

(ξ2 + sξ3)
dπ

‖ξ‖2
2

)p−2

= 1.

Hence, ψ′′(s) ≥ p(p− 1)‖ξ‖2
2 which implies ψ(s) ≥ 1 + p(p−1)

2 ‖ξ‖2
2 s

2. For s = 1, the latter yields

‖f0 − 1‖2
2 ≤ 2

p(p− 1)

(
‖f0‖p

p − 1
)
, 1 < p ≤ 2,

with equality for p = 2. Letting p ↓ 1, we obtain

‖f0 − 1‖2
2 ≤ 2Entπ(f0) = 2D(µ0||π),

an inequality sharpening the estimate (2.5) for the total variation norm. It remains to apply
Theorem 2.2 and to bound the informational divergence similarly to Corollary 2.8. 2

3 Hierarchy of Inequalities and Some Examples

In this section we make a systematic study of relationship between various logarithmic Sobolev
inequalities and the Poincaré inequality in discrete settings. Let (M,µ) be a probability space, and
let A be a linear space of bounded measurable functions on M . Further assumptions on A are:

Axiom 1. If f, g ∈ A, then fg ∈ A (that is, A is an algebra).
Axiom 2. If f ∈ A, then ef ∈ A.
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Definition 3.1 Any bilinear form E : A×A → R will be called a Dirichlet form.

Although the definition of Dirichlet forms has nothing to do with the measure µ, it appears that
many standard examples are constructed through a measure. In what follows we will be primarily
interested in a discrete setting of finite undirected graphs or finite Markov chains. However, since
traditionally these functional inequalities have been studied in a continuous setting, we also briefly
mention such a setting.

Example 3.2 (a continuous setting). Let M be an open subset of Rd, and let A be the family of
all smooth, compactly supported functions on M . Put

E(f, g) =
∫

M
〈∇f(x),∇g(x)〉 dµ(x),

where 〈·, ·〉 is a canonical scalar product in Rd, and where ∇f(x) = (∂f(x)
∂x1

, . . . , ∂f(x)
∂xd

) denotes the
usual gradient of f at the point x ∈M . This gradient is local in the sense that ∇u(f) = u′(f)∇f ,
for any smooth u such that u(f) ∈ A.

The example can be generalized by considering for M a Riemannian manifold of dimension d.
If M is compact, one typically takes for µ the normalized Lebesgue measure on M .

Example 3.3 (a graph setting). Let G = (M,M) be a finite, connected, undirected graph with
vertex set M and edge set M = {(x, y) ∈ M ×M : x ∼ y}. Let µ be an arbitrary probability
measure on the vertices and let µ(x) = µ({x}), x ∈ M . Given a function f on M , one can define
the gradient ∇f(x) at each vertex x ∈ M as the vector {f(x) − f(y)}y∼x of the length d(x), the
degree of x. Hence, the corresponding Dirichlet form becomes

E(f, g) =
∫

〈∇f(x),∇g(x)〉 dµ(x)

=
∑
x

∑
y∼x

(f(x) − f(y))(g(x) − g(y))µ(x).

Here A represents the space of all functions on M .

Example 3.4 (an abstract discrete setting and reversible Markov kernels). Again, let (M,µ) be a
finite probability space, and let P : M ×M → [0,+∞) be a non-negative function, called a kernel
in the sequel. For all functions f, g on M , one may define the associated Dirichlet form by

E(f, g) =
1
2

∫ ∑
y∈M

(f(x) − f(y)) (g(x) − g(y))P (x, y) dµ(x).

It corresponds to the gradient operator ∇f(x) = { 1√
2
(f(x) − f(y))

√
P (x, y) }y∈M , so again the

gradient formula as in Example 3.2 works well. If P is a reversible Markov kernel, then the above
definition is also equivalent to the general definition given by (1.1), and we have the additional prop-
erty that E(f, g) = E(g, f). It turns out that the formula suggested by Example 3.2 is particularly
suited to study reversible kernels, due to the apparent symmetry, while (1.1) is more general.
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In the rest of this section, whenever we assume that P is a Markov kernel, we also assume
implicitly that P is in fact reversible.

Consider a probability space (M,µ) and a Dirichlet form E : A×A → R, as above. Then one
can introduce Poincaré-type (or spectral gap) and logarithmic Sobolev inequalities as

λ1 Var(f) ≤ E(f, f), f ∈ A, (3.1)

ρEnt(f2) ≤ 2 E(f, f), f ∈ A. (3.2)

As mentioned already in the introduction, by a modified logarithmic Sobolev inequality (of the
Dirichlet type), we mean an inequality of the form

ρ0 Ent(ef ) ≤ 1
2
E(ef , f), f ∈ A. (3.3)

If the Dirichlet form comes through a gradient like in all the previous examples, one may also
consider modified logarithmic Sobolev inequalities of the gradient type. The most popular versions
which appeared in connection with the concentration of measure phenomenon (cf. [28]) are:

ρ1 Ent(ef ) ≤ 1
2

∫
|∇f |2 ef dµ, f ∈ A, (3.4)

ρ2 Ent(ef ) ≤ 1
2

∫
|∇ef |2 e−f dµ, f ∈ A. (3.5)

To be more precise, here one assumes that any point x ∈ M is assigned with a linear operator
A 3 f → ∇f(x) ∈ Rd(x) such that the functions of the form x → 〈∇f(x),∇g(x)〉 are µ-integrable
and bounded, whenever f, g ∈ A. Formally replacing f with log f , the inequality (3.5) takes a more
familiar form

ρ2 Ent(f) ≤ 1
2

∫ |∇f |2
f

dµ, f ∈ A, f positive. (3.6)

More precisely, we obtain (3.5) from the last inequality (3.6) by applying it to ef . At this step the
axiom 2 is used. For the converse implication, one needs a different assumption, that log f ∈ A
as long as f belongs to A and is positive. Thus, in all the examples we considered before, the
inequalities (3.5) and (3.6) are equivalent, but we prefer the first, exponential form in order to keep
maximal generality and to save more analogs between (3.5) and the other exponential form (3.4).

If the gradient is local like in Example 3.2, all the log-Sobolev inequalities (3.2), (3.3), (3.4)
and (3.5) are equivalent to each other, and moreover ρ = ρ0 = ρ1 = ρ2 for optimal values. As for
the general case, first we show that, under reasonable assumptions, the spectral gap inequality is
weaker than any of these inequalities.

Proposition 3.5 Assume that
1) the function g(x) = 1 belongs to A and E(f, 1) = E(1, f) = 0, for all f ∈ A ;
2) for all f, g ∈ A and for any uniformly bounded sequence fn converging to f ( µ-almost

everywhere), we have E(fn, g) → E(f, g), as n→ ∞.
Then, for the optimal constants in (3.1) − (3.5), we have max {ρ, ρ0, ρ1, ρ2} ≤ λ1.
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Proof. To show ρ ≤ λ1, note that, for every c real, E(f + c, f + c) = E(f, f). Since Ent((f + c)2) →
2Var(f), as c → ∞, the application of (3.2) to functions of the form f + c yields (3.1) with ρ in
the place of λ1. To prove ρ0, ρ1, ρ2 ≤ λ1, apply the inequalities (3.3)-(3.5) to functions 1

nf with
n→ ∞. 2

Note that the assumptions 1) and 2) are not needed for deriving ρ1, ρ2 ≤ λ1. The assumption
2) is automatically fulfilled as long as there exists a linear operator L associated with the Dirichlet
form E . In particular, this is clearly true for an abstract discrete setting.

Now let us specialize the log-Sobolev inequalities to discrete settings where they may differ
considerably in terms of the magnitudes of ρ, ρ0, ρ1 and ρ2.

Proposition 3.6 In the reversible Markov kernel setting, for the optimal constants in (3.1)−(3.5),
we have

0 ≤ ρ ≤ ρ0 ≤ ρ1 ≤ ρ2 ≤ λ1.

Proof. Let (M,µ) be a finite probability space with a reversible Markov kernel P . First we show
that the logarithmic Sobolev inequality (3.2) implies the modified logarithmic Sobolev inequality
(3.3) with ρ0 = ρ. Thus, fix a function f on M . Starting from (3.2), apply it to the function ef/2

to get
ρEnt(ef ) ≤ 2 E(ef/2, ef/2).

Hence, in order to derive (3.3) with the same constant on the left, it suffices to show that

E(ef/2, ef/2) ≤ 1
4
E(ef , f).

This estimate is actually observed in [15]. To remind the argument, note that, according to the
definition (in Example 3.4) of the discrete Dirichlet form, we need to check that

(
ef(x)/2 − ef(y)/2

)2 ≤ 1
4

(
ef(x) − ef(y)

)
(f(x) − f(y)),

for all x, y ∈ M . Putting a = ef(x)/2, b = ef(y)/2, we are reduced to the inequality (a − b)2 ≤
1
2 (a2 − b2) log a

b in the range a, b > 0, which can easily be verified to be true.
Now, in view of Proposition 3.5, we need only to show that (3.3) ⇒ (3.4) ⇒ (3.5) with ρ2 =

ρ1 = ρ0. Clearly, it suffices to compare the right hand sides in these inequalities and to see that,
for every f on M ,

E(ef , f) ≤
∫

|∇f |2ef dµ ≤
∫

|∇ef |2 e−f dµ. (3.7)

Since |∇f(x)|2 = 1
2

∑
y∈M (f(x) − f(y))2P (x, y), we have

∫
|∇f |2ef dµ =

1
2

∑
x,y∈M

(f(x) − f(y))2ef(x)P (x, y)µ(x)

=
1
2

∑
x,y∈M

(f(x) − f(y))2ef(y)P (x, y)µ(x),

10



by reversibility. So
∫

|∇f |2ef dµ =
1
2

∑
x,y∈M

(f(x) − f(y))2
ef(x) + ef(y)

2
P (x, y)µ(x).

Similarly,
∫

|∇ef |2 e−f dµ =
1
2

∑
x,y∈M

(ef(x) − ef(y))2
e−f(x) + e−f(y)

2
P (x, y)µ(x).

On the other hand,

E(ef , f) =
1
2

∑
x,y∈M

(f(x) − f(y))
(
ef(x) − ef(y)

)
P (x, y)µ(x).

To establish (3.7), it suffices to compare the corresponding terms in these three representations.
Thus, put a = f(x), b = f(y) for fixed x, y ∈M : we need to show that

(a− b)
(
ea − eb

)
≤ (a− b)2

ea + eb

2
≤
(
ea − eb

)2 e−a + e−b

2
.

Since all the three sides are symmetric with respect to (a, b), we may assume a ≥ b. Putting
a = b+ h, we are reduced to

h(eh − 1) ≤ h2 eh + 1
2

≤ (eh − 1)2
e−h + 1

2
, h ≥ 0. (3.8)

Write the first inequality as eh−1 ≤ h eh+1
2 . It turns into an equality at the point h = 0, while after

differentiation it becomes eh ≤ 1
2 + h+1

2 eh. Again, there is equality at h = 0, and differentiating it,
we arrive at eh ≤ h+2

2 eh which is evidently true. This proves the first inequality in (3.8).
The second inequality is simplified as h2eh ≤ (eh − 1)2 ⇐⇒ heh/2 ≤ eh − 1 ⇐⇒ h

2 ≤ sh(h
2 ). It

readily holds, as well and thus Proposition 3.6 is proved. 2

Note that the normalizing property
∑

y P (x, y) = 1, x ∈ M , was not used in the proof of
Proposition 3.6. Moreover, the proof holds good for the graph setting with µ being uniform on the
set of vertices. M. Sammer and the second author also observed recently that a part of the above
proposition, namely that ρ ≤ ρ0 ≤ λ1, easily extends to the nonreversible Markov setting as well.

Example 3.7 (symmetric discrete cube). Let M = {0, 1}n be the discrete cube. For x ∈ M , if
y is the neighbour of x obtained by flipping coordinate i, then we write y = si(x). The canonical
Dirichlet form on M is defined by

E(f, g) =
∫ n∑

i=1

(f(x) − f(si(x))) (g(x) − g(si(x))) dµ(x), (3.9)

where the measure µ is uniform. In this case,

ρ = ρ0 = ρ1 = ρ2 = λ1 = 4. (3.10)

11



Formally we are not in a Markov kernel setting. However, one may simply multiply the Dirichlet
form by 1

2n to get the corresponding constants. That ρ = 4 is due to L. Gross [22]; that λ1 = 4
is immediate in “dimension” one (n = 1). Both constants are dimension-free since the entropy,
as well as, the variance represent subadditive functionals over product probability measures (see
discussion in Section 4). Hence ρ = λ1 and the remaining equalities in (3.10) follow immediately
from Proposition 3.6, noting that this may be treated as a graph with uniform measure.

Example 3.8 (non-symmetric discrete cube). Now, for p ∈ (0, 1), equip M with the product
measure µ = µn

p with marginal µp assigning mass p to 1 and mass q = 1 − p to 0. In this case for
the Dirichlet form (3.9)

λ1 =
1
pq
, ρ =

1
pq

2 (p − q)
log p− log q

,
1

2pq
≤ ρ0, ρ2 ≤ 1

pq
. (3.11)

The first equality is trivial (again, up to the tensorization of the variance); the second one was
obtained by P. Diaconis and L. Saloff-Coste in [15]; see also [23] and [35]. Proofs of inequalities for
ρ0 and ρ2 can be found in [28] and [7], respectively. As for the remaining constant, we have

ρ1 ≤ 2 (log p− log q)
p− q

. (3.12)

Note that in huge contrast with Proposition 3.6, as pq → 0,

ρ1 << ρ << ρ0 ≈ ρ2 ≈ λ1,

(although the best value of ρ1 is not known). This pathological situation concerns only the modified
log-Sobolev inequality (3.4) of gradient type. Apparently, it may be explained with the fact that
the gradient is not defined via the Dirichlet form (in contrast with (3.1), (3.2) and (3.3)) and
essentially depends on the kernel itself. Indeed, already in dimension one, for any f : {0, 1} → R,∫

|∇f |2ef dµ = (f(1) − f(0))2
(
pef(1) + qef(0)

)
. (3.13)

If p 6= q, the right hand side is not invariant under replacement f(1) ↔ f(0). On the other hand,
in accordance with definition (3.9) in dimension one,

E(ef , f) = (f(1) − f(0))
(
ef(1) − ef(0)

)
, (3.14)

which is invariant (and does not depend on p, at all).
To prove (3.12), we may and do restrict ourselves to the case n = 1. Using (3.13), write down

the modified log-Sobolev inequality (3.4) on M = {0, 1}:
pf(1)ef(1) + qf(0)ef(0) −

(
pef(1) + qef(0)

)
log

(
pef(1) + qef(0)

)
≤ 1

2ρ1
(f(1) − f(0))2

(
pef(1) + qef(0)

)
.

Applying this inequality to f(1) = log q − log p = −f(0), we get pef(1) + qef(0) = 1, and the
inequality becomes

(q − p)(log q − log p) ≤ 2
ρ1

(log q − log p)2.

12



Example 3.9 (general Markov kernel on a two point set). Now, on M = {0, 1} consider an
arbitrary Markov kernel, that is, a stochastic matrix of the form

P =

[
1 − a a
b 1 − b

]
, 0 ≤ a, b ≤ 1.

To avoid trivialities, we assume a+ b > 0. Clearly, the kernel P has always an invariant measure
µ which can be viewed as a probability vector on M with coordinates

p ≡ µ1 =
a

a+ b
, q ≡ µ0 =

b

a+ b
.

Note, that P is reversible with respect to µ. Hence the associated Dirichlet form is given by

E(f, g) =
ab

a+ b
(f(0) − f(1))(g(0) − g(1)) = (a+ b) covµ(f, g),

where f, g are arbitrary functions on M . It follows from the above example (more precisely from
(3.11)), and also using Proposition 3.6 that,

a+ b

2
≤ ρ0 ≤ ρ1 ≤ ρ2 ≤ λ1 = a+ b, ρ =

2(a− b)
log a− log b

. (3.15)

The left of the inequality can slightly be improved to

ρ0 ≥ a+ b

2
+

√
ab,

with equality when a = b. We omit the derivation as an exercise to the interested reader.

Example 3.10 (the complete graph). A bit more generally, let (M,M) be the complete graph on
a non-empty finite set M . Moreover, assume M is equipped with a probability measure µ such that
µ∗ = min

x∈M
µ(x) > 0, and consider the function P (x, y) = µ(y). Then, (P, µ) is a reversible Markov

kernel, and in accordance with the Markov kernel setting, the Dirichlet form may be expressed in
terms of the covariance

E(f, g) = covµ(f, g) ≡
∫
fg dµ−

∫
f dµ

∫
g dµ. (3.16)

In particular, for M = {0, 1} with µ = µp, this Dirichlet form is pq times the Dirichlet form (3.14).
Since the inequalities (3.1)–(3.3) are defined through the Dirichlet form, we can apply (3.11) (in
part concerning ρ0 and ρ) and then Proposition 3.6 to conclude that

1
2
≤ ρ0 ≤ ρ1 ≤ ρ2 ≤ λ1 = 1, (3.17)

and that
ρ =

2 (p − q)
log p− log q

. (3.18)
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Thus, in contrast with Example 3.8, the optimal constants in all modified log-Sobolev inequalities
are of order λ1. Actually, the set of inequalities (3.17) remains to hold for an arbitrary complete
graph M with the remark that, for a single point set M , all the optimal constants are equal to +∞.
Indeed, by Jensen’s inequality and by (3.16), Ent(ef ) ≤ cov(f, ef ) = E(f, ef ), so ρ0 ≥ 1

2 . On the
other hand, λ1 = 1, and it remains to apply Proposition 3.6. As for the constant ρ, every complete
graph M satisfies (3.18) with p = µ∗, q = 1 − µ∗. This is shown in [15] on the basis of the two
point case (3.11).

As in the previous example, the bound ρ0 ≥ 1
2 in (3.17) is not optimal and can slightly be

improved to

ρ0 ≥ 1
2

+
√
µ∗(1 − µ∗).

Example 3.11 (slices of the n-cube and Bernoulli-Laplace model). A fundamental example is a
slice Ω(n, k) of the discrete cube: the graph with vertices being k-subsets of an n-set (1 ≤ k ≤ n,
n ≥ 2). Two subsets are adjacent if and only if they can be obtained from each other by a single
swap of a pair of elements. (Note that this is also the so-called uniform matroid.) In particular,
for k = 1 or k = n, we obtain a complete graph of size n. By symmetry, Ω(n, k) and Ω(n, n − k)
are isomorphic, so the range k ≤ n

2 is only of interest.
There is a natural reversible Markov kernel associated with the graph Ω(n, k), which assigns

the transition probability P (x, y) = 1
k(n−k) , whenever x and y are neighbors. In this case, the

spectral gap was studied by P. Diaconis and M. Shahshahani who showed in [16] that λ1 = n
k(n−k) ,

cf. also [14]. Equivalently, using the normalization of the graph setting as in Example 3.3, we
have λ1 = 2n which is surprisingly independent of k. An asymptotic behavior of the logarithmic
Sobolev constant ρ as a function of (k, n) was studied in [30] by T. Y. Lee and H. T. Yau. Using a
martingale approach, they prove that, in the graph setting,

c1n

log n
k

≤ ρ ≤ c2n

log n
k

, 1 ≤ k ≤ n

2
,

for some numerical constants c1, c2 > 0. A lower bound with log n replacing log n
k was previously

obtained by P. Diaconis and L. Saloff-Coste [15] where they also raised the question on the correct
asymptotic.

As for modified log-Sobolev constants, all of them turn out to be of order λ1! It will be shown
in the next section by a direct inductive argument that

n+ 2
2

≤ ρ0 ≤ 2n.

An asymptotically equivalent lower bound was also obtained by F. Gao and J. Quastel in a recent
paper [20] with a different approach similar to the one of [30].

Example 3.12 (random transpositions). Another related example is the group Sn of permutations
of n elements. Each of n! transpositions has n(n−1)

2 neighbours, thus inducing a canonical graph
structure on Sn. In the corresponding Markov kernel setting, the spectral gap is λ1 = 2

n−1 , cf. [17]
(P. Diaconis mentions in [14] that the first 10 values were computed by J. Deken).
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The logarithmic Soboblev constant ρ is approximately log n-times smaller [30]. Similarly to the
previous example, ρ0 turns out to be of order λ1, namely,

1
2(n− 1)

≤ ρ0 ≤ 2
n− 1

.

We discuss the argument in the next section, cf. also [20]. On the probabilistic language, the above
implies in particular that, for of the chain on permutations using (uniform) random transpositions,
the mixing time in the total variation norm is at most O(n log n), which is tight, whereas only an
O(n log2 n) bound follows from ρ, since ρ = Θ(1/(n log n)).

4 Between modified log-Sobolev and Poincaré

For reversible kernels, both inequalities (2.1) and (2.2) can be united by a more general scheme
under a certain stronger hypothesis. Namely, given (M,P, π) with P being a reversible kernel, for
a number p ∈ (1, 2], one may start with the Sobolev-type inequality

α(p)
[
‖f‖p

p − ‖f‖p
1

]
≤ p

2
E(f, fp−1), (4.1)

where f is an arbitrary positive function on M , and ‖f‖p
p =

∫
fp dπ.

If p = 2, we are reduced to the Poincaré-type inequality (3.1), so the optimal constant α(2) is
just the spectral gap λ1. For 1 < p < 2, applying (4.1) to functions of the form 1 + εf and letting
ε→ 0, we obtain the relation

α(p) ≤ λ1.

On the other hand, dividing both sides of (4.1) by p − 1 and letting p ↓ 1, we get in the limit the
modified logarithmic Sobolev inequality (3.3), so α(1+) = ρ0.

The proofs of Theorems 2.2 and 2.4 are readily extended to the more general statement:

Theorem 4.1 Under the hypothesis (4.1) with p ∈ (1, 2], for every initial distribution µ0 on M ,

‖ft‖p
p − 1 ≤

[
‖f0‖p

p − 1
]
e−2α(p) t, t ≥ 0. (4.2)

In the continuous setting with Dirichlet form E(f, g) =
∫ 〈∇f,∇g〉 dπ, the inequality (4.1) may

be rewritten equivalently by replacing p with 2/q and putting f = gq. It then takes the form

α(2/q)
[
‖g‖2

2 − ‖g‖2
q

]
≤ (2 − q) E(g, g), 1 ≤ q < 2. (4.3)

This inequality was introduced in 1989 by W. Beckner [4] as a kind of sharp interpolation between
Poincaré and logarithmic Sobolev inequality: it was established for the canonical Gaussian measure
with optimal constants α(2/q) = 1 thus generalizing the famous Gross’ theorem ((4.3) was also
proved there for uniform distributions on Euclidean spheres). Recently, a similar inequality was
derived for product measures in Rn with marginal densities cre−|x|r , 1 ≤ r ≤ 2, by R. Latala and
K. Oleszkiewicz, cf. [26].
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Let us note that, while for q = 1 the inequality (4.3) represents the spectral gap, the limiting
case q = 2 reduces to the usual logarithmic Sobolev inequality (3.2), where the optimal constant
may be much smaller than the one in (3.3). Therefore, (4.1) has a correct form to fit the features of
the modified log-Sobolev inequality in the discrete setting. The essential difference between (4.1)
and (4.3) already appears for complete graphs as we can see from the following:

Proposition 4.2 For every complete graph M on at least two vertices, equipped with an arbitrary
probability measure π, for every p ∈ (1, 2],

p

2
≤ α(p) ≤ 1.

Proof. The right hand side inequality is immediate since λ1 = 1. Recalling that E(f, g) =
covπ(f, g), the left hand side inequality is just

‖f‖p
p − ‖f‖p

1 ≤ covπ(f, fp−1) = ‖f‖p
p − ‖f‖1‖f‖p−1

p−1,

that is, ‖f‖p−1 ≤ ‖f‖1. The latter holds due to p− 1 ≤ 1. 2

It can easily be shown that the lower bound α ≥ p
2 is sharp in the class of all complete graphs.

This is true even if we fix M and let π be arbitrary. However, the bound can be sharpened a little
for prescribed measures. In particular, we have:

Proposition 4.3 For a two point complete graph M with uniform probability measure π, for every
p ∈ (1, 2],

α(p) = λ1 = 1.

Proof. Letting M = {0, 1}, f(1) = a, f(0) = b, the inequality (4.1) turns into

ap + bp

2
−
(
a+ b

2

)p

≤ p

8
(a− b)(ap−1 − bp−1), a, b > 0.

By homogeneity, we may assume that a + b = 1, and by symmetry, that a ≥ b. Thus, setting
a = 1 + h, b = 1 − h, we are reduced to

(1 + h)p + (1 − h)p

2
− 1 ≤ p

4
h
(
(1 + h)p−1 − (1 − h)p−1

)

under the assumption 0 ≤ h < 1. The best way to derive this inequality is apparently to write
Taylor’s expansion in powers of h. The left hand side is just

p(p−1)
h2

2!
+ p(p−1)(p−2)(p−3)

h4

4!
+ p(p−1)(p−2)(p−3)(p−4)(p−5)

h6

6!
+ . . .

while the right hand side is given by

ph

2

[
(p−1)h+ (p−1)(p−2)(p−3)

h3

3!
+ (p−1)(p−2)(p−3)(p−4)(p−5)

h5

5!
+ . . .

]
.
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Since 1 < p ≤ 2, all the coefficients in front of h2n are non-negative, so it remains to apply a simple
bound 1

(2n)! ≤ 1
2 (2n−1)! , n ≥ 1. Proposition 4.3 follows. 2

One may further enlarge the class of examples by considering (Cartesian) products of graphs
M = M1× . . .×Md with product measures π = π1⊗ . . .⊗πd, among which the discrete cube seems
to be of the most interest. This can be done with the help of the crucial property of the functional

L(f) = ‖f‖p
p − ‖f‖p

1

being of the subadditive type. This means that, for any f on M ,

L(f) ≤
∫ d∑

i=1

Lxi(f) dπ(x), (4.4)

where Lxi(f) denotes an application of L to the i-th coordinate with respect to the marginal measure
πi (while the remaining coordinates are fixed). In case of the entropy functional L(f) = Ent(f), a
similar property was established by E. Lieb [Li]. More general functionals on abstract probability
spaces (M,π) of the form

L(f) =
∫

Φ(f) dπ − Φ
(∫

f dπ

)

have been studied only recently. If Φ is a convex function on an interval (a, b), finite or not (a
necessary assumption), the property (4.4) always holds true for product spaces for all measurable
f with values in (a, b) if and only if the functional L is convex in f . We refer the reader to [27] for
a simple inductive proof of this characterization. Note that the entropic case corresponds to the
choice Φ(t) = t log t, t > 0, and the convexity of L readily follows from the classical representation

Entπ(f) = sup∫
egdπ≤1

∫
fg dπ.

As for the general convex Φ, the convexity of L can easily be shown to be equivalent to the property
that the function

1
Φ′′(t)

, a < t < b,

is concave (provided that Φ is in C2(a, b) with Φ′′ > 0). Thus, the power functions Φ(t) = tp

generate convex functionals L if and only if 1 ≤ p ≤ 2. We may apply this to the discrete cube.

Proposition 4.4 Let M = {0, 1}d with uniform probability measure π, and let p ∈ (1, 2]. Then,
in the Markov kernel setting,

α(p) = λ1 =
2
d
.

Perhaps, a similar statement for the discrete cube can be done for the inequality (4.3): W.
Beckner [4] mentions on the possibility to derive (4.3) for the Gaussian measure by starting from
the discrete cube in the spirit of Gross’ [22] approach to logarithmic Sobolev inequality (thus,
Beckner implicitly refers to the convexity of the functional L generated by Φ(t) = tp).
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Example 4.5 (product graphs) From the above discussion, we also note the following generaliza-
tion. Let M = Gn be the Cartesian product of n copies of G, with product probability measure
µn, where µ is arbitrary on the vertices of G, and let p ∈ (1, 2]. Then we have α(p)[Gn] = α(p)[G],
for all n ≥ 1.

The following observation is aimed at the study of the interpolating inequality (4.1) for non-
product graphs.

Lemma 4.6 For any p ∈ (1, 2], the function

R(a, b) = (a− b)(ap−1 − bp−1), a, b > 0,

is convex in the positive quadrant.

Proof. Let t = p− 1, 0 < t ≤ 1. Then, clearly the second partial derivatives

∂2R

∂a2
= tat−2((1 + t)a+ (1 − t)b),

∂2R

∂b2
= tbt−2((1 + t)b+ (1 − t)a)

are positive. Since ∂2R
∂a∂b = −t(at−1 + bt−1), after algebraic simplifications we come to

1
t2

det(Hess(R)) = (1 − t2) at−2bt−2(a− b)2 − (at−1 − bt−1)2.

We need to show that the right hand side is non-negative. Replacing a = ub, we arrive at√
1 − t2 u

t
2
−1|u− 1| ≥ |ut−1 − 1|, u > 0. (4.5)

First consider the case 0 < u ≤ 1, when the inequality simplifies as

ψ(u) ≡
√

1 − t2 u
t
2
−1(1 − u) − (ut−1 − 1) ≥ 0.

Since ψ(1) = 0, it suffices to see that ψ is non-increasing on (0, 1), that is,

ψ′(u) =
√

1 − t2
((

t

2
− 1

)
u

t
2
−2 − t

2
u

t
2
−1
)

+ (1 − t)ut−2 ≤ 0.

Dividing by u
t
2
−2, we have to show that

g(u) ≡ (1 − t)u
t
2 −

√
1 − t2

((
1 − t

2

)
+
t

2
u

)
≤ 0.

Clearly, g(0) < 0 and g(1) ≤ 0, so we only need to check the above inequality at the point u0 where

g′(u0) = 0 (if it exists). Differentiating, we get u
t
2
−1

0 =
√

1−t2

1−t , so

g(u0) = (1 − t)
√

1 − t2

1 − t
u0 −

√
1 − t2

((
1 − t

2

)
+
t

2
u0

)

=
√

1 − t2
(

1 − t

2

)
(u0 − 1)
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which is indeed negative.
Similarly, the case u ≥ 1 can be settled, for which (4.5) becomes

ψ(u) ≡
√

1 − t2 u
t
2
−1(u− 1) − (1 − ut−1) ≥ 0.

Now, since ψ(1) = 0, we need to see that ψ is non-decreasing on (1,+∞), that is,

ψ′(u) =
√

1 − t2
(
t

2
u

t
2
−1 −

(
t

2
− 1

)
u

t
2
−2
)
− (1 − t)ut−2 ≥ 0.

Dividing by u
t
2
−2, we are reduced to

g(u) ≡
√

1 − t2
(
t

2
u+

(
1 − t

2

))
− (1 − t)u

t
2 ≥ 0.

We have g(1) ≥ 0 and g(+∞) = +∞, so we only need to check the above inequality at the point

u0 > 0 with g′(u0) = 0 in case such a point exists. But differentiating, we get u
t
2
−1

0 =
√

1−t2

1−t which
is impossible since the left hand side of the equality is smaller than 1, while the right hand side is
bigger than 1. Hence, g is strictly increasing, finishing the proof of Lemma 4.6. 2

As an illustration, consider the graph M = Ω(n, k) of slices of the discrete cube. Recall that
the statement about the modified log-Sobolev inequality,

Entπ(f) ≤ 1
n+ 2

E(f, log f), (4.6)

was mentioned in Example 3.10 for the Dirichlet form corresponding to the graph setting, namely,

E(f, g) =
∫ ∑

y∼x

(f(x) − f(y))(g(x) − g(y)) dπ(x), (4.7)

where π is uniform probability measure on M . Making use of Proposition 4.2 and the convexity of
R(a, b) above, (Lemma 4.6) leads to the following generalization of (4.6).

Proposition 4.7 Let 1 ≤ k ≤ n − 1 be integer, and p ∈ (1, 2]. For every positive function f on
Ω(n, k), with repsect to the uniform probability measure

‖f‖p
p − ‖f‖p

1 ≤ 1
n+ 2

E(f, fp−1). (4.8)

Equivalently, in the Markov kernel setting,

p (n+ 2)
4k(n− k)

≤ α(p) ≤ λ1 =
n

k(n− k)
.

The constant on the right, 1
n+2 , is of correct order uniformly over all admissible triples (n, k, p).

The particular case p = 2 in (4.8) yields the spectral gap inequality

Varµ(f) ≤ 1
n+ 2

E(f, f). (4.9)
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As we already mentioned, the optimal value of the constant is equal to 1
2n ([16]). For this constant,

equality in (4.9) is attained for any linear function f on Rn (provided that the graph is naturally
embedded in Rn as in the proof below). On the other hand, dividing both sides of (4.8) by p − 1
and letting p→ 1, we arrive at the modified logarithmic Sobolev inequality (4.6) stated above.

Proof of Proposition 4.7. We may identify Ω = Ω(n, k) with a slice of the discrete cube,
{x ∈ {0, 1}n : x1 + x2 + . . .+ xn = k}, so that Ω inherits the structure of a graph from the discrete
cube: neighbours are the pairs of points which differ exactly in two coordinates. The canonical
inner metric ρ = ρn,k in Ω is given by

ρ(x, y) =
1
2

card{i ≤ n : xi 6= yi}, x, y ∈ Ω,

that is, one half of the Hamming distance.
For 1 ≤ k ≤ n− 1, let An,k denote the best constant in

‖f‖p
p − ‖f‖p

1 ≤ An,k E(f, fp−1), (4.10)

where f is an arbitrary positive function on Ω. In terms of the function R of Lemma 4.6 this
inequality takes the form∫

fp dµ ≤
(∫

f dµ

)p

+An,k
1
Ck

n

∑
ρ(x,y)=1

R(f(x), f(y)), (4.11)

where Ck
n denotes

(n
k

)
and the summation is performed over all ordered pairs (x, y) ∈ Ω × Ω such

that ρ(x, y) = 1. By symmetry, An,k = An,n−k.
We know that An,1 ≤ 1

2n . As for k ≥ 2, we will deduce a recursive inequality relating An,k to
An−1,k−1, and then we may proceed by induction. Thus, fix k ≥ 2 and a positive function f on
Ω with

∫
f dµ = 1 (this can be assumed in view of homogeneity of (4.10)-(4.11)). Introduce the

subgraphs
Ωi = {x ∈ Ω : xi = 1}, 1 ≤ i ≤ n,

and equip them with uniform probability measures µi. Since all Ωi can be identified with Ω(n −
1, k − 1), we may write the definition (4.11) for these graphs:∫

Ωi

fp dµi ≤
(∫

Ωi

f dµi

)p

+
An−1, k−1

Ck−1
n−1

∑
x∈Ωi

∑
y∈Ωi, ρ(x,y)=1

R(f(x), f(y)).

Setting ϕ(i) =
∫
Ωi
f dµi and summing these inequalities over all i ≤ n with weight 1

n , we obtain

1
n

n∑
i=1

∫
Ωi

fp dµi ≤ 1
n

n∑
i=1

ϕ(i)p +
An−1, k−1

nCk−1
n−1

n∑
i=1

∑
x∈Ωi

∑
y∈Ωi, ρ(x,y)=1

R(f(x), f(y)). (4.12)

Since 1
n

∑n
i=1 µi = µ, the first term in (4.12) is equal to

∫
fp dµ. The second term is estimated

from above, according to the case k = 1, by(
1
n

n∑
i=1

ϕ(i)

)p

+
An,1

C1
n

∑
i6=j

R(ϕ(i), ϕ(j)).
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But 1
n

∑n
i=1 ϕ(i) =

∫
f dµ = 1. Hence, (4.12) implies

∫
fp dµ− 1 ≤ An,1

n

∑
i6=j

R(ϕ(i), ϕ(j)) +
An−1, k−1

nCk−1
n−1

n∑
i=1

∑
x∈Ωi

∑
y∈Ωi, ρ(x,y)=1

R(f(x), f(y)).

To treat the triple sum, fix x, y ∈ Ω with ρ(x, y) = 1. The number of all i such that x ∈ Ωi and
y ∈ Ωi simultaneously is equal to k − 1. Hence, the triple sum will contribute

(k − 1)
∑
x∈Ω

∑
y∈Ω, ρ(x,y)=1

R(f(x), f(y)) = (k − 1)Ck
n E(f, log f).

Since (k−1) Ck
n

nCk−1
n−1

= k−1
k , we thus get

∫
fp dµ− 1 ≤ An,1

n

∑
i6=j

R(ϕ(i), ϕ(j)) +
(k − 1)An−1, k−1

k
E(f, log f). (4.13)

To treat the sum in (4.13), for each pair (i, j), i 6= j, define the bijective map sij : {0, 1}n →
{0, 1}n,

(sijx)r = xr, for r 6= i, j, and (sijx)j = xi, (sijx)i = xj .

It acts as a bijection between Ωi and Ωj and pushes forward µi onto µj, provided that k ≥ 2. In
particular, ϕ(j) ≡ ∫

f(y) dµj(y) =
∫
f(sijx) dµi(x).

Now, by Lemma 4.6, the function R is convex in the quadrant a, b > 0. Consequently, by
Jensen’s inequality,

R(ϕ(i), ϕ(j)) = R

(∫
f(x) dµi(x),

∫
f(sijx) dµi(x)

)
≤
∫
R(f(x), f(sijx)) dµi(x).

Therefore, ∑
i6=j

R(ϕ(i), ϕ(j)) ≤ 1
Ck−1

n−1

∑
i6=j

∑
x∈Ωi

R(f(x), f(sijx)). (4.14)

Note that y = sijx always implies ρ(x, y) ≤ 1, and in case x ∈ Ωi, the equality ρ(x, y) = 1 is only
possible when xi = 1, xj = 0. Hence, the double sum in (4.14) contains only terms R(f(x), f(y))
with ρ(x, y) = 1 (the cases ρ(x, y) = 0 can be excluded). In turn, fixing any pair (x, y) ∈ Ω such
that ρ(x, y) = 1, there is a unique pair (i, j) such that i 6= j and y = sijx. Thus, the right hand
side of (4.14) is just

1
Ck−1

n−1

∑
x∈Ω

∑
y∈Ω, ρ(x,y)=1

R(f(x), f(y)) =
n

k
E(f, fp−1),

and we get from (4.13) ∫
fp dµ− 1 ≤ An,1 + (k − 1)An−1, k−1

k
E(f, fp−1).

Hence, An,k ≤ 1
k (An,1 + (k − 1)An−1, k−1), or in terms of Bn,k = kAn,k,

Bn,k ≤ An,1 +Bn−1, k−1.
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Applying this inequality successively k − 1 times and recalling that Ar,1 ≤ 1
2r , we arrive at

Bn,k ≤ 1
2n

+
1

2(n− 1)
+ . . .+

1
2(n − (k − 2))

+Bn−(k−1), 1

≤ 1
2n

+
1

2(n− 1)
+ . . .+

1
2(n − (k − 2))

+
1

2(n− (k − 1))
.

If k ≤ n
2 , each of the above k terms does not exceed 1

n+2 , so Bn,k ≤ k
n+2 . This implies the desired

estimate An,k ≤ 1
n+2 . In the case k ≥ n

2 , we may use An,k = An,n−k, and Proposition 4.7 follows.
2

A similar statement with a completely similar proof can be made about the symmetric group
M = Sn in which case we have (4.6) with the same constant 1

n+2 for the Dirichlet form (4.7):

Proposition 4.8 Let p ∈ (1, 2]. For every positive function f on Sn, n ≥ 2, with respect to the
uniform probability measure

‖f‖p
p − ‖f‖p

1 ≤ 1
n+ 2

E(f, fp−1).

Equivalently, in the Markov kernel setting,

p (n+ 2)
2n(n− 1)

≤ α(p) ≤ λ1 =
2

n− 1
.

Now let us return to Theorem 4.1 and the inequality (4.2) about the mixing time. Since the
norm ‖f0‖p is maximized for Dirac measure µ0 = δx, for some x ∈M , we obtain similarly to (2.4)
a more general bound

‖ft‖p
p − 1 ≤ 1 − πp−1∗

πp−1∗
e−2α(p)t, t ≥ 0,

where π∗ = minx π(x). Letting p ↓ 1 helps us recover the previous estimate on the informational
divergence, cf. (2.2) and (2.6),

Entπ(ft) ≤ log
1
π∗

e−2ρ0t, t ≥ 0.

5 Concentration and bounds on diameter

Throughout this section we assume that G = (M,M) is a finite, connected, undirected graph of
cardinality |G| = card(M) ≥ 2. For simplicity we assume that G is d-regular, although typically the
weaker assumption, that the maximum degree is at most d, is sufficient. We denote by D = D(G)
the diameter of G. As usual, by a Lipschitz function on G we mean a function f : M → R such
that |f(x) − f(y)| ≤ 1, whenever x and y are neighboring vertices. Let µ be uniform probability
over M so that µ(x) ≡ µ({x}) = 1

|G| .

For some ρ0 > 0, the graph G satisfies the logarithmic Sobolev inequality

ρ0 Entµ(ef ) ≤ 1
2
E(f, ef ), (5.1)
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for all f : M → R, with a canonical Dirichlet form in the graph setting

E(f, g) =
∑
x∈M

∑
y∈M :y∼x

(f(x) − f(y))(g(x) − g(y))µ(x).

Since the constant ρ0 might be of considerable interest in the study of Markov chains, one may
also wonder how it influences the global behavior of Lipschitz functions and how it is related to
basic characteristics such as the diameter of a graph and the degree of its vertices. As it turns out,
deviations of Lipschitz functions from their µ-means may be controlled by the tails of the so-called
double exponential distribution function F (h) = e−e−h

on the negative half-axis (with tails that
decrease to zero much faster than the Gaussian ones, for example). This is already seen from the
bound on the Laplace transform of Lipschitz functions.

Theorem 5.1 Let f be Lipschitz with Eµf = 0. Let A = d/ρ0. Then,

Eµe
tf ≤ eAt2 , 0 ≤ t ≤ 1

≤ eAt (log t+1), t ≥ 1.

Proof. The argument is standard. By (5.1), for all f on M , we have

ρ0 Entµ(ef ) ≤ 1
2|G|

∑
x∈M

∑
y∈M :y∼x

(f(x) − f(y))(ef(x) − ef(y))

=
1
|G|

∑
x∈M

∑
y∈M:y∼x
f(x)>f(y)

(f(x) − f(y))(ef(x) − ef(y))

=
1
|G|

∑
x∈M

∑
y∈M:y∼x
f(x)>f(y)

(f(x) − f(y))(1 − e−(f(x)−f(y))) ef(x)

=
1
|G|

∑
x∈M

∑
y∈M :y∼x

φ((f(x) − f(y))+) ef(x),

where we set φ(t) = t(1 − e−t). In particular, if f is Lipschitz, then for all t ≥ 0,

ρ0 Entµ(etf ) ≤ dφ(t)Eµe
tf . (5.2)

Assume Eµf = 0 and let Eµe
tf = etu(t). Then Entµ(etf ) = t2u′(t)etu(t), so (5.2) becomes

u′(t) ≤ d

ρ0

φ(t)
t2

, t ≥ 0.

Integrating this inequality and using u(0) = 0 (due to Eµf = 0), we conclude that

u(t) ≤ d

ρ0

∫ t

0

φ(s)
s2

ds =
d

ρ0

∫ t

0

1 − e−s

s
ds.

But φ(t) = t(1 − e−t) ≤ min(t, t2) implies, setting A = d
ρ0

,

u(t) ≤ At, 0 ≤ t ≤ 1
≤ A+A log t, t ≥ 1,

proving the theorem. 2
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Corollary 5.2 Given Lipschitz f on M with Eµf = 0, for any h ≥ 2A = 2d/ρ0,

µ{f ≥ h} ≤ exp
{
−A

e2
e

h
A

}
.

Proof. Using the standard Chebyshev argument, the theorem implies that for all t ≥ 1, h > 0,

µ{f ≥ h} ≤ e−thEµe
tf ≤ eAt(log t+1)−th.

The corollary now follows by minimizing the exponent over all t ≥ 1. 2

Similarly, the use of the first inequality of Theorem 5.1 allows one to control “small” deviations
of f above levels h from the remaining range 0 ≤ h ≤ 2A. Namely, in this case we have a standard
gaussian bound:

µ{f ≥ h} ≤ exp

{
− h2

4A

}
, A =

d

ρ0
.

Together with Corollary 5.2 this yields:

Corollary 5.3 The diameter D = D(G) of a d-regular graph G satisfies,

D ≤
{

4
√
A log |G|, if |G| ≤ eA,

4A+ 2A log log |G|
A , if |G| ≥ eA,

where A = d/ρ0.

Proof. Given a Lipschitz function f on G such that Eµf = 0, let h1 = maxx∈M f(x). Since the
set {f ≥ h1} contains at least one vertex, by Corollary 5.2 and the comment following it,

1
|G| ≤ µ{f ≥ h1} ≤ e−v(h1),

where

v(h) =

{
h2/(4A), if 0 ≤ h ≤ 2A,

A exp{h/A − 2}, if h ≥ 2A.

Hence, introducing the inverse function

v−1(z) =

{
2
√
Az, if 0 ≤ z ≤ A,

A (2 + log(z/A)), if z ≥ A,

we obtain that h1 ≤ v−1(log |G|). For the function −f , the latter inequality takes the form
−h0 ≤ v−1(log |G|), where h0 = minx∈M f(x). Adding up the two estimates, we arrive at

max
x,y∈M

(f(x) − f(y)) ≤ 2v−1(log |G|).

This inequality is translation invariant, so the condition on the mean may be removed. The corollary
now follows by choosing the Lipschitz function f(x) = d(x, x0), x0 ∈ M , and maximizing over all
x0. 2
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Now, instead of (5.1), let us see what can be derived if we start from the logarithmic Sobolev
inequality

ρ1 Entµ(ef ) ≤ 1
2

∫
|∇f |2ef dµ. (5.3)

Recall that |∇f(x)|2 =
∑

y∈M :y∼x

(f(x) − f(y))2, x ∈M .

Proposition 5.4 D ≤ 2

√
2d
ρ1

log |G|.

Remark 5.5 This improves upon similar results by N. Alon and V. D. Milman [1] and F. R. K.
Chung, A. Grigoryan, and S.-T. Yau [11], where the bounds are of the type D ≤ c

√
d
λ1

log |G|,
for some universal constant c > 0. Using the elementary inequality ρ ≥ λ1

log |G| (see e.g. [35])
and the relation ρ1 ≥ ρ, as we commented after the proof of Proposition 3.6), it is clear that the
Proposition 5.4 is a refinement. Results in [10] and [33] also provide improvements over [1], but are
in general incomparable with ours.

Remark 5.6 The proposition also implies that, for expander graphs of bounded degree, ρ, ρ0 and
ρ1 are all of the order of 1/ log |G|, where the constants would depend on the bounds on the degree
and the expansion, or equivalently, the spectral gap. Indeed since we have,

λ1

log |G| ≤ ρ ≤ ρ0 ≤ ρ1 ≤ 8d log |G|
D2

,

and since for graphs with degree at most d, the diameter is at least logd |G|, up to a universal
constant.

Remark 5.7 Starting with the standard log-Sobolev inequality, with ρ > 0,

ρEntµf2 ≤ 2E(f, f),

and using an argument similar to the above, it can be shown that D ≤ 5d/ρ. It remains to be
seen how this compares with Corollary 5.3 and Proposition 5.4 above. The example of the discrete
cube, with M = {0, 1}d, which is d-regular with diameter d and ρ = ρ1 = 4 shows that our bounds
on the diameter are tight up to universal constants.

Proof of Proposition 5.4. We follow an argument of M. Ledoux for deriving from (5.3) a bound
on the Laplace transform, cf. e.g. [27] or [28]. Applying the inequality (5.3) to tf , with t ∈ R and
Lipschitz f such that Eµf = 0, we get

ρ1 Entµ(etf ) ≤ dt2

2
Eµe

tf . (5.4)

Setting Eµe
tf = etu(t), Entµ(etf ) becomes t2u′(t)etu(t). Plugging into (5.4) yields that u′(t) ≤

d/(2ρ1), which in turn implies that u(t) ≤ dt/(2ρ1). Hence

Eµe
tf ≤ edt2/2ρ1 . (5.5)
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Now let us tensorize (5.5) on G2G, the Cartesian product of G with itself. It is well known (cf.
e.g. [24]) that making use of the additive property of entropy, one has ρ1(G2G) = ρ1(G). Consider
g on M ×M of the form g(x, y) = f(x)− f(y). In particular, if f is Lipschitz on G, then g will be
Lipschitz on G2G, and moreover, Eµ×µg = 0. Thus applying (5.5) with g, and noting that G2G
is regular with degree 2d yields:

Eµ×µe
t(f(x)−f(y)) ≤ edt2/ρ1 .

On the other hand, letting M = max f(x) and m = min f(x), we have

Eµ×µe
t(f(x)−f(y)) ≥ et(M−m)

|G|2 .

Thus we may conclude that for all t ∈ R,

M −m ≤ dt

ρ1
+

2 log |G|
t

.

Minimizing over t yields, for all Lipschitz f on M ,

max f − min f ≤ 2

√
2d
ρ1

log |G|. (5.6)

To conclude the proof of the proposition, let us take f(x) = d(x, x0), for x0 ∈ M , and maximize
the left hand side of (5.6) over all choices of x0. 2

6 Extremal functions

Let (P, π) be a reversible Markov kernel on the finite set M . We assume for definiteness that
card(M) ≥ 2 and that the stationary probability measure π charges every point in M . Recall that
the associate Dirichlet form is given by

E(f, g) =
1
2

∑
x,y∈M

(f(x) − f(y))(g(x) − g(y))P (x, y)π(x).

In this section, we are going to study extremal functions in logarithmic Sobolev inequalities.
As is well-known, the infimum over all non-constant functions f on M ,

inf
E(f, f)
Varπ(f)

,

is attained at some f and represents the spectral gap λ1 – the optimal constant in the Poincaré-type
inequality (1.2). Since

E(f, g) = −
∫

(Lf) g dπ, L = P − I,

this optimal constant is therefore the smallest eigenvalue λ1 of −L among those to which non-
constant functions f belong as eigenfunctions:

−Lf = λ1f. (6.1)
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Of course, it may occur that λ1 = 0. This is possible if and only if for some non-constant
function f on M , we have E(f, f) = 0, that is, f(x) = f(y), whenever x 6= y and P (x, y) > 0.
Equivalently, after some re-enumeration of the elements in M , the matrix P should be of the form

P =

[
P1 0
0 P2

]
,

where P1 and P2 are square submatrices of sizes at least 2. In the sequel it is natural to exclude
this case from the consideration. Actually, one usually assumes a little more, namely, that (P, π)
is irreducible in the sense that, for every pair x, y in M there is a natural number n = n(x, y) such
that Pn(x, y) > 0 (hence, the case where P1 or P2 have size 1 is excluded, as well). In the language
of Markov chains, this means that all the states are communicable (which in case of a graph, for
example, means that the graph is connected). Thus, the irreducibility ensures that λ1 > 0, so this
number can be characterized as the minimal non-zero eigenvalue of −L.

Since in the class of non-negative f , we have c1Varπ(f) ≤ Entπ(f2) ≤ c2Varπ(f) with some
c2 > c1 > 0 depending on π (see Remark 6.7 below), the above characterization of the property
λ1 > 0 is also equivalent to saying that ρ > 0, that is, the infimum

inf
E(f, f)

Entπ(f2)
(6.2)

is positive, as well. The variational problem on finding an extremal function f at which the infimum
(6.2) is attained leads to the non-linear equation

−Lf = ρ f log f, (6.3)

under the constraint ‖f‖2
2 =

∫
f2 dπ = 1.

To be more precise, note the following: if we apply the equation (6.3) to functions of the form
1+εf

‖1+εf‖2
and let ε → 0, we will come back to the linear equation (6.1) with λ1 = ρ. Hence, (6.1)

can be regarded as an infinitesimal or limiting form of (6.3), and in this sense the latter may be
called “generalized”.

Definition 6.1 A non-negative function f on M normalized by ‖f‖2 = 1 is called a solution to
the generalized equation (6.3) if it satisfies (6.3), or (6.1) with λ1 = ρ.

With this convention we have the following theorem :

Theorem 6.2 a) There exists a number ρ > 0 such that the generalized equation (6.3) has a
non-negative, non-constant solution f on M .

b) Among such numbers there is a minimal value.
c) This minimal value represents the optimal constant in the logarithmic Sobolev inequality

ρEntπ(f2) ≤ 2 E(f, f).

Note in advance that in the irreducible case any non-negative solution f to (6.3) with any ρ > 0
must be positive on M . Indeed, if f(x) = 0 for some x ∈M , then, by (6.3), Pf(x) = 0. The latter
implies f(y) = 0 whenever P (x, y) > 0. Hence, f(z) = 0 whenever P 2(x, z) > 0. Repeating the
argument, we get f(z) = 0 whenever Pn(x, z) > 0 for some n ≥ 1. Hence, f must be zero on M .
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Corollary 6.3 If within the class of all non-negative functions the only solution to the equation
(6.3) with an arbitrary ρ > 0 is the trivial solution f = 1, then ρ = λ1.

One may formulate this sufficient condition in a different way: if the infimum in (6.2) is not
attained, then ρ = λ1. Actually, this will be a part of the proof of Theorem 6.2 – to deduce from
ρ < λ1 the property that the infimum is attained! We were informed by Saloff-Coste that this result
is implicit in [34] in the context of Riemannian manifolds, and that it is stated explicitly with a
sketch of the proof in [35]. We include the proof here for completeness. We further extend this
result (see below) to the modified log-Sobolev inequality defining ρ0. It is also worth mentioning
that Chen and Shen [9] utilize the above corollary in establishing that ρ = λ1 for the simple random
walk on the discrete circle Z mod m when m is even. Computation of the precise value of ρ for
odd m ≥ 5 remains open, while for m = 3 it has been computed in [15] and shown to be strictly
smaller than the value of λ1.

It may indeed occur that (6.3) has no non-negative, non-constant solution. This is the case,
for example, for M = {0, 1} with uniform measure π. So in this case Corollary 6.3 yields ρ = λ1,
which is Gross’ theorem on the two point space.

On the other hand, when ρ < λ1, there is no need to consider the generalized equation (that
is, to attach (6.1) to (6.3)). To illustrate this, consider the (weighted) two point space M = {0, 1}
with the measure π assigning the mass p ∈ (0, 1) to the point 1 and q = 1 − p to the point 0. In
this case the operator −L can be identified with the matrix

−L = I − P =

[
p −p

−q q

]
.

Hence, if f(0) = u, f(1) = v with u, v ≥ 0, the equation (6.3) becomes the system

{
p(u− v) = ρ u log u

−q(u− v) = ρ v log v

under the constraint qu2 + pv2 = 1. Adding up the two equations with weights q and p, we get
qu log u + pv log v = 0 which means that the solution (u, v) is determined by p, only, but not by
the parameter ρ > 0. It is already an easy exercise to see that in case p 6= q the only possible
non-constant solution is given by u =

√
p
q , v =

√
q
p , which leads to

ρ =
2(p − q)

log p− log q
.

Thus, by virtue of Theorem 6.2, we have recovered the second equality in (3.11).

Proof of Theorem 6.2. We assume from the very beginning that λ1 > 0 (so ρ > 0, as well).
There is nothing to prove in case ρ = λ1, so assume ρ < λ1.

We wish to minimize the functional

W (f) =
E(f, f)

Entπ(f2)
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in the class of all non-constant functions f on M . Since E(|f |, |f |) ≤ E(f, f) with equality only when
f is either non-negative or non-positive, we may restrict ourselves to non-negative f ’s. Moreover,
since W (cf) = W (f) for all constants c, we may assume for definiteness that maxx∈M f(x) = 1.

First we show that the minimum to W (f) is indeed attained in this class. Let ρ
2 denote the

infimum (thus, with ρ being the logarithmic Sobolev constant). Then, there is a sequence of
non-negative functions {fn}n≥1 on M with maxx∈M fn(x) = 1 and such that

lim
n→∞W (fn) =

ρ

2
. (6.4)

For each x ∈M , the sequence {fn(x)}n≥1 has a converging subsequence. Since M is finite, such
a subsequence can be chosen common for all x. Hence, without loss of generality, we may assume
that fn(x) → f(x), as n→ ∞, for all x ∈M . Necessarily, 0 ≤ f ≤ 1 on M . Moreover, there should
be maxx∈M f(x) = 1. Indeed, fn(xn) = 1 for some xn ∈ M , so for some x0 ∈M , we have xn = x0

for infinitely many indices. Hence, f(x0) = 1. In addition, choosing a suitable subsequence, we
may assume that fn(x0) = 1, for all n ≥ 1.

Suppose that fn(x) → 1, for all x ∈ M , so that fn = 1 + gn for some sequence gn → 0 on M .
Then

E(fn, fn) = E(gn, gn), Entπ(f2
n) = 2Varπ(gn) +O(‖gn‖3

∞),

by Taylor’s expansion in the entropy asymptotic (for all n large enough, say, when ‖gn‖∞ ≤ 1
2).

Recall that gn(x0) = 0, for all n ≥ 1. Hence,

2Varπ(gn) =
∑
x,y

|gn(x) − gn(y)|2 π(x)π(y) ≥
∑
x

|gn(x) − gn(x0)|2 π(x)π(x0)

=
∑
x

|gn(x)|2 π(x)π(x0) ≥ π2
∗ ‖gn‖2

∞.

Therefore, Entπ(f2
n) = 2(1 + o(1))Varπ(gn), so

lim inf
n→∞ W (fn) = lim inf

n→∞
E(gn, gn)
2Varπ(gn)

≥ inf
g

E(g, g)
2Varπ(g)

=
λ1

2
>
ρ

2
,

and we get contradiction with (6.4). Thus the limiting function f cannot identically be 1. In that
case, since f(x0) = 1, we get Entπ(f2) > 0. Since, as n→ ∞,

E(fn, fn) → E(f, f), Entπ(f2
n) → Entπ(f2),

we conclude that W (fn) →W (f). Consequently, minimum to W is attained at f .
Now, take a non-negative, non-constant function f on M representing a minimizer for W .

Let it be normalized so that ‖f‖2 = 1. Thus, for any non-constant function h on M , we have
W (f) ≤W (h). We apply this inequality to h = f + εg with an arbitrary function g on M and real
ε small enough, in order to derive the equation (6.3). We have

‖f + εg‖2
2 = 1 + 2ε

∫
fg dπ + ε2

∫
g2 dπ,

so, as ε→ 0,

‖f + εg‖2
2 log ‖f + εg‖2

2 = 2ε
∫
fg dπ +O(ε2).
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Similarly, since the derivative (t2 log t2)′ = 2t(log t2 + 1) is continuous on the whole real line,∫
(f + εg)2 log(f + εg)2 dπ =

∫
f2 log f2 dπ + 2ε

∫
fg (log f2 + 1) dπ + o(ε),

and we find
Entπ(f + εg)2 = Entπ(f2) + 2ε

∫
f log f2 g dπ + o(ε).

On the other hand,

E(f + εg, f + εg) = E(f, f) + 2εE(f, g) + ε2E(g, g).

Combining both the asymptotics and using ρEntπ(f2) = 2 E(f, f), we get

ρEntπ(f + εg)2 − 2 E(f + εg, f + εg) = 4ε
[
ρ

∫
f log f g dπ − E(f, g)

]
+ o(ε).

By the log-Sobolev inequality, the left hand side is non-positive. But the right hand side is non-
positive for all ε small enough if and only if E(f, g) = ρ

∫
f log f g dπ, or equivalently, if∫

(Lf + ρ f log f) g dπ = 0.

Since this holds for all g on M , the integrand with respect to g dπ must be zero:

Lf + ρ f log f = 0.

Thus, the logarithmic Sobolev constant ρ is among positive numbers such that the above equation,
that is, the equation (6.3), has a non-negative, non-constant solution f with ‖f‖2 = 1.

Minimality: let ρ′ be another one with this property, i.e., such that for some non-negative,
non-constant function f on M with ‖f‖2 = 1, we have

−2Lf = ρ′ f log f2.

Multiplying this equality by f and integrating with respect to π, we get

2 E(f, f) = ρ′ Entπ(f2).

But 2 E(f, f) ≥ ρEntπ(f2), for all f on M , so necessarily ρ′ ≥ ρ. This completes the proof of
Theorem 6.2. 2

Now let us turn to the modified logarithmic Sobolev inequality (3.3) which can be written
equivalently as

ρ0 Ent(f) ≤ 1
2
E(f, log f) (6.5)

in the class of all positive functions f on M . This is a different inequality, and the corresponding
variational problem leads to a different equation

−Lf − fL(log f) = 2ρ0 f log f, ‖f‖1 = 1, (6.6)

under the constraint ‖f‖1 =
∫
f dπ = 1.

Note that if we apply this equation to functions of the form 1+εf
‖1+εf‖1

with small ε, we come back
again to the linear equation (6.1) with λ1 = ρ0. Hence, (6.1) can also be regarded as an infinitesimal
or limiting form of (6.6), and in this sense the latter may once again be called “generalized”:
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Definition 6.4 A positive function f on M normalized by ‖f‖1 = 1 is called a solution to the
generalized equation (6.6) if it satisfies (6.6), or (6.1) with λ1 = ρ0.

With this convention we have the following analogue of Theorem 6.2.

Theorem 6.5 a) There exists a number ρ0 > 0 such that the generalized equation (6.6) has a
positive, non-constant solution f on M .

b) Among such numbers there is a minimal value.
c) This minimal value represents the optimal constant in the logarithmic Sobolev inequality

(6.5).

Proof. The argument is similar to the one used in the proof of Theorem 6.2. Again, there is
nothing to prove in case ρ0 = λ1, so assume ρ0 < λ1. We wish to minimize the new functional

W (f) =
E(f, log f)
Entπ(f)

in the class of all positive functions f on M . Since W (cf) = W (f) for all constants c, we may
assume for definiteness that maxx∈M f(x) = 1.

First we show that the minimum to W (f) is attained in this class and is positive. Let 2ρ0

denote the infimum (thus, with ρ0 being the modified logarithmic Sobolev constant). Then, there
is a sequence of positive functions {fn}n≥1 on M with maxx∈M fn(x) = 1 and such that

lim
n→∞W (fn) = 2ρ0. (6.7)

As in the proof of Theorem 6.2, we may assume that this sequence is converging point-wise to a
limiting function f with values in [0, 1], and moreover, for some x0 ∈ M , f(x0) = fn(x0) = 1, for
all n ≥ 1.

If fn(x) → 1, for all x ∈ M , so that fn = 1 + gn for some gn → 0 on M , then, by Taylor’s
expansion, once ‖gn‖∞ ≤ 1

2 , we have

E(fn, log fn) = (1 +O(‖gn‖∞)) E(gn, gn),

Entπ(fn) =
1
2

Varπ(gn) +O(‖gn‖3
∞).

As we know, 2Varπ(gn) ≥ π2∗ ‖gn‖2∞ which implies that Entπ(fn) = 1+o(1)
2 Varπ(gn). Therefore,

lim inf
n→∞ W (fn) = lim inf

n→∞
E(gn, gn)
1
2Varπ(gn)

≥ inf
g

2 E(g, g)
Varπ(g)

= 2λ1 > 2ρ0,

and we get a contradiction to (6.7). Thus the limiting function f cannot be identically 1. Hence,
since f(x0) = 1, we get Entπ(f) > 0.

Now, let us see that f must be positive. Put

M0 = {x ∈M : f(x) = 0}, M1 = {y ∈M : f(y) > 0}.
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The second set contains the point x0, so it is non-empty. Note that the irreducibility is exactly the
property that, for any partition of M into two non-empty subsets M0 and M1, there are x ∈ M0,
y ∈M1 such that P (x, y) > 0. But in our case for such points, we have

E(fn, log fn) ≥ (fn(x) − fn(y))(log fn(x) − log fn(y))π(x)P (x, y) → +∞,

as n→ ∞, which implies W (fn) → +∞, so ρ0 = +∞! Hence, the set M0 must be empty.
Thus, 0 < f(x) ≤ 1, for all x ∈M , so

E(fn, log fn) → E(f, log f), Entπ(fn) → Entπ(f),

Since Entπ(f) > 0, we conclude that W (fn) → W (f). Consequently, minimum to W is attained
at f . Now, take a positive, non-constant function f on M representing a minimizer for W :

ρ0Ent(f) =
1
2
E(f, log f). (6.8)

Let ‖f‖1 = 1. Given an arbitrary function g on M , f + εg is positive on M for small ε, and
moreover,

‖f + εg‖1 log ‖f + εg‖1 = ε

∫
g dπ +O(ε2).

Similarly, by Taylor’s expansion,∫
(f + εg) log(f + εg) dπ =

∫
f log f dπ + ε

∫
(log f + 1) g dπ +O(ε2),

and we find
Entπ(f + εg) = Entπ(f) + ε

∫
log f g dπ +O(ε2).

On the other hand,

E(f + εg, log(f + εg)) = E
(
f + εg, log f + ε

g

f
+O(ε2)

)

= E(f, log f) + εE(log f, g) + εE
(
f,
g

f

)
+O(ε2).

Combining both the asymptotics and using (6.8), we get

2ρ0Entπ(f + εg) − E(f + εg, log(f + εg))

= ε

[
2ρ0

∫
log f g dπ − E(log f, g) − E

(
f,
g

f

)]
+O(ε2). (6.9)

Now, using reversibility,

E
(
f,
g

f

)
=

1
2

∑
x,y

(f(x) − f(y))
(
g(x)
f(x)

− g(y)
f(y)

)
π(x)P (x, y)

=
1
2

∑
x,y

(
g(x) + g(y) − f(x)

g(y)
f(y)

− f(y)
g(x)
f(x)

)
π(x)P (x, y)

=
∑
x

[
g(x)π(x) − g(x)

f(x)

∑
y

f(y)π(x)P (x, y)

]

=
∫ [

1 − Pf(x)
f(x)

]
g(x) dπ(x).
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Hence, recalling that E(log f, g) = − ∫ L(log f) g dπ, the expression in (6.9) can be written as

ε

∫ [
2ρ0 log f + L(log f)− 1 +

Pf

f

]
g dπ +O(ε2).

Since it is non-positive, the coefficient in front of ε must be zero:∫ [
2ρ0 log f + L(log f) − 1 +

Pf

f

]
g dπ = 0.

Since g is arbitrary, we obtain

2ρ0 log f + L(log f) − 1 +
Pf

f
= 0.

Multiplying by f and recalling L = P − I, we finally get

2ρ0f log f + fL(log f) + Lf = 0,

which is exactly the desired equation (6.6). Thus, the logarithmic Sobolev constant ρ0 is among
positive numbers such that the equation (6.6), has a positive, non-constant solution f with ‖f‖1 = 1.

Minimality: let ρ′0 be another one with this property, i.e., such that for some positive, non-
constant function f on M with ‖f‖1 = 1, we have

ρ′0f log f = −1
2
fL(log f) − 1

2
Lf.

Integrating this equality with respect to π, we get

ρ′0 Entπ(f) =
1
2
E(f, log f).

But ρ0 Entπ(f) ≤ 1
2 E(f, log f), for all f on M , so necessarily ρ′0 ≥ ρ0, This completes the proof of

Theorem 6.5.

Remark 6.6 It is well known that the spectral gap of a graph can be estimated efficiently up
to arbitrary accuracy. Considering the computational complexity of ρ0 of an undirected graph
on n vertices, let us remark that ρ0 can also be estimated up to arbitrary accuracy using, say,
the ellipsoid algorithm: indeed, computing ρ0 corresponds to minimizing the convex functional∑

x

∑
y∼xR(f(x), f(y))π(x) over the convex body K = {f ∈ RM

+ : Entπ(f) ≤ 1}.
The computational complexity of ρ was raised as an open question by L. Saloff-Coste [35]. Note

that the above argument cannot be made directly regarding ρ, since the set {f : Entπ(f2) ≤ 1} is
not a convex body in RM . Nevertheless, let us rewrite the log-Sobolev inequality (3.2) equivalently
as

ρL(f) ≤ E(f, f),

in terms of the functional L(f) = supa Entπ
(
(f + a)2

)
. It is known that (cf. [5])

2
3
‖f − Eπf‖2

N ≤ L(f) ≤ 13
4

‖f − Eπf‖2
N ,
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where ‖f‖N = inf
{
t > 0 : EπN

(
f
t

)
≤ 1

}
denotes the Orlicz norm corresponding to the (convex)

Young function N(x) = x2 log(1 + x2), x ∈ R. Thus, over the convex body K = {f ∈ RM :
‖f‖N ≤ 1,Eπf = 0} in RM , one can minimize the convex functional

∑
x

∑
y∼x(f(x) − f(y))2π(x)

to estimate ρ to within a factor of 39/8. As far as we know, this is the best known approximation
factor for estimating ρ.

Remark 6.7 As we have already mentioned, in the class of all non-negative functions f on a finite
probability space (M,π), the entropy and variance functionals are connected by the relation

c1Varπ(f) ≤ Entπ(f2) ≤ c2Varπ(f).

In a Markov kernel setting, the second inequality may be viewed as the logarithmic Sobolev inequal-
ity Entπ(f2) ≤ c2 E(f, f) on the complete graph M with transition probabilities P (x, y) = π(x).
This case is listed in Example 3.10: the best constant, found in [15] by Diaconis and Saloff-Coste,
is given according to (3.18) by

c2 =
log p− log q

p− q
, where p = π∗ = min

x∈M
π(x), q = 1 − p.

Thus, c2 is of order log 1
π∗ . By Remark 6.6, this statement may be strengthened to L(f) ≤

C log 1
π∗ Varπ(f), where C is a universal constant.

As for the constant c1, it can be chosen to be independent of π. Here we include a simple argu-
ment given in [L-O]. In general, by Hölder’s inequality, any function of the form u(t) = (Eπf

1/t)2t

is convex, so the ratio

ϕ(t) =
u(t) − u(1/2)

t− 1/2

is non-decreasing in t > 1
2 . But ϕ(1) = −2Varπ(f), while ϕ(1

2+) = −2Entπ(f2). Hence, one may
take c1 = 1. A careful analysis shows that this constant is optimal.

7 Hypercontractivity

In this last section, we are considering a description of the logarithmic Sobolev constant ρ0 in terms
of a hypercontractive property of Markov semigroups. Our treatment is very general, including both
the continuous and the discrete cases. Let (M,µ) be a probability space and let A be a linear space
of bounded measurable functions on M . Let L : A → A be a linear operator associated with the
Dirichlet form E : A×A → R in the sense that

−
∫
f Lg dµ = E(f, g), for all f, g ∈ A. (7.1)

It is easy to see that whenever such an operator exists, it is unique. Furthermore, assume a family
of linear operators Pt : A → A, t ≥ 0, is associated with E , with the properties that:

1) P0 is the identity operator;
2) Pt form a semigroup: Pt+s = PtPs, for all t, s ≥ 0;
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3) Pt has generator L satisfying the relation (7.1);
4) For all f ∈ A and t0 > 0, sup0≤t≤t0 ‖Ptf‖∞ < +∞.

The property of having a generator is understood in L1(µ) sense: for all f ∈ A and t ≥ 0,

lim
ε→0

Pt+εf − Ptf

ε
= L(Ptf) (7.2)

with convergence in the norm of the space L1(µ). Then we have:

Theorem 7.1 Given a number ρ0, the following properties are equivalent:
a) The Dirichlet form E satisfies the modified logarithmic Sobolev inequality

ρ0 Ent(ef ) ≤ 1
2
E(ef , f), f ∈ A. (7.3)

b) For all t ≥ 0 and f ∈ A, ∥∥∥ePtf
∥∥∥

e2ρ0t
≤
∥∥∥ef∥∥∥

1
. (7.4)

All the norms here are taken in the Lebesgue spaces Lq(µ) (although we say “norm” even if
q < 1). The equivalence of (7.4) and log-Sobolev inequality (3.2) is well known in the continuous
setting (cf. D. Bakry and M. Emery [3]); also see [15] for a thorough discussion of this equivalence
in the context of finite Markov chains. Here we are dealing with the most general formulation fitting
both continuous and discrete cases. The main point and motivation is that, in discrete spaces, the
constant ρ0 can be much better than ρ.

We need the following standard fact (proof omitted) to prove the theorem.

Lemma 7.2 For any continuously differentiable function ϕ : R → R, the function of the form
t→ ∫

ϕ(Ptf) dµ is differentiable on the half-axis [0,+∞) and has derivative

d

dt

∫
ϕ(Ptf) dµ =

∫
ϕ′(Ptf)L(Ptf) dµ, t ≥ 0. (7.5)

If the derivative ϕ′ is bounded on the whole real line, the assumption 4) is not needed. However,
we will need Lemma 7.2 for exponential functions ϕ(s) = eqs and for ϕ(s) = eqss. Nevertheless, 4)
is automatically implied by 3), when the set M is finite. In this case, L∞(µ)-norm is equivalent to
L1(µ)-norm, while 3) yields continuity of the function t → ‖Ptf‖1. Note also that, for finite sets,
there always exists a unique operator L and a semi-group Pt associated with E .

Proof of Theorem 7.1. First note that, for any bounded measurable function g on M , the
function of the form

u(q) = ‖eg‖q =
(∫

eqg dµ

) 1
q

, q > 0,

is smooth in q and has derivative

u′(q) =
1
q2

(∫
eqg dµ

) 1
q
−1

Ent(eqg), q > 0. (7.6)
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Now let us fix q > 0, and for f ∈ A, consider the function of the form

v(t) =
∥∥∥ePtf

∥∥∥
q

=
(∫

eqPtf dµ

) 1
q

, t ≥ 0.

Applying the chain rule and Lemma 7.2, we can perform differentiation of v(t):

v′(t) =
(∫

eqPtf dµ

) 1
q
−1 ∫

eqPtfL(Ptf) dµ. (7.7)

These observations show that the function of the two variables G(t, q) = ‖ePtf‖q, (t, q) ∈ [0,+∞)×
(0,+∞), has partial derivatives which can be found according to (7.6)-(7.7):

∂G

∂t
=

(∫
eqPtf dµ

) 1
q
−1 ∫

eqPtfL(Ptf) dµ, t ≥ 0, (7.8)

∂G

∂q
=

1
q2

(∫
eqPtf dµ

) 1
q
−1

Ent(eqPtf ), q > 0. (7.9)

To prove that G is really differentiable with respect to the pair of the variables, consider the
function K(t, q) = ‖ePtf‖q

q =
∫
eqPtf dµ. Fix t ≥ 0 and q > 0. By property 4) of the semi-group Pt,

the functions Pt+ε are uniformly bounded for bounded ε (say, for |ε| < 1). Hence, for any ε > −t
with |ε| < 1 and δ > −q (both parameters will tend to zero independently of each other), we have

K(t+ ε, q + δ) =
∫
eqPt+εfeδPt+εf dµ

=
∫
eqPt+εf (1 + δPt+εf +O(δ2)) dµ

=
∫
eqPt+εf dµ+ δ

∫
eqPt+εfPt+εf dµ+O(δ2),

where the constants in both the appearances of O(δ2) can be chosen depending on (t, q), only (and
not on x ∈ M). To continue the above expansion – now over ε, it remains to apply Lemma 7.2
with ϕ(s) = eqs for the first integral and with ϕ(s) = eqss for the second one. As a result, we will
arrive at an expression of the form

K(t+ ε, q + δ) = K(t, q) + c1ε+ δ (c2 + c3ε+ o(ε)) +O(δ2),

as ε, δ → 0. This proves that K is differentiable, and so is G = K1/q.
Now, given a differentiable function q : [0,+∞) → (0,+∞), consider

F (t) = G(t, q(t)) = ‖ePtf‖q(t).

This function is also differentiable on [0,+∞) as a superposition of differentiable functions. Ac-
cording to the chain rule and by (7.8)-(7.9), we find that, for any t ≥ 0,

F ′(t) =
∂G(t, q(t))

∂t
+
∂G(t, q(t))

∂q
q′(t)

=
(∫

eq(t)Ptf dµ

) 1
q(t)

−1 (∫
eq(t)PtfL(Ptf) dµ+

q′(t)
q2(t)

Ent
(
eq(t)Ptf

))
,
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or equivalently,

q(t)
(∫

eq(t)Ptf dµ

)1− 1
q(t)

F ′(t) =
∫
eq(t)PtfL(q(t)Ptf) dµ+

q′(t)
q(t)

Ent
(
eq(t)Ptf

)
.

Introduce ft = q(t)Ptf . Using (1.1), the first integral on the right is just −E(eft , ft), and we get

q(t)
(∫

eft dµ

)1− 1
q(t)

F ′(t) =
q′(t)
q(t)

Ent(eft) − E(eft , ft).

For the particular choice q(t) = e2ρ0t, the equality becomes

q(t)
(∫

eft dµ

)1− 1
q(t)

F ′(t) = 2ρ0 Ent(eft) − E(eft , ft). (7.10)

Now, starting from (7.3), the right hand side of (7.10) will be non-positive, so F ′(t) ≤ 0, for
all t ≥ 0. Hence F is non-increasing, so F (t) ≤ F (0). The latter is exactly the conclusion (7.4)
since f0 = f . Conversely, if (7.4) holds true, that is, if F (t) ≤ F (0), for all t ≥ 0, then, necessarily
F ′(0) ≤ 0. This implies that the right hand side of (7.10) is non-negative at t = 0, which is exactly
(7.3), thus establishing Theorem 7.1. 2
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