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1 Introduction

In 1897, Dedekind [6] posed the problem of estimating the number of antichains in
the Boolean lattice; in particular, he asked whether the logarithm of the number
is asymptotic to the size of the middle layer of the n-dimensional Boolean lattice
Bn. Although Kleitman confirmed the truth of this conjecture in 1969 [13], enu-
merating antichains in Bn has continued to generate interest in the mathematical
and computer science communities ([14], [17], [11], ...), culminating in the works
of Korshunov [15] and Sapozhenko [19] who found sharp estimates on the actual
number of antichains (rather than producing results at the logarithmic level). Note
the order of these results: although asymptotics for the number of antichains was
known in 1980 subsequent research provided estimates which were less accurate.
Although language barriers may have contributed to this progression of results,
(some of the seminal papers have not been translated from their original Russian),
there are other relevant factors. The proofs of these sharp estimates are very com-
plicated and involve intense case analysis. Counting antichains is a problem well
suited to modern entropy-based enumeration techniques, since information about
local properties, such as vertex degrees, can be translated into a global property of
the poset. Entropy based enumeration proofs are typically beautiful and succinct,
with the tradeoff that the results are for the logarithm of the number of objects
one is trying to count.

A similarly compelling question was raised by Stanley (see [20]) and others in-
dependently: How many linear extensions of the Boolean Lattice can be formed?
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This problem is also well suited to an entropic result, as individual vertex degrees
contain much of the information needed to answer this global question. Brightwell-
Tetali [5] (improving on an earlier result of Sha-Kleitman [20]) obtained accurate
(up to second order) asymptotics for the logarithm of the number of linear ex-
tensions of Bn. Not only have these questions benefitted from investigation from
the perspective of entropy based enumeration, these compelling problems have
motivated the development of new entropy techniques.

In the present work we consider these questions for two natural generalizations
of the Boolean lattice: the Cartesian product of n chains with fixed length t
denoted by [t]n, and the poset of partially defined functions, Fn,k; we define these
posets precisely in the following section. Each of these generalizations sacrifice
some of the ‘nice’ properties of the Boolean Lattice which are used extensively in
the proofs of the results above, in particular symmetry about a central rank and
a single parameter which describing the poset. In [2] and [1] Alekseev gives sharp
estimates for the number of antichains in [t]n but, inspired by the elegant entropy
approaches for Dedekind’s original problem by Pippenger [17] and Kahn [11], our
first main contribution is the use of entropy methods to obtain accurate (up to
first order) asymptotics of the logarithm of the number of antichains of both these
posets. We also provide the first results for the number of linear extensions for
these posets by providing accurate first order term asymptotics for the logarithm
of these quantities.

We hope our work inspires more research in this direction in ultimately yielding
much sharper estimates as well as additional refinements of entropic enumeration
techniques. In the next section, we state our results in precise terms and provide
some basic information about the posets under consideration.

1.1 Definitions and Statements of Results

Let P be a partially ordered set under the relation ≺.

Definition 1.1 An antichain is a subset of P which is pairwise incomparable. We
use the notation a(P ) to represent the number of antichains in P .

Definition 1.2 A linear extension of P is a total ordering (T,<) on the ground
set of P so that if x ≺ y in P , then x < y in T . We also say that the ordering
T “preserves” the relationship of ≺. We let L(P ) represent the number of linear
extensions of a poset P .

For further background on posets we refer the reader to [22] and [7]. Next, we
define a standard generalization of the Boolean lattice, then state our results for
that poset:
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Definition 1.3 For n, t ∈ N, t ≥ 1, the chain product poset is the set of all n-
tuples, x = (x1, x2, . . . , xn), where 0 ≤ xi ≤ t− 1 for i = 1, . . . , n together with the
relation ≺ defined so that for y = (y1, y2, . . . , yn), x ≺ y if and only if xi ≤ yi for
all 1 ≤ i ≤ n. We denote this poset with the notation [t]n.

From this definition we can quickly see that the Boolean lattice Bn is isomorphic
to [2]n. We note that the number of elements in [t]n is tn, further motivating our
naming convention. This is a ranked poset, with rank function rank(x) =

∑n
i=1 xi.

For all values of t, [t]n is a lattice with unique maximal and minimal elements.
However for t > 2 the poset is not bi-regular as the up- and down-degrees of a
vertex do not depend only on its rank. The up-degree of a vertex is equal to the
number of positions where it takes a value less than n, and the down-degree is
equal to its number of nonzero entries.

Let N(t, n) be the size of the middle layer of [t]n, i.e. the number of elements
with rank bn(t − 1)/2c (when the context of both n and t is clear we refer to
N(t, n) simply as N). It was recently shown by Mattner and Roos [16] that

N(t, n) = tn

√
6

π(t2 − 1)n
(1 + o(1)) . (1)

Our main technical contribution is the first part of the following theorem. In this
theorem, as in the rest of the paper, we use log to represent the binary logarithm
log2, and ln to represent the natural logarithm.

Theorem 1.4 For integers t, n such that 1 < t < n:

N(t, n) ≤ log(a([t]n)) ≤ N(t, n)

(
1 +

11t2 log t (log n)
3
2

n
1
4

)
,

log(N(t, n))− C + o(1) ≤ logL([t]n)

tn
≤ log(N(t, n)) ,

for a suitable constant C > 0.

In the first estimate from the theorem, the lower bound follows from the hered-
itary nature of antichains. The additional term in the upper bound is o(1), as long
as t = O(n1/8−ε), for any ε > 0. In this regime, we know that almost all antichains
are subsets of this middle layer. This restriction on t’s growth with respect to n
seems likely to be an artifact of our proof technique, and we do not believe this to
be the only range of t where a similar result holds. We adapt a proof technique of
Pippenger [17] to derive the first upper bound, whereas the second upper bound in
the theorem follows from using known general bounds for ranked posets satisfying
the so-called LYM property [5].
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We also prove estimates, accurate to first order, for the analogous enumeration
problems for another generalization of the Boolean lattice:

Definition 1.5 For n, k ∈ N with k ≥ 1, the poset of partially defined functions is
the set of partially defined functions from {1, 2, . . . n} to {1, 2, . . . , k} where f � g
if and only if g is an extension of f . We use the notation Fn,k to represent this
poset.

We use D(f) to denote the domain of a function f . Recall that g is an extension
of f if and only if D(f) ⊆ D(g) and f(x) = g(x), for all x ∈ D(f).

Often it is helpful to think of an element in f ∈ Fn,k being represented by
n-tuple (x1, x2, . . . , xn) where xi = f(i) whenever f(i) is defined and 0 otherwise.
In this way it is easy to see both that |Fn,k| = (k + 1)n and that for every integer
n ≥ 1, the poset Fn,1 is isomorphic to the Boolean lattice Bn.

Fn,k is a ranked poset where the rank of each element is determined by the
number of elements in the domain where it is defined. Letting Pi denote the set
of elements of rank i, we see that |Pi| = ki

(
n
i

)
. This expression is derived from

choosing which i positions are defined and then assigning one of k possible values

for each. Maximizing in terms of i, we can see that the mode occurs at the
⌊
kn
k+1

⌋th
level set. When n and k are both clear from context, we refer to this quantity as
imax. Thus we have

|Pimax | = kimax

(
n

imax

)
= kb

kn
k+1c

(
n⌊
kn
k+1

⌋) . (2)

Similar to Bn, Fn,k is a graded poset: there is a unique minimum element, and
all maximal elements have the same rank. Additionally, to satisfy the definition
of a graded poset, the up- and down-degrees of an element must be determined
by the level set it belongs to. If f is a member of level i it is defined in exactly i
coordinates, with the remaining n− i coordinates left undefined. The down-degree
di of level i is equal to i for each level. To select a downward neighbor of f , we just
need to pick any of the i coordinates where it is undefined and replace the value
there with the ‘undefined’ character. The up-degree of level i for i = 0, . . . , n− 1
is ui = k(n − i): to find an upward neighbor of f , we first choose one of the
n− i coordinates which is undefined in f and assign it one of the k allowed values.
Before we state our result about the number of linear extensions of Fn,k, it is
helpful to first define a quantity which counts a certain kind of linear extension.
Let

Ln,k =
1

(k + 1)n
log

(
n∏
i=0

((
n

i

)
ki
)

!

)
.
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Theorem 1.6 For positive integers k and n, with imax and Pimax defined as above,
we have:

|Pimax| ≤ log(a(Fn,k)) ≤ |Pimax|
(

1 +O
( log n

imax

))
,

Ln,k ≤
log(L(Fn,k))

|Fn,k|
≤ Ln,k +O

( log n

n

)
.

Once again the lower bounds are straightforward. The first upper bound adapts
a proof idea of Kahn [11]. The second upper bound is a straightforward corollary
of a general upper bound on the number of linear extensions of any ranked poset
with degree regularity, proved by Brightwell-Tetali [5].

It is worth noting that these results give us bounds for the number of antichains
and linear extensions for another family of posets.

Definition 1.7 The cubical poset of order n is formed by taking the set of lower
dimensional faces of Bn (not including the empty set ∅) ordered by inclusion. We
use the notation Qn to denote this poset.

We can think of Qn as the set of n-tuples taking values in 0,1,2 ordered by
~b ≤ ~c if and only if ci = 2 or bi = ci for all i ∈ [n]. Given a set I ∈ [n], for i ∈ I we
fix values ai = αi ∈ {0, 1}. Letting ai range over 0 and 1 for all i /∈ I, determines
a face of Bn. Fn,2 is isomorphic to the dual of the cubic poset, Qn. Since both the
number of antichains and number of linear extensions are preserved by taking the
dual of a poset, letting k = 2 in 1.6 we find bounds for a(Qn) and L(Qn).

2 Dedekind’s Problem on Generalized Boolean

Lattices

2.1 Number of Antichains in [t]n

An easy lower bound for the number of antichains contained in [t]n, utilizes the
quantity N = N(t, n) from equation (1), as each subset of the middle layer is in
itself an antichain. We show, using an information theoretic technique, that 2N

asymptotically approximates the number of antichains in [t]n. More precisely,

Theorem 2.1 Let a([t]n) be the number of antichains in [t]n, then for n ≥ 4,
t = o(nε) with 0 < ε ≤ 1

8
, we can say that:

N ≤ log(a([t]n)) ≤ N

(
1 +

11t2 log t (log n)
3
2

n
1
4

)
.
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The t = o(nε), 0 < ε < 1
8

hypothesis is necessary to ensure that this theorem
gives matching first order terms at the logarithmic level. In the proof itself we
use a weaker hypothesis on the relationship of t and n– the theorem remains true
when t = ω(n

1
8 ), however in this case the argument gives a weaker result.

We follow closely a method used by Pippenger [17], which he used to show a
similar result for the number of antichains contained in the Boolean lattice:

Theorem 2.2 Let a(Bn) be the number of antichains in the Boolean lattice. Then:(
n⌊
n
2

⌋) ≤ log(a(Bn)) ≤
(
n⌊
n
2

⌋)(1 +
(log n)

3
4

n
1
4

)
. (3)

We know that Pippenger’s result does not give the best known asymptotics for
the number of antichains in the Boolean Lattice. In particular, the second order
term is far from what we know to be the truth in this case, which was discovered
by Korshunov [15], who developed asymptotics for the function a(Bn) directly.
The detailed case analysis involved in his argument is very precise, and difficult
to reproduce in a ranked poset which is not bi-regular. A result of this strength is
seemingly out of reach with current entropy techniques. We intend Theorem 2.1
as a preliminary result, to establish that N gives the correct first order term at
the logarithmic level for the number of antichains in [t]n.

For our information theoretic approach, we use two functions extensively, H(X),
the entropy of a random variable (see [3] for information on entropy), and h1(p),
the truncated binary entropy function. We define

h1(q) =

{
−q log q − (1− q) log(1− q) if 0 ≤ q ≤ 1

2

1 if 1
2
≤ q ≤ 1.

(4)

A function f defined on a poset (P,�) is monotone if x � y implies that
f(x) ≤ f(y). We note that there is a one-to-one correspondence between antichains
and monotone Boolean functions in a ranked poset. We can represent an antichain,
A, with a Boolean function g, by taking g(a) = 1 for all a ∈ A, and g(b) = 0
otherwise. From each such function g, we can form the associated monotone
Boolean function f , by “closing g upwards,” i.e. by setting f(z) = 1 if x � z for
some x for which g(x) = 1. Similarly, given a monotone Boolean function f , note
that the set of minimal elements x, for which f(x) = 1, defines an antichain. This
correspondence allows us to count antichains by counting monotone (Boolean)
functions in [t]n.

We use the following lemma from [17] in the course of our argument.
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Lemma 2.3 Suppose the random variable K takes values in {0, 1, . . . , n}, and for
some k ≥ 1 and 0 ≤ q ≤ 1,

P(K ≥ k) ≤ q,

Then H(K) ≤ h1(q) + log k + q log n.

Note that [t]n is a Sperner poset, so the largest antichain in [t]n is a level set.
This follows from the fact that it is the product of chains, which are Sperner.
Together with Dilworth’s Theorem, which states that there is a chain partition
whose size is equal to the size of the largest antichain, we are guaranteed that
there is a chain partition of [t]n whose size is exactly N . (See [7] for additional
details on Sperner posets and chain partitions). We fix one such chain partition for
the remainder of our argument. We enumerate the elements of this chain partition
with {C1, C2, . . . , CN}. For a fixed monotone function, g, there is a unique point
in each chain where the values of the function change from zero to one. For each
chain Cj in the partition, we can define a parameter to capture this information,

γj(g) = #{x ∈ Cj : g(x) = 1} .

Our strategy for counting the number of monotone functions hinges on this
property. Let f be a monotone Boolean function, chosen uniformly from the set of
all monotone Boolean functions. We know from a basic property of entropy that

H(f) = log(a([t]n)).

We define a pair of variables (δ̂, δ̃), which in turn determines f . This allows us
to use the subadditivity of entropy again to give an upper bound on H(f):

H(f) ≤ H(δ̂, δ̃) ≤ H(δ̂) +H(δ̃). (5)

To define δ̃ we first need another description. For each point x ∈ [t]n, and
` = 0, . . . , t − 1, define d`(x) to be the number of coordinates of x which take
value `. Let ddown(x) be the down-degree of x, the number of neighbors of x on
the immediately preceding level. We can think of d`(x) as the `th down-degree of
x, as

∑t−1
`=1 d`(x) = ddown(x). We call a point in [t]n low if dj(x) < n

2t
for some

1 ≤ j ≤ t − 1. The term “low” is a vestigial artifact of Pippenger’s proof, where
he called points low if d1(x) ≤ n

4
, i.e., if they occur on the lowest n

4
levels. In the

context that we use the word low, it is important to note that it is possible to have
two points in the same level set where one is low and the other is not, so low is
not purely rank dependent. This is a new ingredient of our proof. We call a chain
low if it contains a low point.

We take f and selectively “forget” information from some of the chains in
the chain partition. To be more precise, let v1, v2, . . . , vN be independent random
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variables assigned to each chain in the chain partition. Let p =
(log n)

1
2

n
1
4

. With

each chain Cj, we associate a variable as follows:

vj =


1 if Cj is low

1 with probability p for Cj not low

0 with probability 1− p for Cj not low

(6)

From f we form the function δ̃ = (δ̃1, δ̃2, . . . , δ̃N), by taking δj = γj(f)vj. Now
δ̃ gives us enough information to reconstruct f on all low chains and on any chain
Cj, with vj = 1. Let f̃ be the smallest monotone function which is consistent with
δ̃, i.e., the pointwise-least function so that γj(f̃) ≥ δ̃j, for all 1 ≤ j ≤ N . We

record the missing information about f in a variable δ̂ = (δ̂1, δ̂2, . . . , δ̂N) where
δ̂j = γj(f) − γj(f̃). From these definitions, it is easy to see that f is determined

by δ = (δ̃, δ̂); indeed, δ̃ contains the information about g on all chains which are
not forgotten, and we can reclaim information about the rest of the chains using
the information from δ̂.

We now want to bound H(δ̃). First we use the subadditivity of entropy to say
that:

H(δ̃) ≤
N∑
j=1

H(δ̃j). (7)

For each fixed j, we now bound H(δ̃j) using Lemma 2.3. Observe that δ̃j ≥ 1
only if vj = 1. We can use P(vj = 1) in place of q in the lemma, so that P(δ̃j ≥
1) ≤ P(vj = 1) implies that H(δ̃j) ≤ h1(q) + q log n. If Cj is low then vj = 1 with
probability 1. Then δ̃j = γj, a random variable taking either value 0 or a value in
{1, . . . , n}, since this records how many ones are in our low chain. Therefore if Cj
is low, H(δ̃j) ≤ 1 + log(n). If Cj is not low, we can use Lemma 2.3 with q = p.
Letting M be the number of low chains, we can separate the terms of the sum as
follows:

H(δ̃) ≤M(1 + log n) + (N −M)(h1(p) + p log n). (8)

To proceed, we need to give a bound on M , the number of low chains. We
can bound this from above by the number of low points. In order for a point
x to be low, we need there to be some j for which dj(x) ≤ n

2t
. We can think

of each coordinate xi, i = 1, . . . , n, as a uniform random variable chosen from
{0, 1, . . . , t− 1}. Then P(xi = j) = 1

t
, so the expected value for dj(x) = n

t
. Using

a version of Chernoff’s inequality from [10], we see that

P
(
dj(x) ≤ n

2t

)
≤ exp

(
−

( n
2t

)2

2n
t

)
.
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Since this is for a single value of j, we multiply by both t and the total number of
points, to see that there are at most tn+1 exp(−n/8t) low points.

Plugging this estimate and the value for p back into (8) and recalling the value
of N from (1), we see that:

H(δ̃) ≤ tn+1e−
n
8t (1 + log n) +N

(
3(log n)

3
2

n
1
4

)

≤ N

(
4(log n)

3
2

n
1
4

)
.

(9)

In the first inequality above, we use that for p small, h1(p) ≤ 2p log(1/p). In
the second inequality we use the fact that t = o(nε) (though, for this calculation,
it suffices that t ≤ n/(16 log n)).

Now we need to bound H(δ̂). Working with δ̂, we want to explore the possible
discrepancy between f and f̃ . We call a chain Cj bad if δ̂j ≥ 2. Again, the first
property we use is the subadditivity of entropy to say that:

H(δ̂) ≤
N∑
i=1

H(δ̂i).

We can again apply Lemma 2.3, now allowing k = 2 and setting qj = P(δ̂j ≥ 2).

Let Q =
∑N

j=1 qj, noting that this is the expected number of bad chains. Then we
can continue:

H(δ̂) ≤
N∑
j=1

(h1(qj) + 1 + qj log n)

≤ Nh1

(
Q

N

)
+N +Q log n

= N

(
1 + h1

(
Q

N

)
+
Q

N
log n

)
.

(10)

where we use the concavity of entropy and Jensen’s Inequality in the second in-
equality.

We proceed by looking at points which cause chains to be bad, and then ob-
serving again that the total number of bad chains is less than the number of these
troublesome points. We break the points which contribute to γj into two cases and
then count those points to find a bound on Q. A point x in [t]n is called bad if (i)
x is not low, (ii) the chain Cj which contains x also contains some y so that y is a
neighbor of x on the immediately preceding level with f(y) = 1, and (iii) f̃(x) = 0.
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Each one of x’s immediately preceding neighbors arises by decreasing one of the
nonzero coordinates of x by one. If y differs from x in a coordinate where the value
of x is k, we refer to y as a k-neighbor of x. We classify bad points into two groups,
points which are bad because they have many k-neighbors for some k ≥ 1 which
violate condition (ii), and points which have relatively few k-neighbors violating

condition (i i) for all 1 ≤ k ≤ t− 1. To formalize this, let s = n
1
4 (log n)

1
2 . We call

a point x heavy if for any k, x has more than s k-neighbors. In order for a heavy
x to be bad, we need each of the (at least s) chains containing k-neighbors y w ith
f(y) = 1 to be assigned a value of 0 in γ. This happens with probability (1 − p)

for each chain. Using p =
(log n)

1
2

n
1
4

allows the following calculation:

P(x is heavy and bad) ≤ (t− 1)(1− p)s ≤ (t− 1)e−ps ≤ t

n
.

The factor of (t−1) appears because there are t−1 different k values for which x can
be heavy. If x is not heavy, it means that for every k, the number of k-neighbors
of x is less than s. We apply the group Sym(n), the group of all permutations on
[n]. The subgroup Stab(x) of permutations which fix x acts transitively on each
collection of k-neighbors. Let y be a k-neighbor of x so that f(y) = 1. We can
average over the whole orbit of y, since x is only bad if the chain containing it also
contains y. Then the probability that x is bad but not heavy is bounded by

s
n
2t

=
2ts

n
=

2t(log n)
1
2

n
3
4

.

Combining these two estimates, we see that for n ≥ 4,

P(x is bad) ≤ max

(
t

n
,
2t(log n)

1
2

n
3
4

)
=

2t(log n)
1
2

n
3
4

.

Therefore Q = E(bad points) ≤ tn
2t(log n)

1
2

n
3
4

. We use bounds for Q and N in

(10) to see that:

H(δ̂) ≤ N

(
1 + h1

(
Q

N

)
+
Q

N
log n

)
≤ N +

(√
π

24

)
t2(log n)

3
2

n
1
4

+

(
2

√
π

6

)
t2(log n)

3
2

n
1
4

≤ N +
7t2(log n)

3
2 log t

n
1
4

.

(11)
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Now we are ready to give estimates for both parts of (5), to finally conclude
that:

H(f) ≤ H(δ̃) +H(δ̂)

≤ N +
7t2(log n)

3
2 log t

n
1
4

+N

(
4(log n)

3
2

n
1
4

)

≤ N

(
1 +

11t2(log n)
3
2 log t

n
1
4

)
,

(12)

as claimed.

2.2 Number of Antichains in Fn,k

Sharp estimates for the number of antichains in Fn,k for 5 ≤ k ≤ 11 were given by
Andreeva [4]. In this section, our goal is to give an estimate for log(a(Fn,k)) which
has no dependence on k. The following theorem of Kahn ([11]) plays a key role:

Theorem 2.4 (Kahn) Let P be a graded poset with levels P1, P2, . . . , Pm, with
|Pm| ≤ M . Assume that there exists an s ∈ N with s ≥ dup(v) for all v ∈
P1, P2, . . . , Pm−1 and s ≤ ddown(v) for all v ∈ P2, . . . , Pm, then

a(P ) ≤ (m2s − (m− 1))
M
s . (13)

We note that Kahn proved this theorem so he could bound the number of
antichains in the Boolean Lattice Bn ∼= Fn,1. However, the theorem cannot be
applied directly, as neither Fn,k nor Bn satisfy all of the hypotheses of the theorem.
Kahn proves a technical lemma allowing him to apply his theorem indirectly to Bn;
we provide a construction and similar technical lemma which allows us to extend
his result to Fn,k.

The i-th level set in Fn,k has size |Pi| =
(
n
i

)
ki, for i = 0, . . . , n. Recall imax is

the index of the largest level set in Fn,k.
This leads directly to the lower bound in the following theorem, as any subset

of the largest level set is itself an antichain.

Theorem 2.5 2|Pimax | ≤ a(Fn,k) ≤
(
n2imax − (imax − 1)

) |Pimax |
imax .

Calculating the quantity
log(a(Fn,k))

|Pimax |
gives us a way of seeing how close the

bounds are. As we can see, this result gives matching first order terms at the
logarithmic level.
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Corollary 2.6

1 ≤ log(a(Fn,k))

|Pimax |
≤ 1 +O

(
log(n)

imax

)
.

Fn,k does not satisfy the hypotheses for Kahn’s theorem, as its rank-sequence
is unimodal, and there is no uniform bound on degrees which applies to all lev-
els. However, if we truncate Fn,k at level imax, the mode of the rank sequence,
the truncated poset has a strictly increasing rank sequence and it satisfies that
dup(x) ≥ imax for all x ∈ P1 ∪ P2 . . . ∪ Pimax−1 and ddown(x) ≤ imax for all
x ∈ P2 ∪ P3 . . . ∪ Pimax . Note that for x ∈ Pi, dup(x) = k(n− i) and ddown(x) = i;
so imax appropriately plays the role of s in Theorem 2.4. Since we can use Kahn’s
theorem to count the number of antichains in the truncated poset, we seek a way
to relate that number to the number of antichains in all of Fn,k.

Definition 2.7 A poset Q is a relaxation of a poset P , if P and Q have the same
groundset and y l x ∈ Q⇒ y l x ∈ P .

It is a simple consequence of the definition of relaxation that if Q is a relaxation
of P , then a(Q) ≥ a(P ). The Hasse diagram of P may contain more edges than
that of Q, but adding edges only decreases the number of possible antichains. In
order to establish the upper bound in Theorem 2.5, we seek a poset which satisfies
the hypotheses of Kahn’s theorem and contains a relaxation of Fn,k as a subposet.
Kahn has already constructed such a poset for Fn,1 ∼= Bn, and here we prove the
following technical lemma which provides an construction when k ≥ 2:

Lemma 2.8 Fix n and k ∈ N with k ≥ 2; there exists a graded poset An,k ranked
by {0, 1, . . . , n} which:

• Contains a relaxation of Fn,k;

• Satisfies dup(x) ≥ imax for all x ∈ A1 ∪ A2, . . . ∪ An−1 and
ddown(x) ≤ imax for all x ∈ A2 ∪ A3, . . . ∪ An;

• Satisfies |Ai| ≤ |Pimax | =
(

n
imax

)
(kimax) for all level sets {Ai}ni=0.

Proof. Take the Hasse diagram for Fn,k, with k ≥ 2, and consider it for the
moment as a graph. Our objective is to manipulate it to form the Hasse diagram
of an appropriate poset An,k, and then take the transitive closure of the covering
relations represented as edges of this Hasse diagram to form the desired poset. We
do not need to make any modifications below level imax, as these vertices already
satisfy the degree bounds, and the ranks are increasing up to level imax. We follow
three steps to transform the Hasse diagram, and then justify that these steps can
indeed be carried out.
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1. For i > imax, remove i− imax down edges from each vertex on level i. These
edges can be chosen arbitrarily. This gives us ddown(y) = imax for every vertex
y ∈ Pimax ∪ . . . ∪ Pn.

2. For i > imax, add vertices so there are kimax
(

n
imax

)
vertices on level i. Let

us call the number of vertices needed on level i, ji, and note that ji =
kimax

(
n

imax

)
− ki

(
k
i

)
. This insures that the rank sequence of An,k is increasing.

3. For i ≥ imax, add edges between level i and i+ 1 to ensure that both the up-
and down-degrees of every vertex above level imax are exactly equal to imax,
while maintaining that Fn,k is contained as a relaxation.

The feasibility of the first two steps is clear. However in the third step, we
need to verify that we can add enough edges to satisfy the degree requirements
without adding additional edges between vertices in the original Fn,k ground set
to guarantee that our new graph contain a relaxation of Fn,k.

After the first step, counting edges by their top endpoint, we see that there are
imax

(
ki+1

(
n
i+1

))
edges remaining between levels i and i+ 1. Since we know vertices

in level i require up degree imax, we can see that the number of edges which we
need to add between level i and i + 1 is imax

(
ki
(
n
i

))
− imax

(
ki+1

(
n
i+1

))
. We need

to be able to add all of these edges between vertices in Fn,k on level i and new
vertices on level i+ 1 in order to increase the up degree for vertices in level i to at
least imax.

Since the down-degree of new vertices on level i + 1 needs to be imax, we
can use all of the available edges from L = ki

(
n
i

)
− ki+1

(
n
i+1

)
new level i + 1

vertices to supplement the up degree of original vertices from level i. This leaves
kimax

(
n

imax

)
−ki

(
n
i

)
vertices on level i+1 which currently have degree 0 (Notice that

this is exactly the number of added vertices on level i). At this point, all vertices
have the correct degree except these new vertices which remain isolated on level
i + 1 and all of the added vertices on level i which have not been modified in the
above procedure (all of them still have up degree 0 at this point).

We can label these isolated vertices in levels i and i+ 1 with labels 1 . . . ji and
1 . . . ji+1−L respectively. Now we add edges so that every vertex xl on the bottom
gets connected with each vertex on the top yk for k ∈ {l, l+ 1, . . . , l+ imax} where
sums are evaluated modulo ji. Since imax ≤ ji this process creates a simple graph
also known as the circulant bipartite graph with degree imax.

This now determines the complete Hasse diagram for An,k by giving all of its
covering relations. Taking the transitive closure of these relations gives us a poset
satisfying the hypotheses of Theorem 2.4. �

The proof of Theorem 2.5 follows by applying Theorem 2.4 on An,k to give an
upper bound for a(An,k), noting that a(Fn,k) ≤ a(An,k), since we ensured that it
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contained a relaxation of Fn,k. We use the values m = n, s = imax, M = kimax
(

n
imax

)
.

3 Counting Linear Extensions

In this section we use general known bounds on (the logarithm of) the number
of linear extensions of ranked posets and LYM posets (see the definition below)
in estimating the same for the posets [t]n and Fn,k. As a result, the propositions
below might be viewed as observations with some computations. Tighter estimates,
accurate up to the second order terms of the logarithm of the number of linear
extension would indeed be interesting to establish.

For the lower bounds, the following is standard.

Proposition 3.1 Let P be a ranked poset with height K. If we enumerate the
levels of P as Pi for i = 1, . . . , K, with associated rank sequence {ri}Ki=1, a lower
bound for L(P ) is given by the expression

K∏
i=1

ri! ≤ L(P ) . (14)

Proof. The left hand side counts the number of linear extensions which can be
formed by ordering each level set individually and then concatenating the orderings
of each level, putting all elements of a given level before all of the elements in a
higher level.

A non-trivial upper bound for L(Bn) was given by Sha and Kleitman [20]:

Theorem 3.2 (Sha and Kleitman) If ri is the rank function for Bn,

L(Bn) ≤
K∏
i=1

(ri)
ri .

This result was extended in various ways by Shastri [21], Kahn-Kim [12] (see the
discussion in the last section of [5]), and the version we need is as follows. First
we recall a definition.

Definition 3.3 For an element x in a ranked poset P as above, the weight of
x ∈ Pi is 1/ri . An LYM poset is a ranked poset which satisfies that for every
antichain A, the sum of all of the weights of elements in A is at most 1.

Theorem 3.4 (Brightwell and Tetali) For P be an LYM poset, with the rank
function {ri}Ki=1, we have

L(P ) ≤
K∏
i=1

(ri)
ri .
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It follows from results about products of posets in [9] and [8] that [t]n is an
LYM poset. In the next section, we use this result to get an upper bound for the
number of its linear extensions.

Although Fn,k is also an LYM poset, to derive an upper bound on the number
of linear extensions of Fn,k, we instead use a different theorem of Brightwell-Tetali
also proven in [5]. In [5], the main focus was on deriving a tight bound (correct
up to a second order term) on the logarithm of the number of linear extensions of
the Boolean lattice. In addition to this, the authors gave a general upper bound
for the number of linear extensions of posets with degree-regularity: Let uj be the
up degree for all vertices on level j, and similarly let dj be the down-degree of
all vertices on level j. Letting r be the following harmonic average of the down-
degrees:

r =
K∑
j=2

rj−1
dj

, (15)

they showed:

Theorem 3.5 (Brightwell and Tetali) For a regular poset, P with |P | = N and
height K > 0, as above:

L(P ) ≤
K∏
i=1

ri!

(
2e(K − 1)N

r

)r
. (16)

3.1 Linear Extensions of [t]n

The purpose of the following proposition is to motivate a natural question, that of
precisely identifying the second term in the rate function of the number of linear
extensions of [t]n.

Proposition 3.6 There exists a constant C > 0 such that

log(N(t, n))− C + o(1) ≤
log
(
L([t]n)

)
tn

≤ log(N(t, n)) ,

where N(t, n) denotes the largest rank (the size of the middle level of [t]n), and is
given in (1) .

Proof. The upper bound follows simply by observing that,

log
(n(t−1)∏

j=0

r
rj
j

)
=
∑
j

rj log rj ≤ [logN(t, n)](
∑
j

rj) = tn[logN(t, n)] .
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To prove the lower bound, we use convexity and standard estimates. By Propo-
sition 3.1, a lower bound for the number of extensions of any ranked poset is the
product of the factorials of its rank sequence. Let r0, . . . , rn(t−1) denote the rank
sequence of the poset [t]n, i.e., rj = |Pj|. We claim that, for any sequence of
positive integers b1, . . . , bs,

s∏
j=1

bj! ≥

((
s−1

s∑
j=1

bj

)
!

)s

, (17)

where x! = Γ(x+ 1) for x ∈ R. To see this, take the natural log of both sides:

s∑
j=1

ln(bj!) ≥ s ln

(
s−1

s∑
j=1

bj

)
!

This equation clearly holds, by Jensen’s inequality, once we show that lnx! is a
convex function of x. The second derivative of ln Γ(x) is given by the trigamma
function, with well-known representation:

d2

dx2
ln Γ(x) =

∞∑
j=0

1

(j + x)2
,

a quantity which is clearly positive for x > 0. Therefore, we may conclude that
(17) holds.

To simplify our calculations, we note that r0 = 1 and that we can extend our
rank sequence by defining rn(t−1)+1, . . . , rtn = 0, allowing us to apply our bound
for r1, . . . , rtn, yielding

L([t]n) ≥
n(t−1)∏
j=1

rj! ≥

((
1

tn

nt∑
j=1

rj

)
!

)tn

=
((tn−1

n

)
!
)tn
≥
(
tn−1

ne

)tn
,

with the final calculation following from Stirling’s formula, and the penultimate
calculation using a Stirling-type estimate of the form Γ(x + 1) ≥ (x/e)x. This
establishes the lower bound in Proposition 3.6, in view of (1).

One may also observe that the bounds provided by Proposition 3.1 and Theo-
rem 3.4 are in general tight up to a constant at the level of the rate function: by
Stirling’s approximation,

log
(n(t−1)∏

j=0

r
rj
j

)
/tn = log

(n(t−1)∏
j=0

(
rj! e

rj
)√

2πrj
(1+o(1))

)
/tn = log

(n(t−1)∏
j=0

rj!
)

+log e+o(1) .
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3.2 Linear Extensions of Fn,k

Recall that for Fn,k, the number of levels in the poset is K = n + 1, the rank
function is ri =

(
n
i

)
ki, and |Fn,k| = (k + 1)n. For ease of notation let

Ln,k =
1

(k + 1)n
log

(
n∏
i=0

((
n

i

)
ki
)

!

)
.

Theorem 3.7

Ln,k ≤
logL(Fn,k)

|Fn,k|
≤ Ln,k +O

(
log n

n

)
.

More specifically,

n log(k + 1)− log(n+ 1)− log e ≤ log(L(Fn,k))

|Fn,k|
≤ n log(k + 1)− log e+ o(1).

Proof. Using the results from (14) and Theorem 3.5, for a ranked poset P with
levels indexed by 1, . . . , K and rank sequence {ri}Ki=1 we know that:

1

|P |
log

K∏
i=1

ri! ≤
1

|P |
logL(P ) ≤ 1

|P |
log

(
K∏
i=1

ri!

(
2e(K − 1)N

r

)r)
. (18)

The bound in the second half of Theorem 3.7 follows by giving an expansion
for Ln,k, since this term appears in both the upper and lower bounds.

Ln,k =
1

(k + 1)n
log

n∏
i=0

((
n

i

)
ki
)

!

=
n∑
i=0

log

(√
2π
(
n
i

)
ki
(

(n
i)ki
e

)(n
i)ki

(1 + o(1))

)
(k + 1)n

=
n∑
i=0

(
n
i

)
ki log

((
n
i

)
ki
)

(k + 1)n
− log e+ o(1). (19)

To bound the sum in this term, we use standard techniques: Stirling’s formula, the
derivative of the Binomial Theorem, bounds for binomial coefficients, and Jensen’s
inequality. We see that

− log

(
1

(k + 1)n
(n+ 1)

)
≤

n∑
i=0

(
n
i

)
ki log

((
n
i

)
ki
)

(k + 1)n
≤
[
k log k

k + 1
+ h

(
k

k + 1

)]
n

(20)
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Here the function h(x) is the binary entropy function.

The result follows once it is established that the error term in the upper bound
from the additional term in the Brightwell-Tetali bound (16), namely

log
((

2e(K−1)N
r

)r)
|Fn,k|

=
r log

(
(k+1)n

r

)
+ r log(2en)

(k + 1)n
, (21)

has a smaller order than the linear order of the leading terms; in particular we can
see that it has order O

(
logn
n

)
. First, we find the value for the degree parameter r

described above.

r =
n∑
i=1

ri−1
di

=
n−1∑
j=0

kj
(
n
j

)
j + 1

=
(k + 1)n+1 − 1

k(n+ 1)
− kn

n+ 1
=

(k + 1)n+1 − kn+1 − 1

k(n+ 1)
.

(22)
In the simplification of this term, we use a standard equation with closed form
given in Page 34 of [18].

Using the value for r from (22) in expression (21), and combining the results
from (19), and (20), we establish the bounds:

n log(k + 1)− log(n+ 1)− log e ≤ log(L(Fn,k))

|Fn,k|
≤ n log(k + 1)− log e+ o(1) ,

as desired.
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