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Abstract. In recent work, Chow, Huang, Li and Zhou [6] introduced the study of
Fokker-Planck equations for a free energy function defined on a finite graph. When
N ≥ 2 is the number of vertices of the graph, they show that the corresponding Fokker-
Planck equation is a system of N nonlinear ordinary differential equations defined on a
Riemannian manifold of probability distributions. The different choices for inner prod-
ucts on the space of probability distributions result in different Fokker-Planck equations
for the same process. Each of these Fokker-Planck equations has a unique global equi-
librium, which is a Gibbs distribution. In this paper we study the speed of convergence
towards global equilibrium for the solution of these Fokker-Planck equations on a graph,
and prove that the convergence is indeed exponential. The rate as measured by the
decay of the L2 norm can be bound in terms of the spectral gap of the Laplacian of the
graph, and as measured by the decay of (relative) entropy be bound using the modified
logarithmic Sobolev constant of the graph.

With the convergence result, we also prove two Talagrand-type inequalities relating
relative entropy and Wasserstein metric, based on two different metrics introduced in [6].
The first one is a local inequality, while the second is a global inequality with respect to
the “lower bound metric” from [6].

1. Introduction

As the stochastic differential equation becomes one of the primary and highly effective
tools in many practical problems arising in diverse fields such as finance, physics, chemistry
and biology [8, 19, 23], there are considerable efforts in understanding the properties of
the classical Fokker-Planck equation that describes the time evolution of the probability
distribution of a stochastic process. At the same time, the free energy functional, which
is defined on the space of probability distributions, as a linear combination of terms
involving a potential and an entropy, has widely been used in various subjects; it typically
means different things in different contexts. For example, the notion of “free energy” in
thermodynamics is related to the maximal amount of work that can be extracted from
a system. The concept of free energy is also used in other fields, such as statistical
mechanics, probability (particularly in the context of Markov Random Fields), biology,
chemistry, and image processing; see e.g., [14, 26, 30].

Since the seminal work of Jordan, Kinderlehrer and Otto [10, 17], it is well known that
a Fokker-Planck equation is the gradient flow of the free energy functional on a Riemann-
ian manifold that is defined by a space of probability distributions with a 2-Wasserstein
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metric on it. This discovery has been the starting point for many developments relating
the free energy, Fokker-Planck equation, an abstract notion of a Ricci curvature and op-
timal transport theory in continuous spaces. We refer to the monographs [1, 28, 29] for
an overview. Recently, a synthetic theory of Ricci curvature in length spaces has been
developed by Lott-Sturm-Villani [11, 24, 25], which reveals the fundamental relationship
between entropy and Ricci curvature. Despite the remarkable developments on this sub-
ject on a continuous space, much less is known when the underlying space is discrete, as
in an (undirected) graph.

In recent work, Chow, Huang, Li and Zhou [6] considered Fokker-planck equations for
a free energy function (or a certain Markov process) defined on a finite graph. For a
graph on N ≥ 2 vertices, they showed that the corresponding Fokker-Planck equation is a
system of N nonlinear ordinary differential equations, defined on a Riemannian manifold
of probability distributions. In fact, they point out that one could make different choices
for inner products on the space of probability distributions resulting, in turn, in different
Fokker-Planck equations for the same process. Furthermore, each of these systems of
ordinary differential equations has a unique global equilibrium – a Gibbs distribution –
and is a gradient flow for the free energy functional defined on a Riemannian manifold
whose metric is closely related to certain classical Wasserstein metrics.

We recall here, more formally, the approach of Chow et al [6]. Consider a graph
G = (V,E), where V = {a1, · · · , aN} is the set of vertices |V | ≥ 2, and E denotes the set
of (undirected) edges. For simplicity, assume that the graph is connected and is simple –
with no self-loops or multiple edges. Let N(i) := {j ∈ {1, 2, · · · , N}|{ai, aj} ∈ E} denote
the neighborhood of a vertex ai ∈ V .

Let Ψ = (Ψi)
N
i=1 be a given potential function on V , where Ψi is the potential on vertex

ai. Further denote

M = {ρ = (ρi)
N
i=1 ∈ RN |

N∑
i=1

ρi = 1 and ρi > 0 for i = 1, 2, · · · , N},

as the space of all positive probability distributions on V .
Then the free energy functional has the following expression: for each ρ ∈M, let

(1.1) F (ρ) := FΨ,β(ρ) =
N∑
i=1

Ψiρi + β
N∑
i=1

ρi log ρi,

where β > 0 is the strength of “white noise” or the temperature. The free energy func-
tional has a global minimizer, called a Gibbs density, and is given by

(1.2) ρ∗i =
1

K
e−Ψi/β, where K =

N∑
i=1

e−Ψi/β.

From a free energy viewpoint, Chow et al [6] endowed the spaceM with a Riemannian
metric dΨ, which depended on the potential Ψ as well as the structure of the graph. Then
by considering the gradient flow of the free energy (1.1) on such a Riemannian manifold
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(M, dΨ), they obtained a Fokker-Planck equation on M:

dρi
dt

=
∑

j∈N(i),Ψj>Ψi

((Ψj + β log ρj)− (Ψi + β log ρi))ρj

+
∑

j∈N(i),Ψj<Ψi

((Ψj + β log ρj)− (Ψi + β log ρi))ρi

+
∑

j∈N(i),Ψj=Ψi

β(ρj − ρi)

(1.3)

for i = 1, 2 · · · , N(see Theorem 2 in [6]).
From a stochastic process viewpoint, the work of Chow et al may be seen as a new

interpretation of white noise perturbations to a Markov process on V . By considering
the time evolution equation of its probability density function, they obtained another
Fokker-Planck equation on M:

dρi
dt

=
∑

j∈N(i),Ψ̄j>Ψ̄i

((Ψj + β log ρj)− (Ψi + β log ρi))ρj

+
∑

j∈N(i),Ψ̄j<Ψ̄i

((Ψj + β log ρj)− (Ψi + β log ρi))ρi

=
∑
j∈N(i)

((Ψj + β log ρj)− (Ψi + β log ρi))
+ρj

−
∑
j∈N(i)

((Ψj + β log ρj)− (Ψi + β log ρi))
−ρi

(1.4)

for i = 1, 2, · · · , N , where Ψ̄i = Ψi + β log ρi for i = 1, 2, · · · , N (see Theorem 3 in [6]).
For convenience, we call equations (1.3) and (1.4) Fokker-Planck equation I (1.3) and II
(1.4) respectively. Both (1.3) and (1.4) share similar properties for β > 0 (see Theorem 2
and Theorem 3 in [6]):

(1) Both equations are gradient flows of the same free energy on the same probability
space M, but with different metrics.

(2) The Gibbs distribution ρ∗ = (ρ∗i )
N
i=1, given by (1.2), is the unique stationary

distribution of both equations in M. Furthermore, the free energy F attains its
global minimum at the Gibbs distribution.

(3) For both equations, given any initial condition ρ0 ∈ M, there exists a unique
solution

ρ(t) : [0,∞)→M
with the initial value ρ0 ∈M, and ρ(t) satisfying the properties:
(a) the free energy F (ρ(t)) decreases as time t increases, and
(b) ρ(t)→ ρ∗ under the Euclidean metric of RN , as t→ +∞.

There are differences between equations (1.3) and (1.4). Fokker-Planck equation I (1.3)
is obtained from the gradient flow of the free energy F on the Riemannian metric space
(M, dΨ). However, its connection to a Markov process on the graph is not clear. On the
other hand, Fokker-Planck equation II (1.4) is obtained from a Markov process subject
to “white noise” perturbations. This equation can also be considered as a generalized
gradient flow of the free energy on another metric space (M, dΨ̄) (see Theorem 3 in [6]).
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However, the geometry of (M, dΨ̄) is not smooth. In fact, Chow et al showed that, in
this case, M is divided into finite segments, and dΨ̄ is only smooth on each segment.

By the above discussion, we know that the Gibbs distribution ρ∗ = (ρ∗i )
N
i=1 is the unique

global equilibrium of both equations (1.3) and (1.4) in M, and for any solution ρ(t) of
both equations (1.3) and (1.4), ρ(t) will converge to global equilibrium ρ∗, under the
Euclidean metric of RN , as t→∞. A natural next question this raises is then that of the
derivation of estimates, such as O(e−ct) for a suitable c > 0, on the rate of convergence
to global equilibrium for solutions of both equations (1.3) and (1.4). Answering such a
question is one of the main objectives of the present paper. The rates of convergence
towards global equilibrium for the solution of these Fokker-Planck equations on a graph
are investigated. We will prove that the convergence is indeed exponential.

In [6], the authors introduced several metrics on the space of probability measuresM,
including dΨ, dΨ̄, an upper bound metric dM and a lower bound metric dm, where the latter
two are independent of the choice of potential. These distances are obtained in a sense
by discretizing Felix Otto’s calculus – there is a certain similarity between these distances
and the 2-Wasserstein distance on the space of probability measures on Rn. For example,
the gradient flow of free energy functional (defined using relative entropy) in these metric
spaces gives rise to the discrete Fokker-Planck equation in [6]. It is worth mentioning that
the geodesic of dΨ is a discretization of the geodesic equation in 2-Wasserstein distance on
the space of probability measures on Rn. For these reasons, sometimes we refer to these
as discrete 2-Wasserstein distances.

As an important application of our convergence result, Talagrand-type inequalities are
proved. We will show that the 2-Wasserstein distance is bounded from above by the
relative entropy: that for all ν absolutely continuous with respect to µ, it holds:

d2
m(ν,µ) ≤ KH(ν|µ) ,

where K only depends only on the (reference measure) µ.
In recent years, there has been considerable interest in deriving such inequalities in

various spaces, with the purpose of studying geometric inequalities connected to concen-
tration of measure and other phenomenon. On a Riemannian manifold, Otto and Villani
[18] showed (inter alia) that a logarithmic Sobolev inequality implied a Talagrand in-
equality; this work was soon generalized and simplified by Bobkov, Gentil and Ledoux
[4]; the latter provided simpler proofs of several previously known results concerning log-
Sobolev and transport inequalities. See also [3] for an earlier work which (along with
[18]) inspired much of the research in this topic. In subsequent work, Lott and Villani
[12] used the Hamilton-Jacobi semigroup approach of Bobkov et al [4] in showing that a
Talagrand inequality on a measured length space implied a global Poincaré inequality, as
well as in obtaining (conversely), that spaces satisfying a certain doubling condition, a
local Poincaré inequality and a log-Sobolev inequality satisfied a Talagrand inequality.

In discrete spaces, such inequalities are less understood. In part, the lack of a suitable
2-Wasserstein (W2) distance between probability measures on a graph has slowed this
progress. M. Sammer and the last author of this work observed (see [21, 22] for a proof)
that a derivation of Otto-Villani goes through in the context of a finite graph in yield-
ing the implication that a (weaker) modified log-Sobolev inequality implies a (weaker)
Talagrand-type inequality, relating a W1-distance (rather than a W2) and the relative
entropy.
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In the following, we obtain in fact two versions of a Talagrand-type inequality. The first
one is only locally true, which means that the parameter K also depends on the range of
ν – it is true for all measures ν in a compact neighborhood of µ, but may not be true if
ν is arbitrarily far away from µ.

The “global” Talagrand inequality holds for the “lower bound” metric. If the graph G
is simple and connected, then there exists a parameter K that only depends on µ and
certain parameters of G. Establishing such an inequality for a suitable notion of a W2-
distance on a discrete space continues to be intriguing; particularly, since various people
have independently observed that a literal translation of such an inequality, borrowed
from the continuous case, need not hold even on a 2-point discrete space (see e.g., [15, ?]).
However, our results suggest that the metrics introduced in [6] have a further similarity
with the W2-distance on the space of probability measures of the length space. It is known
that on Rn, Talagrand inequality is implied by the log-Sobolev inequality. It remains to
be seen, however, whether such an implication is true in the present case.

Independently, a related class of metrics has been studied by Mielke in [16] and Maas in
[15], which are similar to the Riemannian metrics in [6] with a constant potential. In the
setting of both [16] and [15], the graphs are assumed to be associated with an irreducible
and reversible Markov kernel. After essentially finishing this paper, the authors have
been informed that functional inequalities including modified Talagrand inequality and
modified logarithmic Sobolev inequalities associated with the Riemannian metric studied
in [15, 16] are independently investigated in [7].

2. Preliminaries

In this section, we recall some definitions in graph theory. A graph is an ordered pair
G = (V,E) where V = {a1, · · · , aN} is the set of vertices and E is the set of edges.
We further assume that the graph G is a simple graph (that is, there are no self loops
or multiple edges) with |V | ≥ 2, and G is connected. A weighted graph (G,w) is a
pair consisting of a graph G = (V,E) and a positive real-valued function w of its edges.
The function w is most conveniently described as an |V |-by-|V |, symmetric, nonnegative
matrix w = (wij) with the property that wij > 0 if and only if (ai, aj) ∈ E.

Given a graph G = (V,E) with V = {a1, a2, · · · , aN}, we consider all positive probability
distributions on V :

M =

{
ρ = (ρi)

N
i=1 ∈ RN |

N∑
i=1

ρi = 1 and ρi > 0 for i ∈ {1, 2, · · · , N}

}
.

For µ = (µi)
N
i=1 ∈M and any map f : V → R, recall the L2(µ)-norm of f with respect

to µ, denoted by ||f ||2,µ, and given by:

||f ||22,µ :=
N∑
i=1

(f(ai))
2µi

Let ν = (νi)
N
i=1 ∈M, then the relative entropy H(ν|µ) of ν with respect to µ is defined

by:

H(ν|µ) =
N∑
i=1

νi log
νi
µi
,
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and we measure the distance between (the density of) ν and µ using:

||ν
µ
− 1||22,µ :=

N∑
i=1

(
νi
µi
− 1)2µi .

Given a graph G = (V,E), its Laplacian matrix is defined as:

L(G) := D − A ,
where D is a diagonal matrix with dii = deg(ai) (number of edges at ai), and A is the
adjacency matrix (Aij = 1 if and only if {ai, aj} ∈ E). As G is a connected simple graph,
it is well known that L(G) has one 0 eigenvalue and |V | − 1 positive eigenvalues.

Given a weighted graph (G,w), its weighted Laplacian matrix is defined as

L(G,w) = diag(δ1, δ2, · · · , δ|V |)− w
with δi denoting the ith row sum of w. It is well known that L(G,w) also has one 0
eigenvalue and |V | − 1 positive eigenvalues.

The second smallest eigenvalue λ2 of L(G) (resp. L(G,w)) is called the spectral gap of
G (resp.(G,w)). We remind readers that there are various standard ways to bound the
spectral gap of a graph. For example for the spectral gap λ2 of L(G), see [2] for the bound

λ2 ≥ dmax −
√
d2
max − d2

min ,

where dmax and dmin are the maximum and minimum degrees of vertices in G; similarly
see [13], for

λ2 ≥
2N

2 +N(N − 1)d− 2Md
,

where N is the number of vertices, M is the number of edges, and d is the diameter of G;
or [27] for the bound,

λ2 ≥ 2(1− cos(
π

N
)) .

3. The Trend towards Equilibrium

The rate of convergence towards global equilibrium for the solution of Fokker-Planck
equations (1.3) and (1.4) in weighted L2 norm are estimated in this section. We will prove
that such convergence is exponential. In addition, the relative entropy ( with respect to
the global equilibrium ) also has exponential decay.

3.1. Convergence in weighted L2 norm. The following is our first main result.

Theorem 3.1. Let G = (V,E) be a graph with its vertex set V = {a1, a2, · · · , aN}, edge
set E, a given potential Ψ = (Ψi)

N
i=1 on V and a constant β > 0. If ρ(t) = (ρi(t))

N
i=1 :

[0,∞) →M is the solution of the Fokker-Planck equation I (1.3), with the initial value
ρo = (ρoi )

N
i=1 ∈M, then there exists a constant C = C(ρo;G,Ψ, β) > 0 such that

(3.1) ||ρ(t)

ρ∗
− 1||22,ρ∗ ≤ ||

ρo

ρ∗
− 1||22,ρ∗ e−Ct ,

where ρ∗ = (ρ∗i )
N
i=1 is the Gibbs distribution given by (1.2). In particular, ρ(t) exponen-

tially converges to global equilibrium: the Gibbs distribution ρ∗ under the Euclidean metric
of RN as t→∞.
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Proof. Given initial value ρo = (ρoi )
N
i=1 ∈ M. Let ρ(t) = (ρi(t))

N
i=1 : [0,∞) →M be the

solution of Fokker-Planck equation I (1.3) with initial value ρo ∈M. For t ≥ 0, we define

L(t) = ||ρ(t)

ρ∗
− 1||22,ρ∗ =

N∑
i=1

(ρi(t)− ρ∗i )2

ρ∗i
,

where ρ∗ = (ρ∗i )
N
i=1 is the Gibbs distribution given by (1.2). Now for t > 0 by (1.3) we

have

dL(t)

dt
=

N∑
i=1

2(ρi(t)− ρ∗i )
ρ∗i

dρi(t)

dt

=
N∑
i=1

2(ρi(t)− ρ∗i )
ρ∗i

( ∑
j∈N(i),Ψj>Ψi

(
(Ψj + β log ρj(t))− (Ψi + β log ρi(t))

)
ρj(t)

+
∑

j∈N(i),Ψj<Ψi

(
(Ψj + β log ρj(t))− (Ψi + β log ρi(t))

)
ρi(t)

+
∑

j∈N(i),Ψj=Ψi

β(ρj(t)− ρi(t))
)
.

Note that Ψj−Ψi = −β log ρ∗j+β log ρ∗i for i, j ∈ {1, 2, · · · , N} and ρ∗j = ρ∗i when Ψj = Ψi.
Combining this with the above equality, we have

dL(t)

dt

=
N∑
i=1

2(ρi(t)− ρ∗i )
ρ∗i

( ∑
j∈N(i),Ψj>Ψi

(
(−β log ρ∗j + β log ρj(t))− (−β log ρ∗i + β log ρi(t))

)
ρj(t)

+
∑

j∈N(i),Ψj<Ψi

(
(−β log ρ∗j + β log ρj(t))− (−β log ρ∗i + β log ρi(t))

)
ρi(t)

+
∑

j∈N(i),Ψj=Ψi

β(
ρj(t)

ρ∗j
− ρi(t)

ρ∗i
)
ρ∗i + ρ∗j

2

)

=
N∑
i=1

2(ρi(t)− ρ∗i )
ρ∗i

( ∑
j∈N(i),Ψj>Ψi

β(log
ρj(t)

ρ∗j
− log

ρi(t)

ρ∗i
)ρj(t)

+
∑

j∈N(i),Ψj<Ψi

β(log
ρj(t)

ρ∗j
− log

ρi(t)

ρ∗i
)ρi(t) +

∑
j∈N(i),Ψj=Ψi

β(
ρj(t)

ρ∗j
− ρi(t)

ρ∗i
)
ρ∗i + ρ∗j

2

)
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We denote ηi(t) as
ρi(t)−ρ∗i

ρ∗i
for t ≥ 0. Then the above equation can be written as

dL(t)

dt
=

N∑
i=1

2ηi(t)
( ∑
j∈N(i),Ψj>Ψi

β
(

log(1 + ηj(t))− log(1 + ηi(t))
)
ρj(t)

+
∑

j∈N(i),Ψj<Ψi

β
(

log(1 + ηj(t))− log(1 + ηi(t))
)
ρi(t)

+
∑

j∈N(i),Ψj=Ψi

β(ηj(t)− ηi(t))
ρ∗i + ρ∗j

2

)
.

For edge {ai, aj} ∈ E with Ψj > Ψi, 2ηiβ(log(1 + ηj)− log(1 + ηi))ρj will be in the above
sum at vertex ai; 2ηjβ(log(1 + ηi)− log(1 + ηj))ρj will be in the above sum at vertex aj.
So we can write the above equality as

dL(t)

dt
=−

∑
{ai,aj}∈E,Ψj>Ψi

2β(log(1 + ηj(t))− log(1 + ηi(t)))(ηj(t)− ηi(t))ρj(t)

−
∑

{ai,aj}∈E,Ψj=Ψi

2β(ηj(t)− ηi(t))2
ρ∗i + ρ∗j

2
.(3.2)

Using (3.2) and the following inequality

min{1

a
,
1

b
} ≤ log a− log b

a− b
≤ max{1

a
,
1

b
}

for a > 0, b > 0 with a 6= b, we have

dL(t)

dt
≤−

∑
{ai,aj}∈E,Ψj>Ψi

2β(ηj(t)− ηi(t))2 min{ 1

1 + ηi(t)
,

1

1 + ηj(t)
}ρj(t)

−
∑

{ai,aj}∈E,Ψj=Ψi

2β(ηj(t)− ηi(t))2
ρ∗i + ρ∗j

2

= −
∑

{ai,aj}∈E,Ψj>Ψi

2β(ηj(t)− ηi(t))2 min{ ρ∗i
ρi(t)

,
ρ∗j
ρj(t)

}ρj(t)

−
∑

{ai,aj}∈E,Ψj=Ψi

2β(ηj(t)− ηi(t))2
ρ∗i + ρ∗j

2
.(3.3)

For b = (bi)
N
i=1 ∈ RN , we let

m(b) = min{bi : 1 ≤ i ≤ N} and M(b) = max{bi : 1 ≤ i ≤ N}.

Put A(t) = 2β m(ρ(t))
M(ρ(t))

m(ρ∗) for t ≥ 0. Then A(t) > 0 and by (3.3) we have

dL(t)

dt
≤ −A(t)(

∑
{ai,aj}∈E

(ηj(t)− ηi(t))2).(3.4)

Next we use the following claims (whose proofs appear after the proof of the present
theorem), relating the above right hand side to the spectral gap of the Laplacian matrix
L(G) of graph G.
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Claim 3.2. ∑
{ai,aj}∈E

(ηj(t)− ηi(t))2 ≥ λ2

2M(ρ∗)
L(t) ,

where M(ρ∗) is the maximal entry of ρ∗ which is less than 1, and λ2 is the second smallest
eigenvalue of the Laplacian matrix L(G) of G, or the spectral gap of G.

We need the following definition before stating the next claim. Let us denote

M = max{e2|Ψi| : i = 1, 2, · · · , N},
ε0 = 1,

and

ε1 =
1

2
min

{
ε0

(1 + (2M)
1
β )
,min{ρ0

i : i = 1, · · · , N}

}
.

For ` = 2, 3, · · · , N − 1, we let

ε` =
ε`−1

1 + (2M)
1
β

.

We define

B = {q = (qi)
N
i=1 ∈M :

∑̀
r=1

qir ≤ 1− ε` where ` ∈ {1, · · · , N − 1},

1 ≤ i1 < · · · < i` ≤ N}.
Then B is a compact subset of M with respect to the Euclidean metric, with

int(B) = {q = (qi)
N
i=1 ∈M :

∑̀
r=1

qir < 1− ε`, where ` ∈ {1, · · · , N − 1},

1 ≤ i1 < · · · < i` ≤ N}.
and ρ0 ∈ int(B). We have

Claim 3.3. ρ(t) ∈ B for all t ≥ 0.

Using Claim 3.2 and (3.4), we have

dL(t)

dt
≤ − λ2

2M(ρ∗)
A(t) L(t).(3.5)

We define

(3.6) C = βλ2
m(ρ∗)

M(ρ∗)

1− εL−1

ε1
.

Clearly C > 0 is dependent on ρo as well as on G,Ψ, β, that is C = C(ρo;G,Ψ, β). By
the definition of B and Claim 3.3, we have

A(t) = 2β
m(ρ(t))

M(ρ(t))
m(ρ∗) ≥ 2βm(ρ∗) min{m(q)

M(q)
: q ∈ B}

≥ 2βm(ρ∗)
1− εL−1

ε1

=
2M(ρ∗)

λ2

C
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for t ≥ 0. Combining this with (3.5), we get dL(t)
dt
≤ −CL(t) for t > 0. This implies that

L(t) ≤ L(0)e−Ct for t ≥ 0. Since L(0) = ||ρ(0)
ρ∗
− 1||22,ρ∗ , we have (3.1), completing the

proof of the theorem, modulo the claim (see below). �

Remark 3.4. Given a graph G = (V,E), a potential Ψ = (Ψi)
N
i=1 on V and a constant

β > 0, the positive constant C = C(ρo;G,Ψ, β) given by (3.6) is dependent on the initial
value ρo ∈ M. In fact C(ρo;G,Ψ, β) → 0, when the initial distribution ρo converges to
the boundary of M.

We now write a simple observation yielding the first claim used in the proof of the
above theorem.

Proof of Claim 3.2. Indeed we have∑
{ai,aj}∈E

(ηj(t)− ηi(t))2 =
1

2

N∑
i=1

∑
j∈N(i)

(ηj(t)− ηi(t))2

≥ 1

2M(ρ∗)

N∑
i=1

∑
j∈N(i)

(ηj(t)− ηi(t))2ρ∗i ≥
λ2

2M(ρ∗)
V arρ∗(η(t))

the last inequality comes from the Poincare-type inequality (See for example [5]). In
which

V arρ∗(η(t)) =
N∑
i=1

ρ∗i η
2
i (t)− (

N∑
i=1

ρ∗i ηi(t))
2

Note that
N∑
i=1

ρ∗i ηi(t) =
N∑
i=1

ρi(t)−
N∑
i=1

ρ∗i = 0

and
N∑
i=1

ρ∗i η
2
i (t) = L(t)

Hence we have ∑
{ai,aj}∈E

(ηj(t)− ηi(t))2 ≥ λ2

2M(ρ∗)
L(t) .

�

Finally, we present the proof of the second claim.

Proof of Claim 3.3. We follow closely the argument in the proof of Theorem 4.1 in [6].
Since ρ0 ∈ int(B), it is sufficient to show for any q ∈ B, the solution q(t) through q
remains in int(B) for small t > 0. Let q = (qi)

N
i=1 ∈ B and

q(t) : [0, c(q))→M
be the solution to the equation (1.3) with initial value q on its maximal interval of
existence. In order to show q(t) ∈ int(B) for small t > 0, it is sufficient to show that for
any ` ∈ {1, 2, · · · , N − 1} and 1 ≤ i1 < i2 < · · · i` ≤ N , one has∑̀

r=1

qir(t) < 1− ε` ,
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for sufficiently small t > 0.
Given ` ∈ {1, 2, · · · , N − 1} and 1 ≤ i1 < i2 < · · · i` ≤ N , since q ∈ B, we have∑̀

r=1

qir ≤ 1− ε`.

Then there are two cases. The first one is∑̀
r=1

qir < 1− ε`.

It is clear that ∑̀
r=1

qir(t) < 1− ε` ,

for small enough t > 0 by continuity.

The second case is ∑̀
r=1

qir = 1− ε`.

Let A = {i1, i2, · · · , i`} and Ac = {1, 2, · · · , N} \ A. Then for any j ∈ Ac,

(3.7) qj ≤ 1− (
∑̀
r=1

qir) = ε`.

Since q ∈ B, we have
`−1∑
j=1

qsj ≤ 1− ε`−1,

for any 1 ≤ s1 < s2 < · · · < s`−1 ≤ N . Hence for each i ∈ A,

(3.8) qi ≥ 1− ε` − (1− ε`−1) = ε`−1 − ε`.
Combining equations (3.7),(3.8) and the fact

ε` ≤
ε`−1

1 + (2M)
1
β

,

one has, for any i ∈ A, j ∈ Ac,
(3.9) Ψj −Ψi + β(log qj − log qi) ≤ Ψj −Ψi + β(log ε` − log(ε`−1 − ε`)) ≤ − log 2.

For {ai, aj} ∈ E, we set

(3.10) C({ai, aj}) =


qj if Ψi < Ψj

qi if Ψi > Ψj
qi−qj

log qi−log qj
if Ψi = Ψj

.

Clearly, C({ai, aj}) > 0 for {ai, aj} ∈ E. Since the graph G is connected, there exists
i∗ ∈ A, j∗ ∈ Ac such that {ai∗ , aj∗} ∈ E. Thus

(3.11)
∑

i∈A,j∈Ac,{ai,aj}∈E

C({ai, aj}) ≥ C({ai∗ , aj∗}) > 0.
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Now by (3.9) and (3.11), one has

d

dt

∑̀
r=1

qir(t) |t=0 =
∑
i∈A

( ∑
j∈N(i)

C({ai, aj})
(
Ψj −Ψi + β(log qj − log qi)

))
=

∑
i∈A

( ∑
j∈A∩N(i)

C({ai, aj})
(
Ψj −Ψi + β(log qj − log qi)

)
+

∑
j∈Ac∩N(i)

C({ai, aj})
(
Ψj −Ψi + β(log qj − log qi)

))
=

∑
i∈A

( ∑
j∈Ac∩N(i)

C({ai, aj})
(
Ψj −Ψi + β(log qj − log qi)

))
≤

∑
i∈A

( ∑
j∈Ac∩N(i)

−C({ai, aj}) log 2
)

= − log 2
( ∑
i∈A,j∈Ac,{ai,aj}∈E

C({ai, aj})
)

≤ −C({ai∗ , aj∗}) log 2 < 0.

Combining this with the fact ∑̀
r=1

qir = 1− ε`,

it is clear that ∑̀
r=1

qir(t) < 1− ε` ,

for sufficiently small t > 0. This finishes the proof of Claim 3.3. �

Using the same technique, we have the following second main result.

Theorem 3.5. Let G = (V,E) be a graph with its vertex set V = {a1, a2, · · · , aN}, edge
set E, a given potential Ψ = (Ψi)

N
i=1 on V and a constant β > 0. If ρ(t) : [0,∞)→M is

the solution of Fokker-Planck equation II (1.4), with the initial value ρo = (ρoi )
N
i=1 ∈ M,

then

(3.12) ||ρ(t)

ρ∗
− 1||22,ρ∗ ≤ ||

ρo

ρ∗
− 1||22,ρ∗ e−Ct ,

where ρ∗ = (ρ∗i )
N
i=1 is the Gibbs distribution given by (1.2) and C = βλ2

min{ρ∗i :1≤i≤N}
max{ρ∗i :1≤i≤N} ,

where λ2 is the spectral gap of G. In particular, ρ(t) exponentially converges to global
equilibrium: the Gibbs distribution ρ∗ under the Euclidean metric of RN , as t→∞.

Proof. Given initial value ρ0 = (ρ0
i )
N
i=1 ∈ M. Let ρ(t) = (ρi(t))

N
i=1 : [0,∞) →M be the

solution of Fokker-Planck equation II (1.4) with initial value ρ0 ∈ M. For t ≥ 0, we
define

L(t) = ||ρ(t)

ρ∗
− 1||22,ρ∗ =

N∑
i=1

(ρi(t)− ρ∗i )2

ρ∗i
,
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where ρ∗ = (ρ∗i )
N
i=1 is the Gibbs distribution given by (1.2). Now for t > 0, by (1.4), we

have

dL(t)

dt
=

N∑
i=1

2(ρi(t)− ρ∗i )
ρ∗i

dρi(t)

dt

=
N∑
i=1

2(ρi(t)− ρ∗i )
ρ∗i

( ∑
j∈N(i),Ψ̄j>Ψ̄i

(
(Ψj + β log ρj(t))− (Ψi + β log ρi(t))

)
ρj(t)

+
∑

j∈N(i),Ψ̄j<Ψ̄i

(
(Ψj + β log ρj(t))− (Ψi + β log ρi(t))

)
ρi(t)

)

=
N∑
i=1

2(ρi(t)− ρ∗i )
ρ∗i

( ∑
j∈N(i),Ψ̄j>Ψ̄i

β(log
ρj(t)

ρ∗j
− log

ρi(t)

ρ∗i
)ρj

+
∑

j∈N(i),Ψ̄j<Ψ̄i

β(log
ρj(t)

ρ∗j
− log

ρi(t)

ρ∗i
)ρi

)
,

the last equality comes from the fact Ψj−Ψi = −β log ρ∗j+β log ρ∗i for i, j ∈ {1, 2, · · · , N}.
Denoting

ρi(t)−ρ∗i
ρ∗i

by ηi(t), for t > 0, the equation will be written as

dL(t)

dt
=

N∑
i=1

2βηi(t)
( ∑
j∈N(i),Ψ̄j>Ψ̄i

(
log(1 + ηj(t))− log(1 + ηi(t))

)
ρj(t)

+
∑

j∈N(i),Ψ̄j<Ψ̄i

(
log(1 + ηj(t))− log(1 + ηi(t))

)
ρi(t)

)
=

∑
{ai,aj}∈E,Ψ̄j>Ψ̄j

2β
(

log(1 + ηj(t))− log(1 + ηi(t))
)(
ηj(t)− ηi(t)

)
ρj(t).

Moreover note that ηi(t) = ηj(t) when Ψ̄i = Ψ̄j, we have

dL(t)

dt
=−

∑
{ai,aj}∈E,Ψ̄j>Ψ̄i

2β
(

log(1 + ηj(t))− log(1 + ηi(t))
)(
ηj(t)− ηi(t)

)
ρj(t)

−
∑

{ai,aj}∈E,Ψ̄j=Ψ̄i

2β
(
ηj(t)− ηi(t)

)2ρ
∗
i + ρ∗j

2
.(3.13)

Using (3.13) and the following inequality

min{1

a
,
1

b
} ≤ log a− log b

a− b
≤ max{1

a
,
1

b
} ,
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for a > 0, b > 0 with a 6= b, we have

dL(t)

dt
≤−

∑
{ai,aj}∈E,Ψ̄j>Ψ̄i

2β
(
ηj(t)− ηi(t)

)2
min{ 1

1 + ηi(t)
,

1

1 + ηj(t)
}ρj(t)

−
∑

{ai,aj}∈E,Ψ̄j=Ψ̄i

2β
(
ηj(t)− ηi(t)

)2ρ
∗
i + ρ∗j

2

= −
∑

{ai,aj}∈E,Ψ̄j>Ψ̄i

2β
(
ηj(t)− ηi(t)

)2
min{ ρ∗i

ρi(t)
,
ρ∗j
ρj(t)

}ρj(t)

−
∑

{ai,aj}∈E,Ψ̄j=Ψ̄i

2β
(
ηj(t)− ηi(t)

)2ρ
∗
i + ρ∗j

2
.(3.14)

Now note that
ρ∗i
ρi(t)
≥ ρ∗j

ρj(t)
when Ψ̄j > Ψ̄i, hence min{ ρ∗i

ρi(t)
,
ρ∗j
ρj(t)
}ρj(t) = ρ∗j when Ψ̄j > Ψ̄i.

Combining this with (3.14), we have

dL(t)

dt
≤−

∑
{ai,aj}∈E,Ψ̄j>Ψ̄i

2β
(
ηj(t)− ηi(t)

)2
ρ∗j

−
∑

{ai,aj}∈E,Ψ̄j=Ψ̄i

2β
(
ηj(t)− ηi(t)

)2ρ
∗
i + ρ∗j

2

≤ −2βmin{ρ∗i : 1 ≤ i ≤ N}
∑

{ai,aj}∈E

(ηj(t)− ηi(t))2.(3.15)

By the same argument as in Claim 3.2 (used in the proof of Theorem 3.1), we have∑
{ai,aj}∈E

(ηj(t)− ηi(t))2 ≥ λ2

2 max{ρ∗i : 1 ≤ i ≤ N}
L(t).

Combining this with (3.15), we get dL(t)
dt
≤ −CL(t) for t > 0, where C = βλ2

min{ρ∗i :1≤i≤N}
max{ρ∗i :1≤i≤N} .

This implies L(t) ≤ L(0)e−Ct for t ≥ 0, that is (3.12) is true, completing the proof of the
theorem. �

3.2. Exponential decay of the relative entropy. In the following, we show that the
entropy decay rate of the Fokker-Planck Equation (II) on G = (V,E) with its vertex set
V = {a1, a2, · · · , aN}, edge set E, a given potential Ψ = (Ψi)

N
i=1 on V and a constant

β > 0 can be bounded in terms of the modified logarithmic Sobolev constant (also known
as the “entropy constant”) γ0 := γ0(G) of the underlying graph G: the optimal γ0 > 0
such that

(3.16) 2γ0Ent(f) ≤ E(f, log f) ,

over all f : V → R, with f > 0; recall here the standard notation for the Entropy
functional and the Dirichlet form:

Entf := Entρ∗f := Eρ∗(f log f)− (Eρ∗f) log(Eρ∗f) .
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and

E(f, log f) =
N∑
i=1

∑
j∈N(i)

(
log f(ai)− log f(aj)

)(
f(ai)− f(aj)

)
ρ∗i .

where ρ∗ = (ρ∗i )
N
i=1 is the Gibbs distribution given by (1.2). See [5] (where this constant

was denoted as ρ0) and references therein, for more information on γ0 of a graph and that
of a Markov kernel on G.

Theorem 3.6. Let G = (V,E) be a graph, with its vertex set V = {a1, a2, · · · , aN}, edge
set E, a given potential Ψ = (Ψi)

N
i=1 on V and a constant β > 0. If ρ(t) = (ρi(t))

N
i=1 :

[0,∞) → M is the solution of Fokker-Planck equation II (1.4) with the initial value
ρo = (ρoi )

N
i=1 ∈M, then

H(ρ(t)|ρ∗) ≤ H(ρ0|ρ∗)e−ct for t ≥ 0,

where ρ∗ = (ρ∗i )
N
i=1 is the Gibbs distribution given by (1.2) and c = βγ0

min{ρ∗i :1≤i≤N}
max{ρ∗i :1≤i≤N} .

Proof. Given ρo = (ρoi )
N
i=1 ∈ M. Let ρ(t) = (ρi(t))

N
i=1 : [0,∞) → M be the solution of

Fokker-Planck equation II (1.4) with the initial value ρ0.
Recall that the relative entropy of ρ = (ρi)

N
i=1 ∈M with respect to ρ∗:

H(ρ|ρ∗) =
N∑
i=1

ρi log
ρi
ρ∗i
.

Since the Gibbs distribution is given by ρ∗i =
1

K
e−Ψi/β , we also have

Ψi = −β log ρ∗i − β logK .

For t ≥ 0, let f(t) = ρ(t)/ρ∗, i.e, f(t)(ai) = ρi(t)/ρ
∗
i for i = 1, 2, · · · , N , we rewrite the

relative entropy as usual:

Entf(t) := Entρ∗f(t) = Eρ∗(f log f)− (Eρ∗f) log(Eρ∗f)

= H(ρ(t)|ρ∗).
We write simply fi(t) = f(t)(ai). Then the Fokker-Planck equation II (1.4) becomes

dρi(t)

dt
= β

( ∑
j∈N(i),

fj(t)>fi(t)

(log fj(t)− log fi(t))ρj(t) +
∑

j∈N(i),
fj(t)<fi(t)

(log fj(t)− log fi(t))ρi(t)
)
.
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Observing that a−b
a
≤ log a − log b when a > b > 0, we bound the entropy decay by

proceeding as follows.

dEnt(f(t))

dt
=

d
( N∑
i=1

ρi(t) log ρi(t)
ρ∗i

)
dt

=
N∑
i=1

dρi(t)

dt
log fi(t) +

N∑
i=1

dρi(t)

dt
=

N∑
i=1

dρi(t)

dt
log fi(t)

= β

N∑
i=1

log fi

( ∑
j∈N(i),

fj(t)>fi(t)

(log fj(t)− log fi(t))ρj(t) +
∑

j∈N(i),
fj(t)<fi(t)

(log fj(t)− log fi(t))ρi(t)
)

= −β
∑

{ai,aj}∈E
fj(t)<fi(t)

(log fi(t)− log fj(t))
2ρi(t)

≤ −β
∑

{ai,aj}∈E
fj(t)<fi(t)

(
log fi(t)− log fj(t)

)(fi(t)− fj(t))
fi(t)

ρi(t)

= −β
∑

{ai,aj}∈E
fj(t)<fi(t)

(
log fi(t)− log fj(t)

)
(fi(t)− fj(t))ρ∗i

≤ −1

2

min{ρ∗i : 1 ≤ i ≤ N}
max{ρ∗i : 1 ≤ i ≤ N}

β
∑

{ai,aj}∈E
fj(t)<fi(t)

(
log fi(t)− log fj(t)

)
(fi(t)− fj(t))(ρ∗i + ρ∗j)

= −1

2

min{ρ∗i : 1 ≤ i ≤ N}
max{ρ∗i : 1 ≤ i ≤ N}

β
∑

{ai,aj}∈E

(
log fi(t)− log fj(t)

)
(fi(t)− fj(t))(ρ∗i + ρ∗j)

= −1

2

min{ρ∗i : 1 ≤ i ≤ N}
max{ρ∗i : 1 ≤ i ≤ N}

βE(f, log f) ,

where E(·, ·) is the Dirichlet form of G = (V,E) with respect to the measure ρ∗ on V .
Now using the definition of the modified log-Sobolev constant (3.16), we conclude that

dEnt(f)

dt
≤ −cEnt(f) ,

resulting in :
Ent(f(t)) ≤ Ent(f(0))e−ct ,

that is, H(ρ(t)|ρ∗) ≤ H(ρ0|ρ∗)e−ct for t ≥ 0, where c = βγ0
min{ρ∗i :1≤i≤N}
max{ρ∗i :1≤i≤N} . This completes

the proof of Theorem. �

4. Talagrand-type Inequalities

4.1. Discrete Wasserstein-type metric on M. Consider a graph G = (V,E) with
V = {a1, a2, · · · , aN}. As the collection of positive probability distributions on V , space
M is defined as in the beginning of Section 2.
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The tangent space TρM at ρ ∈M has the form

TρM =

{
σ = (σi)

N
i=1 ∈ RN |

N∑
i=1

σi = 0

}
.

It is clear that the standard Euclidean metric on RN , d, is also a Riemannian metric on
M.

Let
Φ : (M, d)→ (RN , d)

be an arbitrary smooth map given by:

Φ(ρ) = (Φi(ρ))Ni=1, ρ ∈M .

In the following, we will endowM with a metric dΦ, which depends on Φ and the structure
of G.

We consider the function
r1 − r2

log r1 − log r2

and extend it to the closure of the first quadrant in the plane. Denote

e(r1, r2) =


r1−r2

log r1−log r2
if r1 6= r2 and r1r2 > 0

0 if r1r2 = 0

r1 if r1 = r2

.

It is easy to check that e(r1, r2) is a continuous function on the first quadrant and satisfies
min{r1, r2} ≤ e(r1, r2) ≤ max{r1, r2}. For simplicity, we use its original form instead of
the function e(r1, r2) in the present paper.

The equivalence relation “∼ ” on RN is defined as

p ∼ q if and only if p1 − q1 = p2 − q2 = · · · = pN − qN ,
and let W be the quotient space RN/ ∼. In other words, for p ∈ RN we consider its
equivalent class

[p] = {(p1 + c, p2 + c, · · · , pN + c) : c ∈ R},
and all such equivalent classes form the vector space W .

For a given Φ, and [p] = [(pi)
N
i=1] ∈ W , we define an identification τΦ([p]) = σ fromW

to TρM by,

(4.1) σ = pL(G,w(ρ)),

where w(ρ) = {wij(ρ)}Ni,j=1 is the weight associated to the original graph G:

wij(ρ) =


ρi if Φi(ρ) > Φj(ρ), {ai, aj} ∈ E
ρj if Φi(ρ) < Φj(ρ), {ai, aj} ∈ E

ρi−ρj
log ρi−log ρj

if Φi(ρ) = Φj(ρ), {ai, aj} ∈ E
0 otherwise

and L(G,w(ρ)) is the weighted Laplacian matrix of weighted graph (G,w(ρ)). It is not
hard to check that τΦ([p]) is a linear isomorphism between TρM and W (see Lemma 2
in [6]). Hence σ ∈ TρM can be rewritten as equivalent classes on RN . For simplicity, we
say σ ' [p] = [(pi)

N
i=1] if [p] := τ−1

Φ (σ) ∈ W .
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We note that this identification (4.1) depends on Φ, the probability distribution ρ and
the structure of the graph G.

Definition 4.1. By the above identification (4.1), we define an inner product on TρM
by:

gΦρ (σ1,σ2) =
N∑
i=1

p1
iσ

2
i =

N∑
i=1

p2
iσ

1
i .

It is easy to check that this definition is equivalent to

gΦρ (σ1,σ2) = p1L(G,w(ρ))(p2)T ,

for σ1 = (σ1
i )
N
i=1,σ

2 = (σ2
i )
N
i=1 ∈ TρM, and [p1], [p2] ∈ W satisfying

σ1 ' [p1] and σ2 ' [p2].

In particular,

(4.2) gΦρ (σ,σ) = pL(G,w(ρ))pT

for σ ∈ TρM, where σ ' [p].
The associated distance dΦ(·, ·) on M is given by

dΦ(ρ1,ρ2) = inf
γ
L(γ(t))

where γ : [0, 1] → M ranges over all continuously differentiable curve with γ(0) = ρ1,
γ(1) = ρ2. The arc length of γ is given by

L(γ(t)) =

∫ 1

0

√
gΦγ(t)(γ̇(t), γ̇(t))dt.

This gives the metric space (M, dΦ).
Next, we show that the metric dΦ is lower bounded. Given ρ = (ρi)

N
i=1 ∈ M, We

consider a new identifications

(4.3) σ = pL(G,wm(ρ)),

where wm(ρ) = {wmij (ρ)}Ni,j=1 is the weight associated to the original graph G:

wmij (ρ) =

{
max{ρi, ρj} if {ai, aj} ∈ E
0 otherwise

.

and L(G,wm(ρ)) is the weighted Laplacian matrix of weighted graph (G,wm(ρ)). Similar
to the identification (4.1), identifications (4.3) is linear isomorphisms between TρM and
W .

Furthermore, they induce inner product gmρ (·, ·) on TρM. It is not hard to see that the
map ρ 7→ gmρ is smooth. By using the inner products gmρ , we can obtain distance dm(·, ·)
on M. Then (M, dm) is smooth Riemannian manifold. It is shown in [6, Lemma 3.4]
that for any smooth map Φ : (M, d)→ (RN , d) and ρ1,ρ2 ∈M,

(4.4) dm(ρ1,ρ2) ≤ dΦ(ρ1,ρ2).

Now we consider two choices of the function Φ which are related to Fokker-Planck
equation I (1.3) and II (1.4) respectively. Let the potential Ψ = (Ψi)

N
i=1 on V be given

and β > 0, where Ψi is the potential on vertex ai.
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It then follows from [6, Section 4] that Fokker-Planck equation I (1.3) is the gradient
flow of free energy F (ρ) on the Riemannian manifold (M, dΨ), i.e. let Φ(ρ) ≡ Ψ where
ρ ∈ M. Fokker-Planck equation II (1.4) is related to inner product gΨ̄ρ , where the new

potential Ψ̄(ρ) = (Ψ̄i(ρ))Ni=1 is defined by

Ψ̄i(ρ) = Ψi + β log ρi.

Since gΨ̄ρ is a piecewise smooth function with respect to ρ, the space (M, dΨ̄) is a union of
finitely many smooth Riemannian manifolds. Fokker-Planck equation II (1.4) can also be
seen as the generalized gradient flow of F (ρ) on the metric space (M, dΨ̄) (see [6, Section
5]). By (4.4), dΨ and dΨ̄ are lower bounded by dm.

4.2. Talagrand-type inequalities. We are now ready to prove the Talagrand-type in-
equalities.

Theorem 4.2. Let G = (V,E) be a graph with its vertex set V = {a1, a2, · · · , aN} and
edge set E. For each µ = (µi)

N
i=1 ∈ M and a compact subset B of M with respect to

the Euclidean metric, there exist a potential function Ψ = (Ψi)
N
i=1 on V and a constant

K = K(B,µ, G) > 0 such that for any ν = (νi)
N
i=1 ∈ B, we have the following Talagrand-

type inequality
d2

Ψ(µ,ν) ≤ KH(ν|µ),

where H(ν|µ) =
∑N

i=1 νi log νi
µi

.

Proof. Given µ = (µi)
N
i=1 ∈ M and a compact subset B of M with respect to the

Euclidean metric. Let Ψi = − log µi for i = 1, 2, · · · , N and β = 1. Then

F (ν) = H(ν|µ) ≥ 0

for any ν ∈ M. In the following, we are going to show that there is a constant K =
K(B,µ, G) > 0 such that

d2
Ψ(ν,µ) ≤ KH(ν|µ) = KF (ν)

for any ν ∈ B.
Firstly using (4.1) and (4.2), for σ ∈ TρM we have

||σ||2 = pL(G,w(ρ))L(G,w(ρ))TpT

and
gΦρ (σ,σ) = pL(G,w(ρ))pT ,

where σ ' [p] and || · || is the standard Euclidean norm on RN .
Since L(G,w(ρ)) is a real symmetric matrix, we decompose L(G,w(ρ)) into

L(G,w(ρ)) = QΛQT

where Λ is a diagonal matrix whose diagonal entries are eigenvalues of L(G,w(ρ)), and
Q is a real orthogonal matrix.

Let w = pQ, then we have

gΨ
ρ (σ,σ) = pL(G,w(ρ))pT = wΛwT and

||σ||2 = pL(G,w(ρ))L(G,w(ρ))TpT = wΛ2wT .
(4.5)
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Denote λ2(ρ) and λN(ρ) the second smallest eigenvalue and largest eigenvalue of L(G,w(ρ))
respectively. Since L(G,w(ρ)) has one 0 eigenvalue and N − 1 positive eigenvalues, it is
not hard to see

1

λN(ρ)
||σ||2 ≤ gΨ

ρ (σ,σ) ≤ 1

λ2(ρ)
||σ||2

by (4.5).
Let us denote

M = max{e2|Ψi| : i = 1, 2, · · · , N},
ε0 = 1,

and

ε1 =
1

2
min

{
ε0

(1 + (2M)
1
β )
, min

(ρi)Ni=1∈B
min{ρi : i = 1, · · · , N}

}
,

where ε1 > 0 as B is compact. For ` = 2, 3, · · · , N − 1, we let

ε` =
ε`−1

1 + (2M)
1
β

.

We define

D = {q = (qi)
N
i=1 ∈M :

∑̀
r=1

qir ≤ 1− ε` where ` ∈ {1, · · · , N − 1},

1 ≤ i1 < · · · < i` ≤ N}.
Then D is a compact subset of M with respect to the Euclidean metric and with

int(D) = {q = (qi)
N
i=1 ∈M :

∑̀
r=1

qir < 1− ε`, where ` ∈ {1, · · · , N − 1},

1 ≤ i1 < · · · < i` ≤ N}.
and B ⊂ int(D).

Let

C1 = max
ρ∈D
{ 1

λ2(ρ)
} and C2 = min

ρ∈D
{ 1

λN(ρ)
},

Since λ2, λN : M 7→ (0,+∞) are continuous and D is compact with respect to the
Euclidean metric onM, we have 0 < C2 ≤ C1 < +∞. It is clear that C1, C2 depend only
on B, µ and G, and

(4.6) C2||σ||2 ≤ gΨ
ρ (σ,σ) ≤ C1||σ||2

for any ρ ∈ D,σ ∈ TρM.
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Now for ν ∈ B, let ρ(t) = (ρi(t))
N
i=1 : [0,+∞)→M is the solution of the Fokker-Planck

Equation (1.3) for β = 1:

dρi
dt

=
∑

j∈N(i),Ψj>Ψi

((Ψj + log ρj)− (Ψi + log ρi))ρj

+
∑

j∈N(i),Ψj<Ψi

((Ψj + log ρj)− (Ψi + log ρi))ρi

+
∑

j∈N(i),Ψj=Ψi

(ρj − ρi)

with initial value ν, that is, ρ(0) = ν. Since ν ∈ int(D), we have ρ(t) ∈ D for all t ≥ 0,
which’s proof is similar to the proof of Claim 3.3.

Since the Gibbs distribution given by (1.2) is µ, Theorem 3.1 and (3.6) imply that
there exists a constant C = C(µ, B,G) > 0 such that

N∑
i=1

(ρi(t)− µi)2

µi
≤ (

N∑
i=1

(νi − µi)2

µi
)e−Ct for all t ≥ 0,

Moreover let m = min{µi : 1 ≤ i ≤ N} and M = max{µi : 1 ≤ i ≤ N}, then

||ρ(t)− µ||2 ≤ M

m
||µ− ν||2e−Ct for all t ≥ 0.

Set T = 1
C

log(4M
m

). One obtains

||ρ(T )− µ||2 ≤ 1

4
||µ− ν||2 ≤ 1

2
(||µ− ρ(T )||2 + ||ρ(T )− ν||2) ,

which implies
||ρ(T )− ν||2 ≥ ||ρ(T )− µ||2 .

So after time T , the solution of equation (1.3) traveled at least half of the Euclidean
distance from ν to µ.

Moreover since the Fokker-Planck equation equation (1.3) is the gradient flow of free
energy F under the metric dΨ(·, ·) (see Equation (31) and Theorem 2 in [6]), we have

dF (ρ(t))

dt
= −gΨ

ρ(t)(ρ̇(t), ρ̇(t))

for t > 0. By Integrating the previous equality from 0 to T , we have

F (ν)− F (ρ(T )) =

∫ T

0

gΨ
ρ(t)(ρ̇(t), ρ̇(t))dt ≥ 1

T
(

∫ T

0

√
gΨ
ρ(t)(ρ̇(t), ρ̇(t))dt)2

≥ 1

T
(

∫ T

0

√
C2||ρ̇(t)||dt)2 ≥ C2

T
||ν − ρ(T )||2.
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the last second inequality comes from (4.6) and the fact that ρ(t) ∈ D. At the same time,

F (ν)− F (ρ(T )) =

∫ T

0

gΨ
ρ(t)(ρ̇(t), ρ̇(t))dt

≥ 1

T
(

∫ T

0

√
gΨ
ρ(t)(ρ̇(t), ρ̇(t))dt)2

≥ 1

T
d2

Ψ(ν,ρ(T )).

Let s(t) = tρ(T ) + (1 − t)µ for t ∈ [0, 1]. Since D is a convex subset of RN and
ρ(T ),µ ∈ D. we have s(t) ∈ D for t ∈ [0, 1]. Thus

d2
Ψ(ρ(T ),µ) ≤ (

∫ 1

0

√
gΨ
s(t)(ρ(T )− µ,ρ(T )− µ)dt)2

≤ (

∫ 1

0

√
C1||ρ(T )− µ||2dt)2

= C1||ρ(T )− µ||2

the last second inequality comes from (4.6) and the fact that s(t) ∈ D.
This gives us the bounds

d2
Ψ(ρ(T ),µ) ≤ C1||ρ(T )− µ||2 ≤ C1||ρ(T )− ν||2

≤ TC1

C2

(F (ν)− F (ρ(T ))) ≤ TC1

C2

F (ν) ,

and
d2

Ψ(ν,ρ(T )) ≤ T (F (ν)− F (ρ(T ))) ≤ TF (ν) .

In conclusion,

d2
Ψ(µ,ν) ≤ 2d2

Ψ(µ,ρ(T )) + 2d2
Ψ(ρ(T ),ν)

≤ (
2TC1

C2

+ 2T )F (ν) = KH(ν|µ) ,

where K = (2TC1

C2
+ 2T ) is a parameter which only depends on B, G and µ. �

The other Talagrand-type inequality is for the “lower bound” metric dm(·, ·).

Theorem 4.3. Let G = (V,E) be a graph with its vertex set V = {a1, a2, · · · , aN} and
edge set E. Let D be the maximal degree of G and λ2 be the spectral gap of G. Given
µ = (µi)

N
i=1 ∈ M. Let m = min{µi : 1 ≤ i ≤ N} and M = max{µi : 1 ≤ i ≤ N}. Then

for any ν = (νi)
N
i=1 ∈M, we have the following Talagrand-type inequality

d2
m(ν,µ) ≤ KH(ν|µ)

where K = M(DN3+4)
2λ2m

log(18M
m3 ) and dm(·, ·) is the lower bounded metric defined in Section

4.1.

Proof. Let β = 1, Ψi = − log µi and Ψ̄i(ρ) = − log µi + log ρi for i = 1, 2, · · · , N . Then
F (ρ) = H(ρ|µ) for ρ ∈M. In the following, we are going to show that there is a constant
K = K(µ, G) > 0 such that

d2
m(ν,µ) ≤ KH(ν|µ) = KF (ν)

for any ν ∈ B.
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Now for ν ∈ B, let ρ(t) = (ρi(t))
N
i=1 : [0,+∞)→M is the solution of the Fokker-Planck

equation (II) (1.4) with β = 1,

dρi
dt

=
∑

j∈N(i),Ψ̄j>Ψ̄i

((Ψj + log ρj)− (Ψi + log ρi))ρj

+
∑

j∈N(i),Ψ̄j<Ψ̄i

((Ψj + log ρj)− (Ψi + log ρi))ρi .

with initial value ν, that is, ρ(0) = ν.
Let m = min{µi : 1 ≤ i ≤ N}, M = max{µi : 1 ≤ i ≤ N}. Since the Gibbs distribution

given by (1.2) is µ, Theorem 3.5 implies

N∑
i=1

(ρi(t)− µi)2

µi
≤ (

N∑
i=1

(νi − µi)2

µi
)e−λ2

m
M
t for all t ≥ 0,

where λ2 is the spectral gap of G. Moreover,

||ρ(t)− µ||2 ≤ M

m
||µ− ν||2e−λ2

m
M
t for all t ≥ 0.

Set T = M
λ2m

log(18M
m3 ). One obtains

||ρ(T )− µ||2 ≤ m2

18
||µ− ν||2 ≤ m2

9
(||µ− ρ(T )||2 + ||ρ(T )− ν||2) ,

which implies

||ρ(T )− µ||2 ≤ 1

8
m2||ρ(T )− ν||2 ≤ m2

4
as m ≤ 1

N
< 1. Thus ρ(T ) ∈ N(µ), where

N(µ) = {ρ = (ρi)
N
i=1 ∈M : |ρi − µi| ≤

m

2
, for i = 1, 2, · · · , N}

is a compact convex subset ofM with respect to Euclidean metric. In other words, after
time T , the solution of (1.4) travels at least half of the distance from ν to µ and enters
into the neighborhood N(µ). Then we can use the exactly same method as in Theorem
4.2 to estimate d2

m(·, ·).
Denote λ2(ρ) and λN(ρ) the second smallest eigenvalue and largest eigenvalue of
L(G,wm(ρ)) respectively. Similar to the proof of Theorem 4.2, we can prove

(4.7)
1

λN(ρ)
||σ||2 ≤ gmρ (σ,σ) ≤ 1

λ2(ρ)
||σ||2

for any σ ∈ TρM.
For ρ ∈ M, let δ̄(ρ) be the maximal of the diagonal elements in the Laplacian matrix
L(G,wm(ρ)) and let

iwm(ρ)(G) = min
X⊂V,|X|≤N/2

(
∑

i∈X,j 6∈X

wmij (ρ)/|X|) .

where the minimum is taken over all nonempty subsets X of V satisfying |X| ≤ N
2

. We
shall refer to iwm(ρ)(G) as the isoperimetric number of the weighted graph (G,wm(ρ)).
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Since G is connected and wmij (ρ) ≥ min{ρi : 1 ≤ i ≤ N} for {a,aj} ∈ E, it is not hard to
see that

(4.8) iwm(ρ)(G) ≥ 2 min{ρi : 1 ≤ i ≤ N}
N

.

It follow from Theorem 2.2 in [2] that the spectral gap λ2(ρ) of the weighted graph
(G,wm(ρ)) satisfies

λ2(ρ) ≥ δ̄(ρ)−
√
δ̄(ρ)2 − iwm(ρ)(G)2 ,

It then follows from inequality

δ̄(ρ)−
√
δ̄(ρ)2 − iwm(ρ)(G)2 ≥

iwm(ρ)(G)2

2δ̄(ρ)

that

(4.9) λ2(ρ) ≥ 2(min{ρi : 1 ≤ i ≤ N})2

DN2

by (4.8) and the fact that δ̄(ρ) ≤ D.
Let C1 = max{ 1

λ2(ρ)
: ρ ∈ N(µ)}. Note that min{ρi : 1 ≤ i ≤ N} ≥ m

2
for all

ρ ∈ N(µ). We have C1 ≤ 2DN2

m2 by (4.9). It is well known that λN(ρ) ≤ N for ρ ∈ M
(see for example [20]). Let C2 = inf{ 1

λN (ρ)
: ρ ∈ M}. Then C2 ≥ 1

N
. Now by (4.7), we

have

(4.10) C2||σ||2 ≤ gmρ (σ,σ)

for all σ ∈ TρM ,ρ ∈M and

(4.11) gmρ (σ,σ) ≤ C1||σ||2

for all σ ∈ TρM ,ρ ∈ N(µ).
Moreover since the Fokker-Planck equation equation (1.4) is the generalized gradient

flow of free energy F under the metric dΨ̄(·, ·) (see Equation (45) and Theorem 3 in [6]),
we have

dF (ρ(t))

dt
= −gΨ̄

ρ(t)(ρ̇(t), ρ̇(t))

for t > 0. By integrating the previous equality from 0 to T , we have

F (ν)− F (ρ(T )) =

∫ T

0

gΨ̄
ρ(t)(ρ̇(t), ρ̇(t))dt ≥ 1

T
(

∫ T

0

√
gΨ̄
ρ(t)(ρ̇(t), ρ̇(t))dt)2

≥ 1

T
(

∫ T

0

√
C2||ρ̇(t)||dt)2 ≥ C2

T
||ν − ρ(T )||2

the last second inequality comes from (4.10). At the same time,

F (ν)− F (ρ(T )) =

∫ T

0

gΨ̄
ρ(t)(ρ̇(t), ρ̇(t))dt

≥ 1

T
(

∫ T

0

√
gΨ̄
ρ(t)(ρ̇(t), ρ̇(t))dt)2

≥ 1

T
d2

Ψ̄(ν,ρ(T )) ≥ 1

T
d2
m(ν,ρ(T ))

the last inequality comes from (4.4).
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Let s(t) = tρ(T ) + (1 − t)µ for t ∈ [0, 1]. Since N(µ) is a convex subset of RN and
ρ(T ),µ ∈ N(µ). we have s(t) ∈ N(µ) for t ∈ [0, 1]. Thus

d2
m(ρ(T ),µ) ≤ (

∫ 1

0

√
gms(t)(ρ(T )− µ,ρ(T )− µ)dt)2

≤ (

∫ 1

0

√
C1||ρ(T )− µ||2dt)2

= C1||ρ(T )− µ||2

the last second inequality comes from (4.11) and the fact that s(t) ∈ N(µ).
This gives us the bounds

d2
m(ρ(T ),µ) ≤ C1||ρ(T )− µ||2 ≤ m2

8
C1||ρ(T )− ν||2

≤ m2TC1

8C2

(F (ν)− F (ρ(T ))) ≤ m2TC1

8C2

F (ν) ,

and
d2
m(ν,ρ(T )) ≤ T (F (ν)− F (ρ(T ))) ≤ TF (ν) .

Finally, note that C1 ≤ 2DN2

m2 and C2 ≥ 1
N

. We have

d2
m(ν,µ) ≤ 2d2

m(ν,ρ(T )) + 2d2
m(ρ(T ),µ)

≤ (
m2TC1

4C2

+ 2T )F (ν) = T (
m2C1

4C2

+ 2)F (ν)

≤ M

λ2m
log(

18M

m3
)
(m2 2DN2

m2

4 1
N

+ 2
)
F (ν)

= KH(ν|µ) ,

where K = M(DN3+4)
2λ2m

log(18M
m3 ). This completes the proof. �
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